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Abstract. From a sequence of m-fold tensor product constructions that give a hierarchy
of freeness indexed by natural numbers m we examine in detail the first non-trivial case corre-
sponding to m = 2 which we call 2-freeness. We show that in this case the constructed tensor
product of states agrees with the conditionally free product for correlations of order ≤ 4. We
also show how to associate with 2-freeness a cocommutative ∗-bialgebra.

1. Introduction. Recently we have made an attempt to treat the conditionally free

product of free ∗-algebras by means of appropriately extended ∗-algebras and their m-

fold tensor products. Our approach gives the Boolean case for m = 1 which in the

new terminology corresponds to 1-freeness. This case is fairly straightforward, the first

really non-trivial one being that of 2-freeness. For that purpose we need a 2-fold tensor

product construction. We originally thought that the 2-fold tensor product would give the

conditionally free product. However, later we realized that it worked for correlations of

order ≤ 4 and successive iterations are needed to recover the conditionally free case. This

leads to a sequence of m-fold tensor product constructions that give a hierarchy of freeness

which in the limit gives (conditional) freeness. Nevertheless, the 2-freeness is a model case

and provides a nice introduction to the general theory of the hierarchy of freeness and

proofs of many facts simplify considerably. The general case will be treated elsewhere.

We should add that we often use the term freeness associated with the Voiculescu theory

[V-D-N] instead of conditional freeness [B-L-S] for simplicity as well as due to the fact

that from the point of view of our approach there is no essential difference between them.

In our approach, instead of making the product noncommutative in the definition of

the product of free ∗-algebras, we stick to the tensor product and take noncommutative

extensions of those ∗-algebras with non-canonical embeddings. The idea consists in finding

appropriate deformations of the canonical embeddings. In the Boolean case for instance,

if A1,A2 are free ∗-algebras, then we define their extensions Ã1, Ã2, respectively, where
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Ãk = Ak ∗C[t] and t∗ = t. Then, instead of the canonical embeddings

ik : Ak → A1 ⊗A2, k = 1, 2,

given by

i1(w) = w ⊗ 1, i2(v) = 1⊗ v
where w, v are words in A1,A2, respectively, we take

j
(1)
k : Ak → Ã1 ⊗ Ã2,

j
(1)
1 (w) = w ⊗ tl(w), j

(1)
2 (v) = tl(v) ⊗ v,

where l(w), l(v) denote the lengths of words w, v, and extend it to A1 ∗A2 homomorphi-

cally:

j(1) : A1 ∗ A2 → Ã1 ⊗ Ã2,

i.e. j(1) = 1⊗ 1 and

j(1)(w1 . . . wn) = j
(1)
k1

(w1) . . . j
(1)
kn

(wn)

where w1, . . . , wn ∈ Ak1 , . . . ,Akn and k1 6= k2 6= . . . 6= kn, k1, . . . , kn ∈ {1, 2}.
Now, if φ1, φ2 are states on A1,A2, respectively, then we define their Boolean exten-

sions φ̃1, φ̃2 on Ã1, Ã2, for which

φ̃k (t0w1t1 . . . wntn) = φk(w1) . . . φk(wn)

where w1, . . . , wn are non-empty words in Ak and t0, . . . , tn are powers of t, of which

t1, . . . , tn−1 6= 1. If Φ̃(1) = φ̃1 ⊗ φ̃2, then it is easy to see that

Φ̃(1)(j
(1)
k1

(w1) . . . j
(1)
kn

(wn)) = φk1
(w1) . . . φkn

(wn),

where w1, . . . , wn ∈ Ak1
, . . . ,Akn

and k1 6= k2 6= . . . 6= kn. Hence, Φ̃(1) ◦ j(1) agrees with

the Boolean product state.

One can see that the idea is related to the deformations of the canonical embeddings

used in the case of q-∗-bialgebras studied by Schürmann [Sch] and q-deformed enveloping

algebras investigated in the context of central limit theorems in [Len1-Len2]. However,

the free case as well as the general version of the conditionally free case are not so easy

to handle. Firstly, one needs to take tensor products of higher order, thus arriving at

a sequence of m-fold tensor product constructions. Secondly, the embeddings are more

complicated. They consist of a number of compensating pairs and the number of terms

is growing (it equals 2m+ 1). Thirdly, the conditionally free case is obtained in the limit

when m→∞. In this paper we treat the case m = 2.

