
QUANTUM PROBABILITY

BANACH CENTER PUBLICATIONS, VOLUME 43

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 1998

STATIONARY QUANTUM MARKOV PROCESSES

AS SOLUTIONS OF STOCHASTIC

DIFFERENTIAL EQUATIONS
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Auf der Morgenstelle 10, D-72 076 Tübingen, Germany
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Mathematisches Institut, Universität Tübingen
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1. Introduction. In the theory of stochastic processes Brownian motion frequently

appears as the driving force for more general Markov processes. This idea is made rigorous

within the framework of stochastic calculus. It allows one to construct Markov processes

as solutions of stochastic differential equations.

The needs to cover also stochastic phenomena governed by the rules of quantum the-

ory led to the development of quantum probability, thus extending classical probability.

An early success of this theory was an extension of the Itô stochastic integral with re-

spect to Brownian motion by R. Hudson and K.R. Parthasarathy. It allows also Bosonic

or Fermionic creation, annihilation and gauge processes (in the Bosonic case) as incre-

ment process. For an account of this theory we refer to [P, Me]. Meanwhile, quantum

stochastic calculus has been further developed. Of particular importance for the present

approach are [AFQ, ApFr, BiSp, BSW, HuLi, KüSp]. The starting point for the present

paper was [Pr].

As in the classical theory, quantum stochastic calculus could be used for constructing

certain quantum Markov processes as solutions of quantum stochastic differential equa-

tions. To be more precise, solving such a stochastic differential equation yields a family

(ut)t≥0 of unitaries on a Hilbert space H0⊗F with F a Bosonic or Fermionic Fock space

(meanwhile also q-deformed Fock spaces have been considered in [BoSp, BKS]). The uni-

taries satisfy a cocycle identity with respect to the shift evolution on F , the ‘evolution

of white noise’. With the ‘initial algebra’ A0 := B(H0) the family (jt)t≥0 of ‘noncommu-

tative random variables’ given by jt : B(H0) ∋ x 7→ jt(x) := u∗t (x ⊗ 1)ut is a quantum

Markov process in the sense of [AFL].

On the other hand, there has been an operator algebraic approach to the theory of

stationary quantum Markov processes ([Kü1, Kü2]). Here, it could be shown in great

generality, that from a quantum Markov process there can be extracted a noise algebra

equipped with a stationary evolution. Its properties are encoded into the axiomatic defi-

nition of white noise (cf. Section 3). Moreover, the Markovian time evolution appears as

a perturbation of the white noise evolution by an adapted unitary cocycle. An example

of such a result from [Kü2] is mentioned in Theorem 3.2. The class of such processes

is much wider than the ones on Fock spaces mentioned above. So the question arises,

whether even in this great generality, these processes can still be identified with solutions

of certain stochastic differential equations. In the following we answer this question in

the affirmative.

The answer has to have two parts: From a quantum Markov process, i.e. its unitary

cocycle, one first has to reconstruct an increment process, playing the role of Brownian

motion. It appears in the guise of an additive cocycle with respect to the white noise

evolution. Secondly, one has to show that for any additive cocycle one can define stochastic

Itô type integrals leading to the familiar results on stochastic differential equations. From

such a stochastic differential equation one should retain the unitary cocycle as its solution.

In combining these parts we end up with a one-to-one correspondence between unitary

cocycles and additive cocycles as stated in our main Theorem 6.1.

It turns out that for the present context it is appropriate not to separate the initial

algebra from the noise algebra. Instead, it is convenient to describe the theory in the

language of Hilbert modules.
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Let us finally summarise the content of this paper.

First of all, one has to look for adequate definitions of stochastic independence and

quantum white noise in the general setting. This is the topic of Section 3 after fixing

some basic notions in Section 2.

Second, a theory of stochastic integration has to be established. For this purpose we

introduce a Hilbert module of quantum white noise. This already allows us to give a bijec-

tive correspondence between additive and isometric Hilbert module cocycles (Section 4).

In a third step we give in Section 5 a noncommutative generalization of the classical

Itô correction (dBt)
2 = dt of Brownian motion.

In Section 6 we present the main result, a bijective correspondence between additive

and unitary cocycles with respect to the free evolution of a quantum white noise. This

immediately leads to the construction of stationary quantum Markov processes.

