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Abstract. We define a new quantum dynamical entropy for a C∗-algebra automorphism

with an invariant state (and for an appropriate ‘approximating’ subalgebra), which entropy is a

‘hybrid’ of the two alternative definitions by Connes, Narnhofer and Thirring resp. by Alicki and

Fannes (and earlier, Lindblad). We report on this entropy’s properties and on three examples.

1. Introduction. The quantum dynamical entropy in the sense of Connes, Narnhofer

and Thirring [8], originating from the first, still more restricted definition by Connes and

Størmer [9], has been studied intensively during the past decade (see in particular [6] for a

comparison with the popular notion of ‘quantum chaos’). More recently, Alicki and Fannes

[1] proposed a more direct definition of quantum dynamical entropy, related to earlier

work of G. Lindblad [15]. This latter entropy definition has been applied and studied in

considerable detail in [1, 5, 4, 2, 3, 21] and may also be the subject of other contributions

in this present Volume. Yet another, promising approach is due to Voiculescu [22].

In our contribution here, we report on our recent definition of a new quantum dy-

namical entropy [11], which is a ‘hybrid’ of the above two earlier definitions and has

partly ‘merged’ properties, resp. values in the examples. Note that an earlier version of

the forthcoming preprint [11] was circulated under the same title of this contribution.

Our standing notation will be the following: A is a general unital C∗-algebra, with

unit 1l ∈ A. All subalgebras of A are unital ∗-subalgebras and all maps are unital (i.e.

unit-preserving), linear maps; in particular, θ : A → A is a ∗-endomorphism (or ∗-
automorphism), and ϕ = ϕ ◦ θ is a θ-invariant state on A. The basic quantum entropy

functional will be denoted by the letter S (and ‘log’ will denote natural logarithms):
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Definition 1 (von Neumann entropy). For a state ψ on the (n× n)-matrix algebra

Mn(C), its von Neumann quantum entropy is defined by S(ψ) = −Trn(ρψ log ρψ), where

ρψ is the density matrix for the state ψ, and Trn is the (n× n)-matrix trace.

2. Quick review of the two alternative definitions, to be partly merged

Definition 2 (Connes–Narnhofer–Thirring entropy). The basic entropy functional

in the definition by Connes–Narnhofer–Thirring [8] of the quantum dynamical entropy

hϕ(θ) is a more ‘sophisticated’ functional than the von Neumann entropy Def. 1 above,

defined in a first step as follows:

(i) For a single completely positive, unit–preserving, linear map γ : Mn(C) → A,

again from the C∗-algebra of complex (n × n)-matrices into the fixed C∗-algebra A, its

CNT entropy w.r.t. the state ϕ on A is

Hϕ(γ) = S(ϕ ◦ γ)− inf
{ϕ=
∑

i ϕi}

∑

i

ϕi(1l)S(ϕ̂i ◦ γ) ,

where ϕ =
∑

i ϕi is any (finite) decomposition of the state ϕ into positive linear func-

tionals ϕi on A, and ϕ̂i = (ϕi(1l))
−1 · ϕi is the respectively corresponding normalized

state on A.

(ii) The second step of the definition in [8] is to generalize the entropy functional

(i) above to more than one argument, extending the original definition by Connes and

Størmer [9] (there for trace states ϕ on A) to ℓ ∈ IN completely positive maps γk :

Mnk
(C) → A for k = 1, . . . , ℓ, from respective (nk × nk)-matrix algebras (but not neces-

sarily subalgebras ofA, in contrast to [9]) into A. As we will not need this multi-argument

entropy functional of [8] in our approach to quantum dynamical entropy, we do not recall

its definition here, but we just emphasize that it is a ‘well-developed’ generalization of

(i) above, denoted by Hϕ(γ1, . . . , γℓ).

(iii) This then leads to the definition of the CNT entropy of θ w.r.t. γ (as in (i) above)

given ϕ, which uses (ii) above in the same multi–argument way as already in [9]:

hϕ(θ, γ) = lim
m→∞

1

m
Hϕ(γ, θ ◦ γ, . . . , θm−1 ◦ γ) ,

where the limit exists due to a multi–argument subadditivity (and invariance) property

of the permutation symmetric functional (ii), see [8, 9].