In Section 2, for given two free ∗-algebras A1 and A2, we consider the double tensor

product

Ã(2) = Ã1 ⊗ Ã1 ⊗ Ã2 ⊗ Ã2

where Ãi = Ai ∗ C[t], i = 1, 2, with hermitian t. Given two pairs of states on those
∗-algebras, namely (φ1, ψ1) and (φ2, ψ2), respectively, we construct the state

Φ̃(2) ≡ Φ̃
(2)
1 ⊗ Φ̃

(2)
2 = φ̃1 ⊗ ψ̃1 ⊗ φ̃2 ⊗ ψ̃2

where Φ̃i = φ̃i ⊗ ψ̃i, i = 1, 2. Then we define a ∗-homomorphism j(2) from A1 ∗ A2 into

Ã(2) which is one step closer to freeness as compared with j(1).
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In Section 3 we show that Φ̃(2) ◦ j(2) agrees with the conditionally free product of

(φ1, ψ1) and (φ2, ψ2), denoted by ∗i∈{1,2}(φi, ψi), on products w1 . . . wn for n ≤ 4. Thus,

Φ̃(2) ◦ j(2) can be identified with a state of 2-freeness.

In Section 4 this construction is extended to an infinite number of ∗-algebras by means

of the infinite tensor product of ∗-algebras
⊗

i∈N Ã
⊗2
i .

In Section 5 we restrict ourselves to the case of one free ∗-algebra: Ai = A for all

i ∈ N. This corresponds to the case of conditionally free convolution of states on A. We

equip the free product

Ã∗(2) = Ã ∗ Ã
with a ∗-bialgebra structure (Ã∗(2),∆(2), ε(2)) with coproduct ∆(2) and counit ε(2).

In Section 6 we make some comments on the generalization of our approach which

leads to a hierarchy of freeness and a unification of independence.

2. Preliminaries. By a quantum probability space we shall understand a pair (A, φ),

where A is a unital ∗-algebra and φ : A → C is a state, i.e. a normalized (φ(1) = 1),

positive (φ(xx∗) ≥ 0 for all x ∈ A) functional.

Our construction will be carried out for free ∗-algebras A generated by a set G+.

We denote G− = {a∗|a ∈ G+}, G = G+ ∪ G−. Nonempty words in A will be denoted by

w = a1 . . . ak, where ai ∈ G. The length of w will be denoted by l(w). We allow the empty

word, which is denoted by 1, of length l(1) = 0. The involution is given by the antilinear

extension of (a1 . . . ak)∗ = a∗k . . . a
∗
1.

For a given free ∗-algebra A we consider the free product of A and C[t], the algebra

of polynomials in one hermitian variable t, which we denote

Ã = A ∗C[t]

In this free product we identify units. Also, we equip Ã with a natural involution defined

by the antilinear extension of

(t0w1t1 . . . wntn)∗ = tnw
∗
n . . . t1w

∗
1t0,

where w1, . . . , wn are non-empty words in A, and t0, . . . , tn are monomials in C[t], of

which t1, . . . , tn−1 6= 1.

Definition 1. For a given state φ on A, and a state h on C[t] we define the Boolean

extension of φ̃ on Ã, denoted φ̃ = φ ∗B h, as the linear extension of φ̃(1) = 1 and

φ̃ (t0w1t1 . . . wntn) = h(t0) . . . h(tn)φ(w1) . . . φ(wn)

where w1, . . . , wn are non-empty words in A and t0, . . . , tn are monomials in C[t], of

which t1, . . . , tn−1 6= 1.

From [B-L-S] it follows that φ̃ is a state on Ã. In this paper we will assume that h is

a ∗-homomorphism and h(t) = 1.