Finally, in Section 7 we apply the general theory to the examples of squeezed white

noise and q-white noise.

2. Basic notions of quantum probability. We introduce some fundamental no-

tions and conventions which will be used throughout the following. For a more explicit

description of the concepts of quantum probability we refer to [AFL, Kü1]; for an ele-

mentary introduction cf. [KüMa].

A (noncommutative or quantum) probability space is given by a pair (A, ϕ) with A
a von Neumann algebra and ϕ a faithful normal state on A. The natural morphisms

T : (A, ϕ) → (B, ψ) between two probability spaces are given by completely positive

operators T : A → B such that T (1lA) = 1lB and ψ ◦ T = ϕ. By Aut(A, ϕ) we denote the

automorphisms of (A, ϕ). We understand a conditional expectation P from (A, ϕ) onto

some von Neumann subalgebra B of A as an endomorphism of (A, ϕ). The conditional

expectation P : (A, ϕ) → B exists (and is unique) iff B is globally invariant under the

modular automorphism group σ
ϕ
t . We denote the centralizer of (A, ϕ) by Aϕ and the

commutant of A by A′. If A1 and A2 are von Neumann subalgebras of A then A1

∨

A2

denotes the von Neumann subalgebra of A which is generated by A1 and A2. Similarly,
∨

i∈I Ai is defined for a family (Ai)i∈I of subalgebras.

If for any interval I ⊂ R, AI is a von Neumann subalgebra of A, such that (i) the

conditional expectation PI from (A, ϕ) onto AI exists, (ii) I1 ⊆ I2 implies AI1 ⊆ AI2 , and

finally (iii) A[r,t] = A[r,s]

∨A[s,t] whenever r ≤ s ≤ t, then we call (AI)I a filtration of

the probability space (A, ϕ). A filtration (AI)I of the probability space (A, ϕ) is called an

A0-Markov filtration, if P(−∞,0]◦P[0,∞) = P0 (P0 denotes the conditional expectation from

(A, ϕ) onto A0). We remark that A0 can be viewed as the image of an identity preserving

injective *-homomorphism i : (B, ψ) → (A, ϕ) which is called a noncommutative random

variable. Here we always identify B with its embedding A0 in A.

A stationary dynamical system (A, ϕ, Tt) is given by a probability space (A, ϕ) and a

pointwise weak*-continuous group (Tt)t∈R ⊂ Aut(A, ϕ). A stationary (quantum) Markov

process (A, ϕ, Tt;A0) with values in A0 is a stationary dynamical system (A, ϕ, Tt) such
that there exists an A0-Markov filtration (AI)I and

∨

s∈[−r,t] Ts(A0) ⊆ A[−r,t] for any

−r ≤ 0 ≤ t. Defining Rt := P0 ◦ Tt ◦ P0, every stationary Markov process (A, ϕ, Tt;A0)

with values in A0 yields an irreversible stationary dynamical system (A0, ϕ,Rt).
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Finally we agree upon the following general conventions. If (A, ϕ) is a probability

space we denote its GNS Hilbert space by L2(A, ϕ) and the state ϕ is represented as a

vector state by the cyclic separating vector Ω ∈ L2(A, ϕ), i.e. ϕ = 〈Ω | · Ω〉. If u ∈ A is

any unitary then Adu denotes the inner automorphism A ∋ x 7→ u∗xu of A. The complex

n× n-matrices are denoted by Mn where n = ∞ is allowed.

3. Stochastic independence and generalized white noise. We present a def-

inition of stochastic independence which generalises the classical notion of stochastic

independence and already anticipates the basic definition of quantum white noise.

Definition 3.1. Let (A, ϕ) be a probability space with three von Neumann subalge-

bras Ai ⊆ A for which the conditional expectation Pi : (A, ϕ) → Ai exists (i = 0, 1, 2).

The subalgebrasA1 and A2 are independent over A0 if the following condition is satisfied:

P0(xy) = P0(x)P0(y) for any x ∈ A1, y ∈ A2 .