(iv) The final step is the definition of the CNT dynamical entropy of θ given ϕ, first

as an abstract supremum

hϕ(θ) = sup
γ
hϕ(θ, γ) ,

where the supremum is taken over all completely positive maps γ from finite–dimensional

matrix algebras into A (or equivalently [8], from finite–dimensional C∗-algebras into A,

with (i) and (ii) above slightly generalized).

R ema r k 1. The generally abstract supremum in the final step (iv) of Definition

2 may be exactly computed for a (separable) nuclear C∗-algebra, for which there exists

a sequence σn : A → An resp. τn : An → A of completely positive, unital maps with

finite–dimensional C∗-algebras An such that τn ◦ σn → IdA in pointwise norm: see [8]
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(and references there), where it is shown that in this case hϕ(θ) = limn→∞ hϕ(θ, τn)

holds, due to a certain joint norm continuity of the multi–argument entropy functional

(ii) in Definition 2 above.

R ema r k 2. In particular, for an AF (approximately finite–dimensional) algebra

A =
⋃

n∈IN An (the norm inductive limit of an increasing sequence of finite–dimensional

subalgebras An), one may take the canonical inclusion ∗-homomorphisms τn := ıAn
:

An →֒ A and then obtains the CNT dynamical entropy as the increasing limit hϕ(θ) =

limn→∞ hϕ(θ,An), where we use the short notation for subalgebras: e.g. Hϕ(An) ≡
Hϕ(ıAn

) in (i) of Def. 2.

R ema r k 3. While the AF algebras of the previous Remark are the natural non-

Abelian generalization of (the C∗-algebras of continuous functions on) totally discon-

nected, compact metric spaces, the natural generalization of connected, compact metric

spaces are the projectionless (unital, separable, in particular nuclear) non-Abelian C∗-

algebras. For such a C∗-algebra, there do not exist any finite-dimensional ∗-subalgebras
as used in Remark 2, but still there exist plenty of completely positive unital maps

γ : Mn(C) → A for any n ∈ IN: As pointed out in [8] (see references there), such a

map, defined by linearly extending γ(Eij) = Aij ∈ A with the matrix units Eij ∈Mn(C)

(i, j = 1, . . . , n), is completely positive iff the matrix A = [Aij ]ij in the C∗-algebraMn(A)

is positive.

Definition 3 (Alicki–Fannes / Lindblad entropy). The definition of quantum dyna-

mical entropy hAF
ϕ,B(θ) by Alicki and Fannes [1] uses the original von Neumann quantum

entropy of Def. 1 in a completely different way than in Def. 2 above, related to earlier

work of G. Lindblad [15], compare also [16, p. 121] and the reference to the work of

Lindblad given there. Following the suggestion of R. Alicki during his talk at the Quan-

tum Probability 1997 meeting, we will now use the short–cut: ALF entropy (despite the

non-alphabetic order of the authors’ initials, but in a sense ‘time-ordered’ from the middle

initial) in contrast to the CNT entropy of Def. 2 above; but we will retain the notation

hAF (resp. HAF) as above, hoping that no confusion will be possible with the notion of

AF algebras as in Remark 2 above.

An operational partition of unity in A is an m-tuple (for m ∈ IN arbitrary) α =

(Ai)i=1,...,m of elements Ai ∈ A such that
∑m
i=1 A

∗
iAi = 1l.

For any ∗-subalgebra B ⊆ A, we denote by O1(B) the set of all its operational parti-

tions of unity β = (Bi)i with Bi ∈ B; and by O1(B, n) we denote the subset of all those

β with exactly n ∈ IN elements.

(i) For α ∈ O1(A, n), α = (Ai)i=1,...,n, its ALF entropy w.r.t. the state ϕ on A is

defined by the von Neumann entropy of the state ψϕ[α] on Mn(C) with density matrix

ρϕ[α]ij := ϕ(A∗
jAi) (i, j = 1, . . . , n):

HAF
ϕ (α) := S(ψϕ[α]), where ψϕ[α](m) = Trn(m · ρϕ[α]) ∀m ∈Mn(C).