One can say that the generator t serves as a ”Boolean identity”, in contrast to

Uq(su(2))-type Hopf algebras, where a similar object satisfies certain q-commutation

relation and can be viewed as a ”q-identity”. In any case, it is convenient to view t as a

”twisted identity”. Only here, we view it simply as ”more noncommutative”. Note that
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it plays the role of a separator of words from the ∗-algebra A. This nice property will be

crucial in further considerations.

Let us finally recall the definition of the conditionally free product of ∗-algebras. For

a given family of unital ∗-algebras Ai, i ∈ I, and given pairs of states φi, ψi on Ai, one

can define a state φ = ∗i∈I(φi, ψi) on their free product ∗i∈IAi by φ(1) = 1 and the

factorization property

φ(a1 . . . an) = φk1(a1) . . . φkn(an),

whenever aj ∈ Akj and ψkj (aj) = 0, where k1 6= k2 6= . . . 6= kn. In particular, when

ψj = φj , we obtain the free independence, and when ψj = π1, where π1(1) = 1 and

π1(w) = 0 for any non-empty word w, we get the Boolean independence.

For given two free ∗-algebras A1,A2 generated by G+1 ,G
+
2 , respectively, let Gi = G+i ∪

G−i , where G−i = {a∗|a ∈ G+i }, i = 1, 2. Given two pairs of states on those ∗-algebras,

namely (φi, ψi), i = 1, 2, we construct their Boolean extensions (φ̃i, ψ̃i) on Ãi, as explained

in Section 2. Using those extensions, we will construct a new quantum probability space

(A(2),Φ(2)), where A(2) is a ∗-subalgebra of the double tensor product

Ã(2) ≡ Ã1 ⊗ Ã1 ⊗ Ã2 ⊗ Ã2

and Φ(2) is the restriction of

Φ̃(2) ≡ ψ̃1 ⊗ φ̃1 ⊗ ψ̃2 ⊗ φ̃2
to A(2). The involution on the tensor product is given by (b1⊗ b2⊗ c1⊗ c2)∗ = b∗1 ⊗ b∗2 ⊗
c∗1 ⊗ c∗2. The ∗-subalgebra A(2) will be the image of the ∗-homomorphism j(2) given in

Definition 2. We introduce the following double tensor notation: T = t ⊗ t, T2 = 1 ⊗ t,
1 = 1⊗ 1.

Definition 2. For given a ∈ G1, b ∈ G2, let

j
(2)
1 (a) = i1(a)⊗ T + i2(a)⊗ (T2 − T )

j
(2)
2 (b) = T ⊗ i1(b) + (T2 − T )⊗ i2(b)

and define the ∗-homomorphism

j(2) : A1 ∗ A2 → Ã1 ⊗ Ã1 ⊗ Ã2 ⊗ Ã2

as the linear extension of j(2)(1) = 1⊗ 1 and

j(2)(w1 . . . wn) = j
(2)
k1

(w1) . . . j
(2)
kn

(wn),

where w1, . . . , wn are non-empty words in Ak1
, . . . ,Akn

, where k1, . . . , kn ∈ {1, 2}.
It should be noted that in this definition we do not assume that the neighbouring

indices are different.

3. Main results. We need to calculate j
(2)
k (w), k = 1, 2, where w is a non-empty

word in Ai. We will use the following notation. Let w = a1 . . . an and P = {1, . . . , n}. If

P ′ ⊂ P , let wP ′ =
∏

i∈P ′ ai, where the product is taken in the natural order. Then, for

given w, the summation over all pairs of its subwords, (wP1
, wP2

) such that {P1, P2} are

disjoint (possibly empty) subsets of P and P1∪P2 = P , will be written as the summation

over w′, w′′, where w′ = wP1
, w′′ = wP2

.
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Proposition 1. Let w, v be non-empty words in A1,A2, respectively. Then

j
(2)
1 (w) =

∑
w′,w′′

i1(w′)i2(w′′)⊗ T l(w′)(T2 − T )l(w
′′),

j
(2)
2 (v) =

∑
v′,v′′

T l(v′)(T2 − T )l(v
′′) ⊗ i1(v′)i2(v′′).

P r o o f. We will prove the first identity since the proof of the second one is similar.