If dim(A0) = 1, then P0(x) = ϕ(x) · 1l for all x ∈ A and we retain the notion

of independence w.r.t. the state ϕ. If (A, ϕ) is a finite von Neumann algebra A with

a faithful normal trace ϕ, the definition of independence rephrases the properties of a

commuting square (cf. [GHJ]).

Now we are in the position to give the fundamental definition of quantum white noise.

Its structural properties will enable us to develop a theory of stochastic integration as

well as to construct stationary quantum Markov processes in the sense of [Kü1, Kü2].

Definition 3.2. A quantum or generalized white noise (over the von Neumann al-

gebra A0) is a quadruple (A, ϕ, St; (AI)I), where (A, ϕ, St) is a stationary dynamical

system and (AI)I⊂R is a filtration of the probability space (A, ϕ) such that

(i) St ◦ P0 = P0, and St(AI) = AI+t for t ∈ R, where I + t := {s+ t | s ∈ I},
(ii) A[r,s] and A[r′,s′] are independent over A0 in (A, ϕ), whenever s ≤ r′.

From now on we suppress the attribute ‘quantum’ and simply speak of a white noise

(over A0) and a stationary Markov process. Of special interest for the construction of

stationary Markov processes is the following object.

Definition 3.3. Let (A, ϕ, St; (AI)I) be a white noise. A unitary (left) cocycle u

(w.r.t. St) is a weak*-continuous family (ut)t≥0 ⊂ A of unitaries with the following

properties:

(i) ut ∈ A[0,t] for any t ≥ 0 (adaptedness),

(ii) us+t = St(us)ut for any s, t ≥ 0 (cocycle identity).

Putting Ct := Adut for t ≥ 0 and Ct := St ◦C−1
−t ◦ S−t for t < 0, then C ⊂ Aut(A, ϕ)

iff u ⊂ Aϕ. If we agree on Tt := Ct ◦ St ∈ Aut(A, ϕ), we get the following

Lemma 3.1. Let (A, ϕ, St; (AI)I) be a white noise over A0 and u ⊂ Aϕ a unitary

cocycle w.r.t. St. Then (A, ϕ, Tt;A0) is a stationary Markov process with values in A0.

(A, ϕ, Tt;A0) is also called a coupling to white noise (A, ϕ, St; (AI)I) and St is called

the free evolution for the stationary Markov process (A, ϕ, Tt;A0).
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Finally, we mention that our definition of white noise is not a mere question of defi-

nition. It is the outcome of a structural identification of stationary Markov processes as

couplings to white noise. For a large class of stationary Markov processes such a structure

can be established. As an example we mention ([Kü2]):

Theorem 3.2. Let (A, ϕ, Tt;Mn) be a stationary Markov process with values in the

n × n-matrices Mn. If there exists a projection e ∈ Mn which is minimal in Mn and

invariant under Tt, then the process is a coupling to white noise.

This result features that the Markov property of the considered process is reflected

by the white noise property of the free evolution and conversely. Thus the stochastic

properties of a stationary process and of its free evolution are intimately related although

the free evolution is not unique.

4. Stochastic integration on Hilbert modules. In the case of Gaussian white

noise, stochastic integration of Itô type is deeply related to the notion of stochastic

independence, which leads to a factorisation (w.r.t. the state) of the product of two

independent random variables. In our setting of a quantum white noise (A, ϕ, St, (AI)I)

over the von Neumann algebra A0, such a factorisation of independent elements w.r.t. ϕ,

in general, is no longer present. Here we can only expect a factorisation of independent

elements in A w.r.t. the conditional expectation P0 : (A, ϕ) → A0. This observation

naturally leads to the concept of Hilbert module as substitute for the GNS Hilbert space

of white noise if one wants to define stochastic integrals of Itô type.

4.1. Hilbert modules. We briefly introduce Hilbert modules to the extent necessary

for our later purposes. For a more detailed approach to Hilbert modules we refer the

reader to [Fr, La, Pa, Sc] and the references therein. We mention that Hilbert modules

meanwhile appear also in the context of quantum stochastic integration on Fock modules

(cf. [AcLu, Sk]).