(ii) For two operational partitions of unity α, β ∈ O1(B), where α = (Ai)i=1,...,m ∈
O1(B,m) and β = (Bj)j=1,...,n ∈ O1(B, n) within a ∗-subalgebra B ⊆ A, we define their

ordered refinement by
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α~∨β := (B1A1, B2A1, . . . , BnA1, B1A2, . . . , BnA2, . . . , BnAm)

in the order indicated with the resulting (mn)-tuple, such that obviously again α~∨β ∈
O1(B), and in particular α~∨β ∈ O1(B,mn), as we have to count all the zero components

in the resulting tuple.

(iii) The ALF entropy of θ w.r.t. α given ϕ is defined as

hAF
ϕ (θ, α) = lim sup

k→∞

1

k
HAF
ϕ (α~∨θ(α)~∨ . . . ~∨θk−1(α)).

(iv) Let θ and ϕ be as before, and B ⊂ A be any (typically, norm–dense) unital

∗-subalgebra of A. The ALF entropy of θ given ϕ and B is defined as

hAF
ϕ,B(θ) = sup

α∈O1(B)

hAF
ϕ (θ, α).

Rema r k 4. In contrast to the CNT entropy for AF algebras as in Remark 2, where

the norm–dense, algebraic inductive limit, ∗-algebra B :=
⋃

n∈IN An ⊂ A already gives

hϕ(θ) as in Def. 2,(iv) by taking the supremum there over all completely positive maps

from finite–dimensional matrix algebras only into B ⊂ A (this is an obvious consequence

of Remark 2), the ALF entropy has the following general continuity problem: For a norm–

dense ∗-subalgebra B ⊂ A (as in the AF algebra case), there is no general norm continuity

property of the ALF entropy available which would again lead to the desired computation

of the abstract full supremum for all of A, in the form hAF
ϕ,B(θ) = hAF

ϕ,A(θ).

R ema r k 5. This latter problem was solved for the Abelian case A = L∞(X,µ),

of the von Neumann algebra A of L∞-functions on a probability space (X,µ), in [2]

where the natural notion of a H-dense (here, the precise notation should be ‘HAF-dense’)

subalgebra B ⊂ A was introduced, for which the above equality of suprema holds. See

also the corresponding Chapter 5 in the Thesis of Tuyls [21], in particular Section 5.2.

3. The new ‘hybrid’ quantum dynamical entropy and its properties

Definition 4 (The map of a partition). For an operational partition of unity α =

(Ai ∈ A)i=1,...,n, with α ∈ O1(A, n), we define a completely positive map denoted by

γ[α] :Mn(C) → A by linearly extending

γ[α](Eij) := A∗
iAj , i, j = 1, . . . , n,

from the matrix units Eij ∈Mn(C), numbered in the canonical order.

That γ[α] is a completely positive map is obvious from the result quoted in Remark 3

above: The matrix A = [A∗
iAj ]ij ∈ Mn(A) is evidently positive, as it may be expressed

as A = B∗B with the matrix B ∈ Mn(A) having the top row equal to (A1, A2, . . . , An)

and all zero entries on the lower rows.

Definition 5 (The hybrid entropy). We have to modify only the first step (i) of Def.

3 above, and leave the other three steps completely analogous:

(i) For α ∈ O1(A), the hybrid entropy of α given the state ϕ on A is defined by

HHϕ(α) := Hϕ(γ[α]) ,

with the single–argument CNT entropy functional, of Def. 2,(i) before, on the right.
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(ii) The ordered refinement ~∨ is defined in Def. 3,(ii) above.

(iii) The hybrid entropy of θ w.r.t. α given ϕ is defined by

hhϕ(θ, α) = lim sup
k→∞

1

k
HHϕ(α~∨θ(α)~∨ . . . ~∨θk−1(α)).

(iv) The hybrid entropy of θ w.r.t. ϕ and B (as in Def. 3,(iv) above) is defined by

hhϕ,B(θ) = sup
α∈O1(B)

hhϕ(θ, α).

Proposition 1. The hybrid entropy Def. 5,(i) of a partition has the following general

algebraic properties :

(i) For α ∈ O1(A), the entropy has the general upper bound :

HHϕ(α) ≤ S(ϕ ◦ γ[α]) = HAF
ϕ (α),

where the r.h.s. equation states an equivalent reformulation of the ALF entropy Def. 3,(i)

in terms of the S-entropy Def. 1 together with the new Def. 4 of the map of a partition:

it is easy to see that the two states ψϕ[α] and ϕ ◦ γ[α] on Mn(C) coincide. Further , both

sides of the inequality are independent of the order of the tuple α.