Thus, let w = a1 . . . an. Then

j
(2)
1 (w) =

n∏
k=1

(i1(ak)⊗ T + i2(ak)⊗ (T2 − T ))

=
∑

k1,...,kn∈{1,2}

ik1
(a1) . . . ikn

(an)⊗ T |P1|(T2 − T )|P2|

where P1 = {i|ki = 1}, P2 = {i|ki = 2} and |Pi| denotes the cardinality of Pi, i = 1, 2.

Since i1(a)i2(a′) = i2(a′)i1(a) for any a, a′ ∈ G1, we can write

j
(2)
1 (w) =

∑
P1,P2

i1(wP1
)i2(wP2

)⊗ T |P1|(T2 − T )|P2|

where the summation is taken over all pairs (P1, P2) of disjoint subsets of P such that

P = P1 ∪ P2. Putting w′ = wP1
, w′′ = wP2

, which implies that |P1| = l(w′) and |P2| =

l(w′′), we obtain the desired result.

It is also useful to give the corresponding formulas in terms of 4-fold tensor products.

Proposition 2. Under the assumptions of Proposition 1 we have

j
(2)
1 (w) =

∑
w′,w′′

l(w′′)∑
r=0

(
l(w′′)

r

)
(−1)l(w

′′)−rw′ ⊗ w′′ ⊗ tl(w)−r ⊗ tl(w),

j
(2)
2 (v) =

∑
v′,v′′

l(v′′)∑
r=0

(
l(v′′)

r

)
(−1)l(v

′′)−rtl(v)−r ⊗ tl(w) ⊗ v′ ⊗ v′′.

Let us now calculate Φ̃(2) ◦ j(2)k on Ak, k = 1, 2.

Proposition 3. Let Φ̃(2) = ψ̃1 ⊗ φ̃1 ⊗ ψ̃2 ⊗ φ̃2, where φ̃i(t) = ψ̃i(t) = h(t) = 1,

i = 1, 2. Then

Φ̃(2) ◦ j(2)1 = φ1, Φ̃(2) ◦ j(2)2 = φ2.

P r o o f. Clearly, (Φ̃(2) ◦ j(2)k )(1) = 1 = φk(1), since φk, ψk are states on Ak, k = 1, 2.

Thus, assume that w = a1 . . . an is a non-empty word in A1. Using Proposition 1, we can

write

(Φ̃(2) ◦ j(2)1 )(w) = Φ̃(2)
( ∑

w′,w′′

i1(w′)i2(w′′)⊗ T l(w′)(T2 − T )l(w
′′)
)

= Φ̃(2) (i1(w)i2(1)⊗ Tn) = Φ̃(2) (w ⊗ 1⊗ tn ⊗ tn) = φ1(w)

where we used

Φ̃2(T l(w′)(T2 − T )l(w
′′)) 6= 0 iff l(w′′) = n and l(w′′) = 0,
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i.e. the only nonvanishing term is the one for which w′ = w,w′′ = 1. The same reasoning

can be applied to prove that Φ̃(2) ◦ j(2)2 = φ2.

In the expressions for j
(2)
k (w), k = 1, 2, there is always exactly one term in which

T does not appear. It will play a special role in the sequel, therefore a new notation is

desirable. Thus, for words w, v in A1,A2, respectively, let

d
(2)
1 (w) = i2(w)⊗ T l(w)

2 ≡ 1⊗ w ⊗ 1⊗ tl(w),

d
(2)
2 (v) = T

l(v)
2 ⊗ i2(v) ≡ 1⊗ tl(v) ⊗ 1⊗ v.

Further, let Ψ(2) = id⊗ψ̃1⊗id⊗ψ̃2. Then it is easy to show that (Ψ(2)◦d(1)1 )(w) = ψ1(w)1,

(Ψ(2) ◦ d(1)2 )(w) = ψ2(v)1.

Proposition 4. Let w, v be non-empty words in A1,A2, respectively. Then

j
(2)
1 (w)− d(2)1 (w) =

∑
W,R

W ⊗RT,

j
(2)
2 (v)− d(2)2 (v) =

∑
S,T

ST ⊗ V

where the summations are taken over finite sets of pairs of elementary tensors, S,R ∈
C[T, T2] and W ∈ A1 ⊗A1, V ∈ A2 ⊗A2, respectively.