Let (A, ϕ) be a probability space and A0 a von Neumann subalgebra of A such that

the conditional expectation P0 : (A, ϕ) → A0 exists. Denote by p0 ∈ B(L2(A, ϕ)) the

projection induced by P0. Given the right action of A0 on Ap0 by Ap0×A0 ∋ (xp0, a0) 7→
xp0a0 = xa0p0 ∈ Ap0 and the left action of a ∈ A on x ∈ Ap0 by ax, we obtain an

A-A0-bimodule Ap0. We introduce the A0-valued inner product

〈x | y〉0 := x∗y for any x, y ∈ Ap0 ,
where we identifyA0p0 withA0. Denote the closure ofAp0 in the strong operator topology

(s-topology) on B(L2(A, ϕ)) by
L2(A, P0) := {Ap0}−s .

Carrying out the extension of the A0-valued inner product 〈· | ·〉0 on Ap0 and of the right

action of A0 on Ap0 to L2(A, P0) and denoting them by the same symbols, L2(A, P0) is a

(right) Hilbert W*-module over A0, which we call for brevity (GNS ) Hilbert module. Fur-

thermore we agree on |x|0 := 〈y | y〉1/20 and define on L2(A, P0) the norm ‖x‖0 := ‖|x|0‖.
We remark that the s-topology on L2(A, P0) is induced by the family of seminorms

dξ(x) := ‖|x|0ξ‖, ξ ∈ L2(A, ϕ), x ∈ L2(A, P0). In addition, because we restrict our-
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selves to von Neumann algebras with separable predual, elements of the Hilbert module

L2(A, P0) can be approximated in the s-topology by ‖·‖0-bounded sequences in A.

Let B(L2(A, P0)) be the set of adjointable A0-linear maps on the Hilbert module

L2(A, P0) and denote the unique adjoint of an adjointable map L by L∗. Then the left

action of a ∈ A on Ap0 lifts to an element La ∈ B(L2(A, P0)) such that

〈y |La(x)〉0 = 〈L∗
a(y) |x〉0 = 〈La∗(y) |x〉0 for any x, y ∈ L2(A, P0) .

From now on we simply write La(x) as ax. In addition, a morphism T of (A, ϕ), which
commutes with the modular automorphism group of (A, ϕ) and leaves A0 pointwise fixed,

extends uniquely to an adjointable map on L2(A, P0) which we still denote by T .

4.2. Quantum white noise and Hilbert modules. Let (A, ϕ, St; (AI)I) be a white noise

over A0. The conditional expectations PI : (A, ϕ) → AI and the group of automorphisms

St commute with the modular automorphism group of (A, ϕ) and leave A0 pointwise

fixed. Hence, they extend to adjointable maps PI and St on L
2(A, P0). In particular the

filtration (AI)I extends to a filtration (L2(AI , P0))I of L2(A, P0) which is given by the

Hilbert modules L2(AI , P0) := PI(L
2(A, P0)) = {AIp0}− s. Here, we identify L2(A0, P0)

with A0. We call two elements x, y ∈ L2(A, P0) independent if x ∈ L2(AI , P0) and

y ∈ L2(AJ , P0), where I and J are intervals which are disjoint or have one point in

common (in these cases we write |I ∩ J | = 0).

Lemma 4.1. If x ∈ L2(AI , P0) and y ∈ L2(AJ , P0) with |I ∩ J | = 0, then

〈x | y〉0 = 〈x | 1l〉0〈1l | y〉0 .
In addition to the factorisation property of independent elements in the Hilbert mod-

ule L2(A0, P0) we formulate a product of independent elements.

Lemma 4.2. Let x ∈ L2(AI , P0) and y ∈ L2(AJ , P0) be independent , let (xn)n∈N ⊂
AI be a sequence such that x = s- limn→∞ xn. Then

x · y := s- lim
n→∞

xny

defines a product of independent elements in L2(A, P0) which does not depend on the

chosen approximation (xn)n∈N and satisfies the equation

|x · y|20 = 〈y | |x|20y〉0 .

4.3. Stochastic integration on L2(A, P0). In the Hilbert module L2(A, P0) we find the

(noncommutative) counterpart to Brownian motion as increment process of stochastic Itô

integrals on the GNS Hilbert space of Gaussian white noise.

