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Abstract. The Stinespring theorem is reformulated in terms of conditional expectations in
a von Neumann algebra. A generalisation for map-valued measures is obtained.

1. Introduction. Traditionally, each dilation theorem is obtained by a construction
of a ‘huge’ (Hilbert) space H containing a given space H in the following manner. A system
¥ (+) of operators in H or transformations of an algebra acting in H can be represented
in the form

Y(-) = Pu®(-)Puin (1.1)
where ®(-) is more regular than v (-). Throughout, Py denotes the orthogonal projection
of H onto H.

The most impressive results in this theory are effects of sophisticated indexing of
linear bases of H and a ‘magic touch’ of scalar product. Theorems of B. Sz.-Nagy [9] and
K.R. Parthasarathy [5] are excellent examples of such approach.

Dealing with operator algebras it seems to be most natural and physically meaning-
ful to use the conditional expectation E [7, p.116] instead of Py (-)Py (cf L. Accardi,
M. Ohya [1]).

In the paper we follow both ideas. Roughly speaking we represent a completely positive
map-valued measure via the following dilation. Namely, any completely positive map
turns into multiplication by a projection in such a way that the map-valued measure is
‘dilated’ to a spectral measure (Section 2).
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The outstanding theorem of Stinespring [6] gives the dilation of a completely positive
map ¢ in a C*-algebra to its x-representation ® via formula (1.1). Passing to a W*-algebra
M Stinespring’s theorem can be formulated using a normal conditional expectation E
from a ‘huge’ algebra A/ onto M instead of Py (-)Py. Such a new version of Stinespring’s
result will be proved in Section 3 together with a dilation theorem for positive map-valued
measures.

Section 4 is devoted to a short comparison of the results just mentioned with the
previous ones concerning commutative W*-algebras.

2. Dilation of completely positive map-valuded measure. Let M be a von
Neumann algebra of operators acting in a Hilbert space H. By C'P(M) we shall denote
the set of completely positive linear maps in M. Let (X,X) be a measurable space and
Q : ¥ — CP(M) be a o-additive operator-valued measure (i.e. ¥ 3 A — Q(A)z is
o-additive in the ultra weak topology in M for each x € M) with Q(X)1 = 1.

THEOREM 2.1. There exist a Hilbert space H, a natural linear injection V : H — H,
a *x-representation ® of the algebra M in H, a o-additive vector measure e : ¥ — ProjH,
such that

QA)x =V"e(A)®(x)V, zeM, Ack. (2.1)
Moreover, e(A) is a central projection in (®(M) U e(X))”.
Proof. Let us consider the algebraic tensor product of vector spaces
Ho=M®®H®SF(X,X)

where SF(X,3) denotes the vector space of simple functions on (X, ).
Let us extend the measure ) from ¥ to a linear mapping on SF(X,Y) putting

k k
QUf) =D cxQ(Ay)  for  f=> cula,
k=1 k=1

where A, € X, k=1,... k.
In the sequel we shall briefly write A instead of 1o, A € X. Notice that Hg is formed
by elements of the form

=) @hi®A; (2.2)
i=1
where x; e M, h, e H, A, €X,i=1,...,n,n=1,2,....
In the space Hy we can define a sesquilinear form (-, -) by

(&m) = Z Z(Q(Ai NLy)(y;zi)hi, g5)

i=1 j=1
for
€:Z$i®hi®Ai and n:Zyj®gj®Fj.
i=1 j=1
The symbol (-, -) denotes here the inner product in H. We shall show that (-, -) is positive.
Indeed, for £ of form (2.2) we consider the partition {o1,... 0k} of ., A; given by
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A, ..., A,. Putting €& = 1 when o, C A; and €% = 0 when o, N A; = ) we can write
(€.6) = 3 QAN Ay (fz)his hy) Z ((Ze (0)) (@i i, s )
'7.7_1 1,7=1 s=1
-3 S @egan
s=114,j=1
where hf = elh;, i=1,...,n.

The complete positivity of Q(os) gives the inequality

n

S Qo) @m)hi b 20, s=1,....k,
i,j=1
thus (£,£) > 0. Let us denote ||€|lo = 1/ (£, &) and put Hy = Ho / N where N = {£ € Ho :
l€llo = 0}. Finally, let us set H = 7—[_1“)
We define V : H — H by putting Vh =[1® h® X] for h € H. Then
(VA V) = (Q(X)1)h, h) = (h,h)
so V' is an isometry.
Now let us construct a x-representation ® of the algebra M in H. Namely, for z € M
let us set
O(z): [yRh@A] = [zy@h® A]
where y € M, h € H, A € ¥. ®(z) is well defined. Indeed, we prove the following
inequality