(ii) For the ‘trivial’ partition ν = (µ11l, µ21l, . . . , µn1l) ∈ O1(A, n), with µi ∈ C ∀i =
1, . . . , n ∈ IN such that

∑n
i=1 |µi|2 = 1, the entropy vanishes : HHϕ(ν) = 0.

(iii) For a faithful state ϕ and any B ∈ A, we define the linear functional [ϕ1/2Bϕ1/2]

on A as also before Prop. (VIII.3 ) in [8] : we identify A with its isomorphic image in

the GNS representation constructed with ϕ, and on the generated von Neumann algebra

in this representation we use the modular automorphism group σϕt (t ∈ IR ⊂ C) of ϕ to

define this linear functional by:

[ϕ1/2Bϕ1/2](A) := ϕ(Aσϕ−i/2(B)), ∀A ∈ A.
Then, for any operational partition β of the unit by mutually orthogonal projections , i.e.

β = (pi ∈ A)i=1,...,n ∈ O1(A, n) such that pi = p∗i = p2i , pipj = 0 ∀i 6= j, we have the

inequalities

HHϕ(β) ≤
n
∑

i=1

η(ϕ(pi)) = S(ϕ ◦ γ[β])

and

HHϕ(β) ≥ 2S(ϕ ◦ γ[β])−
n
∑

i=1

n
∑

j=1

η
(

[ϕ1/2piϕ
1/2](pj)

)

≥ 0,

where as usual , η(x) ≡ −x log x ∀x ∈ [0, 1].

If in addition β ∈ O1(Aϕ), where the ϕ-centralizer Aϕ := {B ∈ A|ϕ(AB) = ϕ(BA)

∀A ∈ A} coincides with the fixed point algebra of σϕt restricted to A, then HHϕ(β) =

−∑n
i=1 ϕ(pi) logϕ(pi).

More generally, for not necessarily faithful ϕ but with Aϕ still defined as previously

above, if α = (Ai)i ∈ O1(Aϕ) is an ‘anti–orthogonal’ partition in the sense that AiA
∗
j =

0 ∀i 6= j, then always HHϕ(α) = HAF
ϕ (α) holds (i.e., the inequality (i) is saturated).

Note that for such a partition also ϕ(A∗
iAj) = 0 ∀i 6= j holds.
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(iv) HHϕ(α~∨β) ≥ HHϕ(α) for α, β ∈ O1(A). Note that HHϕ(α~∨β) 6= HHϕ(β~∨α),
i.g.

(v) If θ : A → A is a unital ∗-endomorphism with ϕ ◦ θ = ϕ, then HHϕ(θ(α)) ≤
HHϕ(α) for α ∈ O1(A). In particular , equality holds for a ∗-automorphism θ.

(vi) For A = A1 ⊗A2 of tensor product form, and with the canonical tensor product

α1 ⊗ α2 ∈ O1(A) of two respective partitions α1 = (Ai)i ∈ O1(A1) and α2 = (Bj)j ∈
O1(A2) defined by α1 ⊗ α2 := (α1 ⊗ 1l2)~∨(1l1 ⊗ α2) = (Ai ⊗ Bj)(i,j), the hybrid entropy

with a product state ϕ = ϕ1 ⊗ ϕ2 on A is superadditive:

HHϕ(α1 ⊗ α2) ≥ HHϕ1
(α1) +HHϕ2

(α2).

P r o o f. We give a brief sketch of the methods of proof for these properties:

(i) follows directly from Def. 2,(i) and from Def. 1, which together with (i) also implies

(ii), observing that ϕ ◦ γ[ν] in (ii) is a pure state on Mn(C).

The first inequality of (iii) is just a repetition of (i) using Def. 1 in this special case, and

the second inequality is an immediate consequence of Prop. (VIII.4) and Lemma (VIII.5)

in [8], observing that with the Abelian n-dimensional subalgebra B ⊂ A generated by β,

we have by Proposition (III.6,a) in [8]: HHϕ(β) = Hϕ(B), where on the r.h.s. we use the

notation from the end of Remark 2. The third statement of (iii) follows from the first two

inequalities and the definition of [ϕ1/2piϕ
1/2]. Note that generally, ϕ =

∑n
i=1[ϕ

1/2piϕ
1/2]

is a decomposition of ϕ. The more general final claim follows directly from Def. 2.