Definition 4.1. An additive cocycle b with respect to the white noise (A, ϕ, St;
(AI)I) is a family (bt)t≥0 ⊆ L2(A, P0) with the following properties

(i) bt ∈ L2(A[0,t], P0) for any t ≥ 0 (adaptedness),

(ii) bs+t = bt + St(bs) for any s, t ≥ 0 (cocycle identity).

If in addition, P0(bt) = 0 for any t ≥ 0, then b is called centred.
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We remark that centred additive cocycles b enjoy the martingale property: P[0,t](bt+s)

= bt. Moreover, the pointwise continuity of t 7→ P[0,t] in the s-topology on the Hilbert

module L2(A, P0) yields 〈bt | a0bt〉0 = t · 〈b1 | a0b1〉0 =: t · Λ(a0), a0 ∈ A0.

Now we are prepared to formulate in L2(A, P0) left and right integrals w.r.t. centred

additive cocycles b
t\
0

dbs · xs ,
t\
0

xs · dbs .

Here (xs)s≥0 ⊆ L2(A, P0) means an adapted stochastic process, i.e. xs ∈ L2(A[0,s], P0),

which is required to be continuous in the s-topology or even in the ‖·‖0-topology on

L2(A, P0). (The integrals can be extended to larger classes of processes but in the present

context we make no use of this possibility.) As usual, one first defines integrals for simple

adapted processes x with xs =
∑n

i=1 xsiχ[si−1,si), where xsi ∈ L2(A[0,si], P0). By means

of the product of xsi and Ssi(bsi+1−si) in L2(A, P0) simple stochastic integrals are well

defined:
t\
0

dbs · xs :=
n
∑

i=1

Ssi(bsi+1−si) · xsi ,
t\
0

xs · dbs :=
n
∑

i=1

xsi · Ssi(bsi+1−si) .

We obtain the following Itô isometries.

Lemma 4.3. The simple left and right integrals w.r.t. a centred additive cocycle b

enjoy the A0-valued isometry identities

∣

∣

∣

t\
0

dbs · xs
∣

∣

∣

2

0
=

t\
0

|Λ(1l)1/2xs|20 ds ,
∣

∣

∣

t\
0

xs · dbs
∣

∣

∣

2

0
=

t\
0

Λ(|xs|20) ds .

These isometries are decisive for extending the integrals from simple stochastic pro-

cesses to larger classes. We omit details and briefly state: Adapted processes which are

continuous in the s-topology are approximated by simple processes (xns )s≥0 in the topol-

ogy induced by the family of seminorms
Tt
0
dξ(xs)

2 ds. In addition, we note that the defi-

nition of stochastic integrals extends straightforward to noncentred additive cocycles β.

4.4. Stochastic differential equations. Having established stochastic left and right in-

tegrals on L2(A, P0) one defines stochastic differential equations. We restrict our investi-

gations to equations of the following type:

xt = xt0 +

t\
t0

dβs · a(s, xs) . (4.1)

The function a : R+ × L2(A, P0) → L2(A, P0) respects adaptedness: for each t ≥ 0 and

each x ∈ L2(A[0,t], P0) again a(t, x) is in L2(A[0,t], P0). Now we are capable to answer

the question whether a solution of a stochastic differential equation exists and whether

it is unique.

Theorem 4.4. Let a : R+ × L2(A, P0) → L2(A, P0) be an adapted function with the

following properties : For each interval [t0, t1], t0 ≥ 0, there exists a number C > 0 and

for each ξ ∈ L2(A0, ϕ) there exists a continuous function fξ on R
+, such that for any
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x, y ∈ L2(A, P0), s, t ∈ [t0, t1], the following estimates hold :

dξ (a(t, x)− a(s, x)) ≤ C · (1 + dξ(x)) · |fξ(t)− fξ(s)| ,
‖a(t, x)− a(t, y)‖0 ≤ C · ‖x− y‖0 .

If all these conditions are satisfied , the stochastic differential equation (4.1) has one and

only one solution x ⊂ L2(A, P0); and this solution is ‖·‖0-continuous.

4.5. Additive cocycles and their construction. We have seen that in the GNS Hilbert

module L2(A, P0) of the white noise (A, ϕ, St, (AI)I) and in the presence of a centred

additive cocycle, a theory of stochastic integration can be established. The question arises:

Where does an additive cocycle come from? Indeed, we are now going to show that from

a unitary cocycle in the Hilbert module an additive cocycle can be constructed.