P r o o f. Without loss of generality we will prove only the first equation. As we men-

tioned above, d
(2)
1 (w) appears as one of the elementary tensors in the decomposition of

j
(2)
1 (w) given by Proposition 2. Namely, it corresponds to l(w′) = 0 and l(w′′) = r. All

other terms have a nonzero power of t in the third and fourth tensor sites, thus they

assume the given form (the explicit form of the right-hand side can be given, but it is

not relevant for our purposes).

We arrive at the crucial factorization property of the 2-fold tensor product, reminding

the one in the conditionally free independence.

Lemma 5. Let w1, . . . , wp be non-empty words in Ak1
, . . . ,Akn

, respectively , where

k1, . . . , kn ∈ {1, 2} and k1 6= k2 6= . . . 6= kn. Then

Φ̃(2)[(j
(2)
k1

(w1)− d(2)k1
(w1)) . . . (j

(2)
kn

(wn)− d(2)kn
(wn))] =

= (φk1
(w1)− ψk1

(w1)) . . . (φkn
(wn)− ψkn

(wn)) .

P r o o f. By linearity it is enough to show the factorization property for elementary

tensors appearing in the right-hand sides of the formulas given by Proposition 4. Further,

without loss of generality, assume that k1 = 1. Thus

Φ̃(2) [(W1 ⊗R1T )(S1T ⊗ V1)(W2 ⊗R2T )(S2T ⊗ V2) . . .] =

= Φ̃
(2)
1 (W1S1TW2S2T . . .) Φ̃

(2)
2 (R1TV1R2TV2 . . .)

= Φ̃
(2)
1 (W1)Φ̃

(2)
1 (S1T )Φ̃

(2)
1 (W2)Φ̃

(2)
1 (S2T ) . . .×

×Φ̃
(2)
2 (R1T )Φ̃

(2)
2 (V1)Φ̃

(2)
2 (R2T )Φ̃

(2)
2 (V2) . . .

= Φ̃(2) (W1 ⊗R1T ) Φ̃(2) (S1T ⊗ V1) Φ̃(2) (W2 ⊗R2T ) Φ̃(2) (S2T ⊗ V2) . . . .
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Hence, by linearity, we also have

Φ̃(2)[(j
(2)
k1

(w1)− d(2)k1
(w1)) . . . (j

(2)
kn

(wn)− d(2)kn
(wn))] =

= Φ̃(2)(j
(2)
k1

(w1)− d(2)k1
(w1)) . . . Φ̃(2)(j

(2)
kn

(wn)− d(2)kn
(wn)).

However, by Proposition 3, Φ̃(2) ◦ j(2)k = φk. Also, Φ̃(2) ◦ d(2)k = ψk, k = 1, 2. This finishes

the proof.

Lemma 6. Let Ψ(2) = id ⊗ ψ̃1 ⊗ id ⊗ ψ̃2 and let w1, . . . , wn be non-empty words in

Ak1 , . . . ,Akn , respectively , where k1 6= k2 6= . . . 6= kn. Then Ψ(2) exhibits the following

multiplicative property :

(Ψ(2) ◦ j(2))(w1 . . . wn) = (Ψ(2) ◦ j(2)k1
)(w1) . . . (Ψ(2) ◦ j(2)kn

)(wn).

P r o o f. Using Proposition 2, it is enough to show the above multiplicative property if

j
(2)
1 (wk), j

(2)
2 (wk) are replaced by w′k⊗w′′k ⊗ t′k⊗ t′′k , t′k⊗ t′′k⊗w′k⊗w′′k , respectively, where

t′k = tl(wk)−r, t′′k = tl(wk) with 0 ≤ r ≤ l(w′′k). Since w1, . . . , wn are nonempty, l(wk) 6= 0,

and hence t′′k ∈ tC[t] for k = 1, . . . , n, which ensures the separation of words from the

same algebra (see the third equality below). Without loss of generality, let k1 = 1. Then

Ψ(2)[(w′1 ⊗ w′′1 ⊗ t′1 ⊗ t′′1)(t′2 ⊗ t′′2 ⊗ w′2 ⊗ w′′2 )×
×(w′3 ⊗ w′′3 ⊗ t′3 ⊗ t′′3)(t′4 ⊗ t′′4 ⊗ w′4 ⊗ w′′4 ) . . .]