(iv) resp. (v) follow from Proposition (III.6), (a) resp. (b), in [8]. Finally, (vi) is a

consequence of the superadditivity of the single–argument CNT entropy Def. 2,(i) w.r.t.

tensor product maps, which is part of the argument in Lemma (3.4) of [20] (and using

the order independence (i) in the proof of (vi)).

Proposition 2. The hybrid entropy Def. 5,(iii) of an endomorphism w.r.t. a parti-

tion has the following general algebraic properties :

(i) For α ∈ O1(A, n), we have the general upper bound hhϕ(θ, α) ≤ logn.

(ii) hhϕ(θ
N , α~∨θ(α)~∨ . . . ~∨θN−1(α)) ≥ N · hhϕ(θ, α), ∀N ∈ IN. If in Def. 5,(iii) of

the r.h.s., even the limit exists (not only the limit superior), then equality holds.

(iii) For all ∗-isomorphisms σ : A → σ(A), hhϕ◦σ−1(σ ◦ θ ◦ σ−1, σ(α)) = hhϕ(θ, α).

(iv) hhϕ(θ, α) ≤ hAF
ϕ (θ, α), where the r.h.s. is the ALF entropy of Def. 3,(iii).

(v) For A = A1 ⊗ A2 and ϕ = ϕ1 ⊗ ϕ2 as in Prop. 1,(vi), with a product ∗-
endomorphism θ = θ1⊗θ2 of two endomorphisms θi of Ai with ϕi ◦θi = ϕi (i = 1, 2), the

entropy is superadditive: hhϕ(θ, α1 ⊗α2) ≥ hhϕ1
(θ1, α1) + hhϕ2

(θ2, α2) for αi ∈ O1(Ai).

P r o o f. (i) is obvious from Prop. 1,(i) and the definitions. (ii) and also (iii) follow

directly from Def. 5,(iii) itself, and (iv) is a more refined consequence of Prop. 1,(i).

Finally, (v) follows from Prop. 1,(vi) and the definitions, after the observation that the

operation ⊗ on O1(A1) × O1(A2) is distributive w.r.t. the (multiple) operation ~∨ on

O1(A1) resp. on O1(A2).

Corollary 3. The hybrid entropy Def. 5,(iv) of an endomorphism given a ∗-subal-
gebra has the following general properties :

(i) hhϕ,B(θ
N ) ≥ N · hhϕ,B(θ), ∀N ∈ IN. This inequality shows that the identity
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automorphism θ = IdA has either hhϕ,B(IdA) = 0, or in principle also hhϕ,B(IdA) = ∞
(but no example is known for the latter ∞; compare Prop. 6 below , however).

(ii) hhϕ◦σ−1,σ(B)(σ ◦ θ ◦ σ−1) = hhϕ,B(θ), for all ∗-isomorphisms σ : A → σ(A).

(iii) hhϕ,B(θ) ≤ hAF
ϕ,B(θ), where the r.h.s. is the ALF entropy of Def. 3,(iv).

(iv) In the situation of Prop. 2,(v), for B = B1 ⊗ B2 with ∗-subalgebras Bi ⊂ Ai

(i = 1, 2), the entropy is superadditive: hhϕ,B(θ) ≥ hϕ1,B1
(θ1) + hϕ2,B2

(θ2).

P r o o f. (i), (ii), resp. (iii) follow straightforwardly from Prop. 2, (ii), (iii) resp. (iv).

Finally, (iv) here follows from Prop. 2,(v) together with the observation that {α1⊗α2|αi ∈
O1(Bi), i = 1, 2} ⊂ O1(B1 ⊗ B2) is a (strict) set inclusion of these classes.

Corollary 4. Let X be a compact Hausdorff space, T : X → X a homeomorphism

and µ = µ ◦ T−1 a T -invariant Borel probability measure on X. By hKS
µ (T ) we denote

the Kolmogorov–Sinai entropy of T w.r.t. µ [12]. Let θT be the induced ∗-automorphism

of A = C(X), via θT (A) = A ◦T ∀A ∈ A, and ωµ =
T
X
dµ be the corresponding state on

A. Then we have:

hhωµ,A(θT ) ≤ hKS
µ (T ).