Definition 4.2. An isometric cocycle u is a family (ut)t≥0 ⊆ L2(A, P0) such that for

any s, t ≥ 0

(i) |ut|0 = 1l ,

(ii) ut ∈ L2(A[0,t], P0) ,

(iii) us+t = St(us) · ut .
Of course, a unitary cocycle u ⊆ A is an isometric one.

Theorem 4.5. There is a one-to-one correspondence between ‖·‖0-continuous isomet-

ric cocycles u ⊂ L2(A, P0) and additive cocycles βt = bt + Kt, consisting of a centred

additive cocycle b ⊂ L2(A, P0) and an operator K ∈ A0 with −(K + K∗) = |b1|20. The
cocycle β associated with u is given by

βt = ‖·‖0- lim
n→∞

n−1
∑

j=0

Sjt/n(ut/n − 1l)

and K satisfies P0(ut) = exp(Kt) ∈ A0. Conversely, if β is given, the corresponding u

solves the stochastic differential equation

ut = 1l +

t\
0

dβs · us . (4.2)

Moreover , u defines the ‖·‖-continuous W*-dynamical semigroup Rt(a) := 〈ut | aut〉0 on

A0 with generator L(a) := Λ(a) +K∗a+ aK, where Λ(a) := 〈b1 | ab1〉0.

5. Additive cocycles and their mutual quadratic variation. By virtue of theo-

rem 4.5 a bijective correspondence already holds between additive and isometric cocycles

in the Hilbert module L2(A, P0) of a white noise (A, ϕ, St, (AI)I). If we want to ensure

that the solution of the stochastic differential equation (4.2) yields a unitary cocycle u,

the corresponding additive cocycle β has to be subjected to further conditions. To for-

mulate these conditions, it is necessary to take the product of two elements of L2(A, P0)

which are not independent. In the case of Gaussian white noise, Brownian motion B is

not only contained in L2(S ′,Σ, µ), but even in L4(S ′,Σ, µ) (cf. [Hi]). Consequently, in

our general context of a white noise (A, ϕ, St; (AI)I), we look for a space E4 ⊂ L2(A, P0)

which plays the role of L4(S ′,Σ, µ) in the case of Gaussian white noise. Since we are
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interested in the construction of stationary Markov processes, it is no loss of generality

to assume that A is a finite von Neumann algebra and ϕ acts as a tracial state on A.

For brevity, a densely defined, closed operator X which is affiliated to A and contains

L2(A0, ϕ) in its core will be called P0-affiliated.

Proposition 5.1. Let (A, ϕ) be a von Neumann algebra A equipped with a faithful

normal trace ϕ and denote by A0 a von Neumann subalgebra of A.

(i) There is a one-to-one correspondence between x ∈ L2(A, P0) and P0-affiliated op-

erators X , which is given by Xa′ξ0 = a′xξ0, for any a′ ∈ A′, ξ0 ∈ L2(A0, ϕ).

(ii) E4 := {x ∈ L2(A, P0) |x = s- limn→∞ xn , supn∈N{‖x∗nxn‖0 , ‖xnx∗n‖0} < ∞ , xn ∈
A} enjoys the following properties :

• To each x ∈ E4 with X as the associated P0-affiliated operator , there uniquely

exists x∗ ∈ E4 such that its corresponding P0-affiliated operator is given by

X∗. Moreover , if x = s- limn→∞ xn then x∗ = s- limn→∞ x∗n, and the limits

are independent of the chosen approximation (xn)n∈N ⊂ A.

• For any two elements x, y ∈ E4 there exists a well defined product xy ∈
L2(A, ϕ); the corresponding affiliated operator with Ω in its domain is given

by XY , the product of the operators X and Y belonging to x and y.

Due to this correspondence between elements in L2(A, P0), respectively in L2(A, ϕ),
and affiliated operators we will no longer distinguish between these two objects. Now we

study the properties of additive cocycles in E4. As mentioned above we can restrict our

considerations to a white noise (A, ϕ, St, (AI)I) with tracial state ϕ.