= Ψ(2) [(w′1t
′
2w
′
3t
′
4 . . .)⊗ (w′′1 t

′′
2w
′′
3 t
′′
4 . . .)⊗ (t′1w

′
2t
′
3w
′
4 . . .)⊗ (t′′1w

′′
2 t
′′
3w
′′
4 . . .)]

= ψ̃1 (w′1t
′
2w
′
3t
′
4 . . .) ψ̃2 (t′1w

′
2t
′
3w
′
4 . . .)× (w′′1 t

′′
2w
′′
3 t
′′
4 . . .)⊗ (t′′1w

′′
2 t
′′
3w
′′
4 . . .)

= ψ̃1(w′1)ψ̃1(t′2)ψ̃1(w′3)ψ̃1(t′4) . . . ψ̃2(t′1)ψ̃2(w′2)ψ̃2(t′3)ψ̃2(w′4) . . .×
× (w′′1 t

′′
2w
′′
3 t
′′
4 . . .)⊗ (t′′1w

′′
2 t
′′
3w
′′
4 . . .)

= Ψ(2) (w′1 ⊗ w′′1 ⊗ t′1 ⊗ t′′1) Ψ(2) (t′2 ⊗ t′′2 ⊗ w′2 ⊗ w′′2 )×
×Ψ(2) (w′3 ⊗ w′′3 ⊗ t′3 ⊗ t′′3) Ψ(2) (t′4 ⊗ t′′4 ⊗ w′4 ⊗ w′′4 ) . . . .

By linearity, the multiplicative property holds also for j
(2)
1 (wk) and j

(2)
2 (wk).

R e m a r k 1. If, in Lemma 6, we replace any of j
(2)
ki

(wi)’s by d
(2)
ki

(wi)’s, then the

factorization stated in the theorem still holds. One can go through the proof to see

that it is really the case. Actually, in the proof of Theorem 7 we will use this modified

version of Lemma 6, but the multiplicative property of Lemma 6 will be important for

future developments, therefore, apart from simplicity arguments, we decided to present

the version given above.

Theorem 7. Let Φ(2) = Φ
(2)
1 ⊗ Φ

(2)
2 , Φ

(2)
i = ψ̃i ⊗ φ̃i, i = 1, 2, where ψ̃i = ψi ∗B h,

φ̃i = φi ∗B h and ψi, φi are states on the free ∗-algebra Ai, i = 1, 2, and h is a ∗-

homomorphism on C[t] such that h(t) = 1. Then, Φ(2) ◦ j(2) agrees with ∗i∈{1,2}(φi, ψi)

on words w1 . . . wn for n ≤ 4.

P r o o f. We have

Φ̃(2)(j
(2)
k1

(w1) . . . j
(2)
kn

(wn)) = Φ̃(2)((j
(2)
k1

(w1)− d(2)k1
(w1)) . . . (j

(2)
kn

(wn)− d(2)kn
(wn)))

+
∑
i

Φ̃(2)(j
(2)
k1

(w1) . . . d
(2)
ki

(wi) . . . j
(2)
kn

(wn))
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−
∑
i<l

Φ̃(2)(j
(2)
k1

(w1) . . . d
(2)
ki

(wi) . . . d
(2)
kl

(wl) . . . j
(2)
kn

(wn))

+ . . .− (−1)nΦ̃(2)(d
(2)
k1

(w1) . . . d
(2)
kn

(wn))

for n ≤ 4. Note that the above relation reminds the one for the conditionally free case,

except that instead of numbers we have d
(2)
ki

(w)’s replacing j
(2)
ki

(w)’s at one, two, three

or four places. By Lemma 5 it is enough to show that

Φ̃(2)(j
(2)
k1

(w1) . . . d
(2)
ki(1)

(wi(1)) . . . d
(2)
ki(l)

(wi(l)) . . . j
(2)
kn

(wn)) =

= ∗i∈{1,2}(φi, ψi)(w1 . . . w̆i(1) . . . w̆i(l) . . . wn)ψki(1)
(wi(1)) . . . ψki(l)

(wi(l)),

for n ≤ 4, where by˘we understand that the words with indices i(1), . . . , i(l) are omitted.