P r o o f. In [2] it is shown that hAF
ωµ,A

(θT ) = hKS
µ (T ), see also the corresponding Chap-

ter 5 in the Thesis of Tuyls [21] (Section 5.2). Applying Cor. 3,(iii) above gives the

result.

Theorem 5. In the situation of the above Corollary 4, the final inequality is in fact a

general equality (as for the ALF entropy, also quoted in the proof of that latter Corollary).

Rema r k 5. For the less trivial proof of the converse inequality to Cor. 4, we have

to refer the reader to [11].

The proof of the analog here for the purely measure–theoretic Theorem (3.3) in [2],

however, can be made short enough to be postponed to this Remark: Let X be a finite

(Lebesgue) measure space with a probability measure µ and with an invertible measure–

preserving automorphism T : X → X , i.e. such that µ ◦ T = µ ◦ T−1 = µ. We use the

analogous notations ωµ resp. θT as in the topological case of Cor. 4 above, but now for

the Abelian C∗-algebra A = L∞(X,µ).

Theorem (3.3) in [2] says that also here h AF
ωµ,A

(θT ) = hKS
µ (T ), and the general in-

equality Cor. 3,(iii) applies again in the form hhωµ,A(θT ) ≤ hAF
ωµ,A

(θT ). The converse

inequality follows from Prop. 1,(iii) applied to any partition β = (p1, . . . , pn) ∈ O1(A, n)
with mutually orthogonal projections (i.e. characteristic functions of measurable sets)

pi = p∗i = p2i ∈ A (∀i = 1, . . . , n), pipj = 0 ∀i 6= j, where in this Abelian case HHωµ
(β)

is equal to the classical KS entropy functional of the corresponding n-element measurable

partition of X (as the centralizer Aωµ
= A; the details are left to the reader).

Now, we consider instead of the Abelian von Neumann algebra A = L∞(X,µ) an

extremely non–Abelian case of von Neumann algebras: Let A be an infinite factor (cf.

e.g. [7]) with an automorphism θ of A and an invariant state ϕ = ϕ ◦ θ on A.

Proposition 6. There is a sequence of partitions (αn)n∈IN in O1(A) such that αn ∈
O1(A, n) and hAF

ϕ (θ, αn) = logn while always hhϕ(θ, αn) = 0, independently of θ and ϕ.
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Note that this implies that here hAF
ϕ,A(IdA) = ∞ for the identity automorphism IdA on

A, see also Cor. 3,(i) above.

Rema r k 6. For the proof of the strict positivity of the ALF entropy, we can refer

the reader to Theorem 4.3 of [21] (Section 4.6), while for the proof of the hybrid entropy

vanishing for this sequence of partitions, we have to refer to [11]. We still have to leave

it as an open problem to decide if the second alternative of the dichotomy in Cor. 3,(i)

is realized for the hybrid entropy, or if the latter is always equal to zero for the identity

automorphism on any C∗-algebra. Also, Remark 4 has to be reconsidered here.

4. Three familiar examples for the calculation of the ‘hybrid’ entropy

Example 1 (The shift on the quantum spin chain). Let A =
⊗

k∈ZZ(Mn(C))k be the

n∞-UHF algebra (‘quantum spin chain’) as the bilaterally infinite tensor product of copies

of the (n× n)-matrix algebra Mn(C). We choose the norm–dense ∗-subalgebra A∞ ⊂ A
using the natural AF structure A∞ =

⋃

k∈IN Ak (algebraic inductive limit), where we put

Ak = 1l⊗∞
n ⊗⊗k

j=−k(Mn)j ⊗ 1l⊗∞
n ∀k ∈ IN ∪ {0}.

The unit shift on ZZ determines a ∗-automorphism θ of A by θ(1l⊗∞
n ⊗(Mn)k⊗1l⊗∞

n ) =

1l⊗(∞+1)
n ⊗ (Mn)k+1 ⊗ 1l⊗(∞−1)

n , and we let ϕ be any translation–invariant state on A:

ϕ◦θ = ϕ. We use the additional notation B[ℓ,m] = 1l⊗∞
n ⊗⊗m

j=ℓ(Mn)j⊗1l⊗∞
n ∀ℓ < m ∈ ZZ,

such that Ak = B[−k,k].