Theorem 5.2. Let β and γ be additive cocycles in E4 ⊂ L2(A, P0). Then

(i) the mutual quadratic variation [β, γ] of the additive cocycles β and γ exists in

L2(A, ϕ) and is given by

[β, γ]t := lim
|Z|→0

∑

i<nZ

(βti+1
− βti)(γti+1

− γti) ,

where Z := {ti | 0 = t0 < t1 < . . . < tnZ
= t} and |Z| denotes the mesh of the

partition Z,

(ii) the equation βtγt = [β, γ]t +
Tt
0
dβs · γs +

Tt
0
βs · dγs holds and

(iii) if β and γ are independent , then [β, γ] = 0 .

If (βi)i=1,...,n are additive cocycles in E4, then ([βi, βj ])i,j=1,...,n is a family of additive

cocycles in L2(A, ϕ) which forms an (abstract) Itô table (cf. [AFQ]).

If A0 is finite dimensional and the mutual quadratic variation [β, γ] of two additive

cocycles β and γ is a linear combination of β, γ, β∗, γ∗ and cocycles K · t, K ∈ A0, then

{β, γ,A0} forms a *-algebra with respect to the mutual quadratic variation as multiplica-

tion. The generalization for more than two additive cocycles is obvious. In the context of

Fock space stochastic integration this kind of *-algebra is known as Itô algebra (cf. [Be]).

6. The main result. We now formulate a bijective correspondence between additive

and multiplicative cocycles with respect to the free evolution of a white noise. It is, in
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particular, designed for the construction of stationary Markov processes. Note that in the

following theorem E4 is defined w.r.t. the centralizer Aϕ of (A, ϕ).
Theorem 6.1. Let (A, ϕ, St; (AI)I) be a white noise over A0. There is a canonical

bijective correspondence between

(i) ‖·‖0-continuous unitary cocycles u ⊆ Aϕ and

(ii) additive cocycles β ⊆ E4 with [β∗, β]t = −(β∗
t + βt).

The correspondence is given as follows : u is the solution of the stochastic differential

equation

ut = 1l +

t\
0

dβs · us (6.3)

and β is constructed from u by

βt = ‖·‖0- lim
n→∞

n−1
∑

j=0

Sjt/n(ut/n − 1l) .

For practical purposes it is not necessary to calculate the mutual quadratic variation

if one wants to verify condition (ii) of the preceding theorem.

Corollary 6.2. Defining K := P0(β1), bt := βt − Kt ∈ E4 and F (t) := ‖b∗t btΩ‖2,
condition (ii) of Theorem 6.1 is equivalent to

(i) |bt|20 = −(K∗ +K) · t ,
(ii) ‖(b∗t + bt)Ω‖2 = F ′(0) · t ,
(iii) ‖(b∗t + bt)Ω‖2 = −〈b∗t btΩ | (b∗t + bt)Ω〉 .

Corollary 6.2 delivers convenient criteria for additive cocycles such that the solution

of equation (6.3) is a unitary cocycle. These conditions only require knowledge about the

centralizer of a white noise and the existence of the fourth moment F (t) of the additive

cocycle b.

Corollary 6.3. (i) If either one of the conditions in Theorem 6.1 is fulfilled , then

(A, ϕ, Tt;A0), where Tt := Adut ◦ St, is a stationary Markov process with values in

A0. The generator L of the semigroup Rt := P0 ◦ Tt ◦ P0 on (A0, ϕ) is given by

L(a) := 〈b1 | ab1〉0 +K∗a+ aK .

(ii) If βi, i = 1, . . . , n, are mutual independent additive cocycles , all satisfying condition

(ii) of Theorem 6.1, then so does β :=
∑n

i=1 β
i. In this case the generator of the

associated semigroup is the sum of the generators associated with βi (i = 1, . . . , n).

The composition of independent additive cocycles βi easily extends to ‖·‖0-bounded

sums.

Corollary 6.4. Let the cocycle βt = bt +Kt satisfy condition (ii) of Theorem 6.1.

Then b∗t = −bt implies that the associated W*-dynamical semigroup etL obeys detailed

balance in the sense of Kossakowski et al. ([KFGV]).
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7. Examples. In the cases of squeezed white noise and q-white noise we finally il-

lustrate the handling of the presented general theory. We construct simple examples

for generators of semigroups Rt = etL on (Mn, ρ), which come from stationary Markov

processes.