(2.3)

n n
| > i, < lall || X
=1 =1

fory; e M, h; e HH A, €Xi=1,...,n,n=1,2,.... As above, we can write

HZ% Z Z )(yjya)hi, h3),
H Zn:zy Z Z Fatay;)hi, ). (2.4)

s=114,5=1
For a linear map o : M — M let us denote by a(™ the map o™ : Mat, (M) —
Mat,, (M) given by the formula

ol ([z5]) = [a(zi)]
where [2; j]i,j<n € Mat,, (M). Mat,, (M) denotes here the C*-algebra of all nxn matrices
[2i,j]i,j<n With entries z; ; in M.
Now, we follow Takesaki [10, p. 196]. The Schwarz inequality for operators, by the
complete positivity of Q(os), gives

Qos) ™ (77 7y) < |Zl1PQ(o:)™ (7Y) (2.5)
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for each Z,y € Mat, (M). Setting = = [d; jz], ¥ = [01,:ys] we get ¥*T*Ty = [yfz*zy;],
¥*y = [yfy;]. Thus, by (2.5) and ||Z|| = ||z||, we have

[Q(os)(y; z*xy;)] < [l2]*1Q(os) (i yj)]-

Hence
> (Qos) iz zy )3, b)) < lll® Y (QUos) (yiys)hs, ).
i=1 i.j=1

Finally, by (2.4), we get (2.3). Then || 3.7 1 v; ® hy ® Agllo = 0 implies || Y1, 2y; @ hy ®

Aillo = 0 and ®(x) is well defined. Obviously by (2.3), ®(x) : H — H is a linear bounded

operator in B(H). It is easy to check that ® : M — B(H) is a -representation M in H.
Now for A € ¥ we define e(A) : H — H putting

e(A): [y h@ Al — [y h® (ANA)

where y € M, h € H, A’ € 3. The operator e(A) is well defined because || Y ; y; ®h; ®
Ajllo = 0 implies || X7 1 v ® hy @ (AN A;)|Jo = 0. Indeed, let {o1,...,0%} be a partition
of Ui, A; given by A, Ay,...,A;. Let us put €2 = 1 when o0, C A; and € = 0 when
os N A; = (). Similarly, let e, = 1 when o, C A and €5, = 0 when o5 N A = (). Then

Zss Z e.e1Q(os) (Y5 vi)hi, hy)

s=1 7,7=1

<ZZ€ Q(os)(y5vi)hi, hj) —HZyz

s=11,j=1

HZ Y @ hi @ (ANA)

because, by the complete positivity of Q(os), we have

Z 5 Us yjyz>hzvh ) 0.

7,j=1
Obviously, e(A) is an orthogonal projection in H. Moreover, for x € M and A € ¥ we
have

B(z)e(A)yoh @ Al = e(A)®(x)y@h @ A']
wherey € M, h € H, A’ € ¥, 50 e(A) is a central projection in the algebra (®(MUe(%))".
Finally, for all h,g € H, z € M and A € &

(V*e(A)P(x)Vh,g) = (e(A)P(x)VA,Vg) ={(z@hRA, 1092 X) = ((Q(A)x)h, g),

so formula (2.1) holds. =

3. Dilations via conditional expectations. At the very beginning dilation theory
was motivated by physical applications. In particular, the classical Naimark theorem gives
a construction of a good self-adjoint quantum observable expressed by its spectral measure
beyond the Hilbert space H in which acts a ‘candidate’ for physical observable being only
an unbounded symmetric operator (see [9] for precise explanation). On the other hand,
passing from a given operator algebra to a bigger one, physically means passing from
a given system to a bigger one. That is why general ideas of dilation theory can be
interpreted as follows. Enlarging a Hilbert space we usually pass to a new (better) model
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of the same physical system whereas the construction of a dilation in a bigger algebra
means passing to a bigger system enjoying more regular evolution ([3], [2]).

In particular, the physical meaning of Stinespring’s theorem can be enriched if we
express the dilation in terms of the conditional expectation in the enlarged algebra. Such
a construction, with consequences for map-valued measures, will be done in this section.

It turns out that some natural properties of an equivalence relation in the lattice of
projections are crucial.

A basic tool is the comparison theorem for projections ([8], Thm. 4.6).

THEOREM 3.1. For any p,q € Proj /N, there exists a projection e € N NN’ such that
pe=qe andp(l—e) < q(l—e).

Clearly, p < ¢ means uu* = p, u*u < g for some partial isometry v € N.

The following consequence of the above theorem will be used.

PROPOSITION 3.2. Let N be a von Neumann algebra and let p be a projection in N
with the central support z(p) = 1. There exists a system of mutually orthogonal projections
(pi; 1 < ko) in Proj N, kg being an ordinal number, such that p; < p, Zi<k0 p; =1, and
b1 =p.