Proposition 7. hhϕ,A∞
(θ) = lim supk→∞

1
kHϕ(B[0,k]) ≤ s(ϕ), where the Hϕ is the

CNT entropy functional of Def. 2,(i) with the notation from the end of Remark 2 ; and

s(ϕ) is the quantum entropy density of ϕ = ϕ ◦ θ (cf. [7]). If the state ϕ satisfies

the so–called ‘cluster condition’ as defined in equations (11.18 ), (11.19 ) of [16] , then

hhϕ,A∞
(θ) = s(ϕ).

Rema r k 7. We have to refer to [11] for the proof.

It is shown in [8] that generally the CNT entropy hϕ(θ) ≤ lim supk→∞
1
kHϕ(B[0,k]),

where equality holds only if a possibly stronger clustering condition holds for ϕ (cf. pp.

203/204 in [16]).

It is shown in [1] that the Alicki–Fannes entropy is generally (i.e. without any ad-

ditional clustering condition on ϕ) equal to hAF
ϕ,A∞

(θ) = s(ϕ) + logn, with n from the

notation of Ex. 1 above; cf. also Theorem 6.2 (Sect. 6.2) in the Thesis of Tuyls [21],

where it is also shown (Theorem 6.3 in Sect. 6.3) that this result may be extended to

a so–called algebra of ‘smooth’ elements A∞
q ⊂ A (any q > 0), defined via so–called

tensorable oscillation norms (see Sect. 6.1 in [21] and the reference there). We refer the

reader to [11] as to analogous results for the hybrid entropy, extending Prop. 7 above.

Example 2 (The Powers–Price shift). If X ⊆ IN, we denote by A(X) the (universal)

C∗-algebra generated by a two–sided sequence (sn)n∈ZZ of self–adjoint unitaries sn with

the commutation relation sisj = (−1)g(|i−j|)sjsi, ∀i 6= j ∈ ZZ, where g is the character-

istic function of X .

The canonical trace τ on A(X) is defined by τ(1l) = 1 and τ(si1si2 · · · sik) = 0 ∀i1 <
i2 < . . . < ik, ∀k ∈ IN. We denote by θX the shift automorphism on A(X): θX(si) =

si+1, ∀i ∈ ZZ, such that obviously τ = τ ◦ θX is invariant. For the entropy definition
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Def. 5,(iv) we will use the canonical AF structure for A(X), i.e. with AN := C∗({si|i =
−N, . . . , N}), let A∞(X) =

⋃

N∈IN AN , so that A(X) = A∞(X) (norm completion).

In addition, we use again the notation B[k,ℓ] := C∗({sk, sk+1, . . . , sℓ|k < ℓ ∈ ZZ}), so
that B[−N,N ] = AN . Recall that by Lemma (3.5) of [17], B[0,n] is always isomorphic to

the direct sum of 2p(n) many 2k(n) × 2k(n)-matrix algebras, where 2k(n) + p(n) = n+ 1,

∀n ∈ IN (correcting an obvious misprint in [17], where the factor 2 of k(n) is missing,

with the same notation). In particular, the linear dimension dimB[0,n] = 2(n+1).

By Theorem (4.6) in [17], the sequence (p(n))n∈IN consists of a concatenation of finite

‘strings’ of the form (0, 1, 2, 3, . . . , (m− 1),m, (m− 1), . . . , 3, 2, 1) with m ∈ IN, where the

value of m may vary in the sequence (in particular, p(n) may be unbounded in n). In

turn, for any such sequence (p(n)) there is X ⊆ IN with A∞(X) leading to this (p(n)).

Proposition 8. (i) Generally, hhτ,A∞(X)(θX) ≤ lim supn→∞
1
nHτ (B[0,n]) ≤ log 2,

where Hτ is the entropy functional of Def. 2,(i) with the notation from the end of Remark

2 , or equivalently, as already in [9].

(ii) If X is ‘nonperiodic’ (in the sense of [10] , i.e. −X ∪{0}∪X is nonperiodic) and

the sequence (p(n))n∈IN as above is bounded, then hhτ,A∞(X)(θX) ≤ 1
2 log 2.