7.1. Squeezed white noise. Let (C, ψ) be the GNS representation of the CCR algebra

over L2(R) w.r.t. the faithful quasifree state ψ defined on the Weyl operators W (f),

f ∈ L2(R), by

ψ(W (f)) := exp
[

−λ
4

(

cosh(2r) ‖f‖2 + sinh(2r)Re(eiθ〈f | Jf〉)
)]

.

Here J is the canonical conjugation on L2(R) and r, θ ∈ R, λ > 1. The spectrum of

the modular group w.r.t. ψ is given by {
(

λ+1
λ−1

)int|n ∈ Z}. A filtration (CI)I on (C, ψ) is

induced by (L2(I))I in the usual way. Finally, let St be the second quantisation of the

shift on L2(R). Then (Mn⊗C, ρ⊗ψ, id⊗St; (Mn⊗CI)I) is a white noise overMn, which

is an amplification of squeezed white noise (C, ϕ, St, (CI)I) (cf. [Ba], [HKR]). Let l1 and

l2 be elements of the eigenspaces of σρt with the eigenvalues κit and κ−it. Choose λ > 1

such that κ = λ+1
λ−1 , then

bt := l1 ⊗Aψ(χ[0,t]) + l2 ⊗A∗
ψ(χ[0,t])

is a centred additive cocycle in E4 (here Aψ , A
∗
ψ denote annihilation and creation operator

in the GNS representation of (C, ψ)). The fourth moment F (t) of bt is of order t
2, hence

F ′(0) = 0. Applying Corollary 6.2 yields b∗t = −bt, consequently l := −l2 = l∗1. Condition

(i) determines K up to a skew selfadjoint operator iH . This leads to the generator

L(x) := i[H,x] +R∗xR + κ−1/2RxR∗ − 1
2{R

∗R, x} − 1
2κ

−1/2{RR∗, x} ,
where R :=

√
λ+1

2
(cosh(r) · l+sinh(r) · l∗) and x ∈Mn. We remark that this construction

parallels the one given in [ApFr] for Fermionic quasifree white noise.

7.2. q-white noise. We follow the presentation in [BKS]. Let H := L2
R
(R) ⊗ R

n and

denote its complexification by HC. The family of operators {a(f) : f ∈ HC}, which satisfy

the q-commutation relation

a(f)a∗(g)− qa∗(g)a(f) = 〈f | g〉1l, −1 < q < 1,

are realized as bounded operators on the q-Fock space Fq(HC). Furthermore, Γq(H) :=
∨

f∈H{a(f) + a∗(f)} ⊂ B(Fq(HC)) is a finite von Neumann algebra and ψ := 〈Ω | · Ω〉
acts as a tracial state on Γq(H) (Ω is the vacuum vector). The shift on L2(R) induces the

shift St on Γq(H). Let ρ be the trace on Mn. Then (Mn ⊗ Γq(H), ρ ⊗ ψ, id ⊗ St, (Mn ⊗
Γq(L

2(I) ⊗ R
n))I) is a white noise over Mn. With the canonical base (ej)j=1,...,n of Rn

and (lj)j=1,...,n ⊂Mn,

b
j
t := ilj ⊗ (a(χ[0,t] ⊗ ej) + a∗(χ[0,t] ⊗ ej)), j = 1, . . . , n ,

are mutual independent centred additive cocycles in Mn ⊗ Γq(H). The fourth moments

of bjt are easily computed to be of order t2, hence F ′(0) = 0. Applying corollary 6.2

immediately yields lj = l∗j . With some H = H∗ ∈Mn this leads to generators of the form

L(x) := i[H,x] +
∑

j

ljxlj − 1
2{l

2
j , x}, for any x ∈Mn .
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[KüSp] B. Kümmerer and R. Speicher, Stochastic integration on the Cuntz algebra O∞,

J. Funct. Anal. 103, 372–408, 1992.

[La] E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Notes Series

210, 1995.

[Me] P. A. Meyer, Quantum Probability for Probabilists, Springer Verlag, Berlin, Heidel-

berg, 1993.



QUANTUM MARKOV PROCESSES 229

[P] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus,
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