Proof. We use the transfinite induction, treating 1,2, ... as ordinals. Denote e; = 0,
p1 = p. Assume that, for some ordinals k¥ and for any ¢ < k, projections e;, p; € ProjN'
satisfying the conditions

e; € ./\f/,

(e;; 1 < k) are mutually orthogonal,

(pi; © < k) are mutually orthogonal, (3.1)
ij > Z €5

J<i J<i

Pip

have already been defined. If ), _, p; = 1, the construction is complete with ko = k.
If not, we consider separately the following two cases.
Case 1°. Assume that

1L 1L 1

(Zej) p= (Zeg‘) (ij) : (%)
i<k j<k j<k

Then it is enough to put e = 0, py an arbitrary projection in N satisfying

1L 1 1L
pkN(Zej) Ds pké(Zeg‘) (ZP;‘)
i<k i<k i<k
(clearly, p ~ ¢ means p = u*u, ¢ = uu*, for some u € N).

Case 2°. Assume that () does not hold. Then we consider the algebra
1 1 1
M:(Zej) N(Ze]) :N(Zej) . (32)
i<k i<k i<k

Restricting operators to a subspace (3, ;) (H), one can treat M as a von Neumann
algebra with the projections p = p(2j<k ej)t, pi = pi(X:K,C e;)t. By the comparison



236 E. HENSZ-CHADZYNSKA ET AL.

theorem there exists a central projection in M, say ey, satisfying the conditions

1L 1
pey = (Zﬁj) er and p(lpm —ex) < (Zﬁj) (Tm — ex).
j<k i<k
Since the reduction of AV to M is done by the central projection (3;_, e;)h, e can
be obviously treated as a central projection in N as well.
Let pj be an arbitrary projection in M satisfying

1L
Pr < (ZP;‘) (Im =€), Pe~p(lm — er).
j<k
We put
1L
Pr =Dk + (ZP;‘) e
j<k

Obviously, we can treat py as a projection in A/. All conditions (3.1) are now satisfied for
k+ 1 (instead for k).

Clearly, >, pi = 1 necessarily for some ordinal k (since dim H is a fixed cardinal). =

We shall need the following consequences of Proposition 3.2.

LEMMA 3.3. Let M and N be von Neumann algebras acting in Hilbert spaces H and
H, respectively, with H C H. Denote by Py the orthogonal projection from H onto H.
Assume that

Py M Py C N, the central support z(Pg) = 1.

Then there exists an isometric injection v : H — H ® K, for some Hilbert space K such
that

vNv* € M ® B(K), (3.3)
v(=C(®mn, (€ H, for somen € K. (3.4)
Proof. Keeping the notation of Proposition 3.2, with p = Py C N, let us fix a
Hilbert space K with an orthogonal basis (n;,j < ko). As p; < p, we can use projections
r; < p satisfying p; = wjw;, r; = w;w} for some partial isometries w; € N, i < ko.
Obviously, we can assume that w; = p.
Let us take v;¢ = w; ®n;, i < ko, for ( € H. Then we get an isometry
v = Zvi, v:H—->HQK.
i<ko
Formula (3.4) is obvious. It remains to show (3.3) or, equivalently, N' C v*M & B(K)v.
This can be checked by the commutant technique as follows.
We have
pilNp; U{w],w;} Cv*M @ B(K)v, i< k. (3.5)
Indeed,
piNpi = v (riMr; @ (-, mi)n;)v,
<'a >771 v,

w; = U*(ri i )
(- m)mi)v.

®
wi =v*(r; ®
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For example we check the first equality. Obviously p,N'p; = wiNw; = wi Mw;, and for
any * € M, ¢ € H, denoting (; = p;(, j < ko, we have