If for nonperiodic X , the sequence (p(n))n∈IN is not bounded , clearly at least the following

sequence of ratios r(n) := (p(n) + k(n))(p(n) + 2k(n))−1 is bounded : 1
2 ≤ r(n) ≤ 1. Then

we have that hhτ,A∞(X)(θX) ≤ lim supn→∞ r(n) · log 2.
(iii) In particular , at least if X = IN, in fact equality holds : hhτ,A∞(X)(θX) = 1

2 log 2.

On the other hand , if X is periodic in the sense of [10] (i.e. ‘mirror–periodic’ in the sense

of [17]), we get generally the ‘classical’ value: hhτ,A∞(X)(θX) = log 2.

Rema r k 8. See [11] for the proof. It is shown in Theorem (1) of [4] that the ALF

entropy Def. 3 is identically hAF
τ,A∞(X)(θX) ≡ log 2, independently of X . Compare also

e.g. [10, 13, 14, 19] for the CNT resp. Connes–Størmer entropy Def. 2 in this example.

Example 3 (The quantum Arnold map). Using the same notation as [5], we define

the SL(2,ZZ)-action on the ‘irrational rotation’ C∗-algebra as follows: Let Bq be the

(universal) ∗-algebra generated by unitaries W (χ), χ ∈ ZZ2, satisfying the commutation

relations W (χ1)W (χ2) = eiqσ(χ1,χ2)/2W (χ1 + χ2), ∀χ1, χ2 ∈ ZZ2, where q ∈ [0, 2π) is

‘preferably’ an irrational multiple of 2π, and where σ(χ1, χ2) = χ1(1)χ2(2)− χ1(2)χ2(1)

for χi = (χi(1), χi(2)) ∈ ZZ2, i = 1, 2.

We denote by Aq = Bq the generated C∗-algebra (‘norm completion’), and on Aq we

define a tracial state τ by τ(W (χ)) = δχ0 ∀χ ∈ ZZ2, and a ∗-automorphism of Aq by

θT (W (χ)) =W (T tχ) for any T ∈ SL(2,ZZ), Tr2(T ) > 2.

Then it follows trivially from the main Theorem in [5] together with Prop. 3,(iv) here

that for any q ∈ [0, 2π), hhτ,Bq
(θT ) ≤ logλ, where λ is the larger eigenvalue of T .

Lemma 9. Assume that for each m ∈ IN, we can find a partition β ∈ O1(Bq) of the

form β = (eiβ1W (χ1)/
√
ℓ, . . . , eiβℓW (χℓ)/

√
ℓ), with χ1, . . . , χℓ ∈ ZZ2 and β1, . . . , βℓ ∈

IR, such that hhτ (θ
m
T , β) ≥ c · log[λm], where we assume that such a c ∈ (0, 1] exists

independently of m, and where [ν] is the integer part of ν ∈ IR. Then hhτ,Bq
(θT ) ≥ c·logλ.

See [11] for the proof. In order to prove the assumption of Lemma 9, along the lines

of [5] (in the remainder of the Proof of Prop. (1) there), we would need a lower bound
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for the entropy of a partition β ∈ O1(Bq, ℓ) of the general form as in Lemma 9 above

but in particular with χi 6= χj ∀i 6= j ∈ {1, . . . , ℓ}, namely: HHτ (β) ≥ c · log ℓ, for some

‘universal’ c ∈ (0, 1] independent of ℓ (and of β ∈ O1(Bq, ℓ)). In this direction, we have:

Proposition 10. Let β ∈ O1(Bq, ℓ) be of the form as in Lemma 9, but in particular

with χi 6= χj for i 6= j ∈ {1, . . . , ℓ}, and for the sake of simplicity with β1 = . . . = βℓ = 0.

Then HHτ (β) > 0 (strictly positive), with a lower bound depending on ℓ (but with this

proof , not of the form c·log ℓ). In particular , for ℓ = 2 we even have that HHτ (β) = log 2,

independently of β ∈ O1(Bq, 2).
Rema r k 9. See [11] for the proof of this partial result, to be extended for ℓ > 2. In

the Thesis of Tuyls [21], the ‘classical’ value of the ALF entropy in this example is again

extended even for the so-called ‘smooth’ subalgebra Sq ⊃ Bq of Aq: h
AF
τ,Sq

(θT ) = logλ.
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