v =" wi¢; @
j<ko
and

v (rizr @ (G ma)ni)vC = vt (i wiG @ i) = (wi - @n)i)* (ri v wiG @ n;)
= w zw;(; = w] rw(.
On the other hand, we have
!
( U piNpi U {wz,wf}) =N (3.6)
i<ko
The inclusion ”D” is obvious. Conversely, let y commute with all p;Np;, w;, w}. An
arbitrary z € N can be represented as z = >, ;_; pizp;. Take 2 € N of the form
x = p; 2 pj. We have, since w;zw}j € py1Np1,
yr = yw; wizw;w; = w; y(wizwi)w; = w; (wizw} )yw; = ry.
Taking commutants on both sides of (3.6) and taking into account (3.5), we get (3.3). m
PROPOSITION 3.4. For any completely positive map « in a von Neumann algebra
M acting in a Hilbert space H there exists a Hilbert space K and a x-representation
P : M — M® B(K) satisfying
ar =II"®(z)II
where, for £ € H, 11§ = £ @ny for a fized vector m € K, ||m|| = 1.
Proof. Take any Stinespring triple: (H, Py, V) where H D H, Py is an orthogonal
projection of H onto H, and ¥ : M — B(H) is a x-representation satisfying
Denote N' = (M U ¥(M))"” (obviously, we identify M > x = 2Py € B(H)). According
to the Stinespring’s construction [6], [10, p. 195] the projection Py has in A the central
support z(Pg) = 1p. By Lemma 3.3, there exists a Hilbert space K, an isometry v :
H — H ® K and a vector 1, € K satisfying (3.3) and (3.4). We set
O(x) =v¥(z)v*, e M.
Then @ is a #-representation of M into M ® B(K). Moreover, as II§ = £ @y for € € H,
we have, for any x € M,
(I @ (x)IE = (TP (z)0™)(§ @ m) = oW (z)§
= II"v¥(2)Py& = Pu¥(z)Pu = a(x)
(since (v*(E@m),¢) = (€,¢), (T*vp,¢) = (v(Pup+ Pip), C@m) = (Pup) @i, (Qm) =
(Pyp,C) for ¢ € H, p € H, the orthogonality vPxp L ( ®1n; is a consequence of (3.4)). m
Now we are in a position to prove dilation theorems in the language of conditional

expectations in W*-algebras (see [7], Chapter 2 for basic facts).

THEOREM 3.5. For any W*-algebra M and any completely positive map o in M there
exist a W*-algebra N'y N D M (i.e. M is a W*-subalgebra of N') and a x-representation
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D : M — N such that
ar = EM®(z), ze€ M, (3.7)
where EM is a normal conditional expectation of N onto M.

Proof. We keep the notation of Proposition 3.4. We identify M with M ® 1k by a
natural isomorphism z = 2® 1. We define a conditional expectation EM®1x by putting,
fory e N = M ® B(K)

EME (y) = (1) @ 1k,
where TI¢ = € ® 1, € € H. It is easy to check that EM®1x is a projection of norm
one, so conditional expectation [7, p. 116]. Taking ® as in Proposition 3.4, we have
ax = II*®(2)II, so
ar @ 1 = (ITF®(2)1) @ 1 = EMOE D (x),
which is equivalent to (3.7). m

Now, keeping notation as in Section 2, our Theorem 2.1 can be rewritten in the
following way:

THEOREM 3.6. For a W*-algebra M and for a measure Q : ¥ — C P(M), there
exists a W*-algebra N'y N' O M (i.e. M is a W*-subalgebra of N') and a spectral measure
e: Y — ProjN such that

Q(A)z =EM(e(A)®(x))
for some *-representation ® of M in N and a conditional expectation EM of N onto M.

4. Dilations in conditional expectations scheme. In this section we compare
our results of Sections 2 and 3 with theorems concerning measures with values being
positive operators in L. It turns out that these results can be reformulated to the case
of the algebra L., and then treated as theorems on commutative W*-algebras.

In this context, constructiong a dilation, we shall try to use most natural trans-
formations (projections) appearing in the Lj-space theory, like conditional expectation,
indicator multiplication operator etc.

Moreover, we use a conditional expectation Ej.f‘ for some probability measure P (and
o-field A) instead of a projection Py : H — H (from beyond the Hilbert space H).

Using here the space L instead of L., seems to be a better idea.

Let (X,X) be a topological Borel measurable space. Let (M, 91, 1) be a probability
space. A map Q : ¥ — B(L1(M, 0, u)) is said to be a regular positive operator measure
(shortly PO-measure) if the following conditions are satisfied:

1. QA)f >0for 0 < f € Ly;

2. Q(U:il AS) =202, Q(A,)f, for f € Ly, and pairwise disjoint A;’s, the series
being convergent in Ly (M, 9, u);

3. @ is regular in the sense that for each € > 0 and each A € ¥ there exist in X a
compact set Z and an open set V such that

Vv -21udu<e, zcacv,
M
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4. Q(X)1y < 1
5.§,QX)fdu<S, fdu, 0<feL.

We have the following

THEOREM 4.1 [4]. Let Q be a regular positive operator measure. Then there exist a
‘huge’ measure space (0, F, P), a o-field A C F, a o-lattice homomorphism e : ¥ — F

onto

and two measurable maps i : onte M, j:Q — M such that

(QA)f) 0j =Eplea)(foi), AR, feLi(M).
THEOREM 4.2 [4]. There exist a measurable space (2, F), a measurable map i : Q —
M (onto), o-fields A, B C F, a o-lattice homomorphism e : & — F, a set Qo € F such
that, for every PO-measure Q : 3 — B(L1(M,9M, 1)), there exists a probability measure
P on (Q,F), for which the following formula holds:

(Q(A)f) 0i = 4Ep1 () ERlay(foi), A€X, feLi(M)

For other similar results we refer to [4].
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