We will prove this for the only non-trivial case, i.e. when we have one d
(2)
ki

(wi) in the

middle, i.e. in the second or third place. Without loss of generality we will assume that

i = 2 and ki = 2. The case i = 2 and ki = 1 is similar. In turn, if i = 3, we obtain the

result by mirror reflection. We will use Φ̃(2) = Φ̃(1) ◦Ψ2, although one can also carry out

the calculations directly. However, in order to understand better the proofs for m-freeness

on this model case, we prefer to use the machinery developed in this paper.

In view of Proposition 2, we can write the explicit form of (Ψ(2) ◦ j(2)ki
)(wi):

(Ψ(2) ◦ j(2)ki
)(wi) =

∑
w′

i
,w′′

i

l(w′′i )∑
r=0

(−1)l(w
′′
i )−r

(
l(w′′i )

r

)
ψ1(w′′i )w′i ⊗ tl(w

′
i)+l(w′′i )−r

=
∑

w′
i
,w′′

i

ψ1(w′′i )w′i ⊗ (1− t)l(w
′′
i )tl(w

′
i)

if ki = 1 and wi ∈ A1, and

(Ψ(2) ◦ j(2)ki
)(wi) =

∑
w′

i
,w′′

i

ψ2(w′′i )(1− t)l(w
′′
i )tl(w

′
i) ⊗ w′i

if ki = 2 and wi ∈ A2 for some i, The terms which correspond to l(w′′i ) = 0 are equal to

wi⊗ tl(wi), tl(wi)⊗wi, respectively. In turn, all terms, for which 0 < l(w′′i ) < l(wi), belong

to one of the two two-sided ideals in Ã1 ⊗ Ã2, L1 or L2, generated by 1 ⊗ (1 − t)t and

(1 − t)t ⊗ 1, respectively. Note that L1, L2 ⊂ ker φ̃1 ⊗ φ̃2. Thus, if ki = 1 and wi ∈ A1,

we can write

(Ψ(2) ◦ j(2)1 )(wi) = w̃i (mod L1)

where

w̃i = wi ⊗ tl(wi) + ψ1(wi)1⊗ (1− t)l(wi).

Similarly, if ki = 2 and wi ∈ A2, we obtain

(Ψ(2) ◦ j(2)2 )(wi) = w̃i (mod L2),

where

w̃i = tl(wi) ⊗ wi + ψ2(wi)(1− t)l(wi) ⊗ 1.

We can now use the above relations as well as Remark 1 to see that
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Φ(2)(j
(2)
1 (w1)d

(2)
2 (w2)j

(2)
1 (w3)j

(1)
2 (w4)) =

= ψ2(w2)(φ̃1 ⊗ φ̃2)(w̃1w̃3w̃4)

= ψ2(w2)(φ̃1 ⊗ φ̃2)((w1 ⊗ tl(w1))(w3 ⊗ tl(w3) + ψ1(w3)1⊗ (1− t)l(w3))(tl(w4) ⊗ w4))

= ψ2(w2)φ1(w1w3)φ2(w4) = ψ2(w2)× ∗i∈{1,2}(φi, ψi)(w1w3w4).

The other cases can be verified immediately (actually, the one that we have verified is

the only one that requires some calculations). This finishes the proof.

R e m a r k 2. Of course, one would like to give an explicit formula for all correlations

of 2-freeness. This can be done in terms of diagrams, but the combinatorial techniques

that need to be developed are quite extensive and go beyond the scope of this article,

thus will be presented elsewhere.

R e m a r k 3. It can be shown that if we take n = 5, then Φ̃(2) ◦ j(2) does not agree

with the conditionally free product. Then one needs to take the third order approximation

of freeness in the framework discussed in Section 6.

4. An extension to infinitely many free ∗-algebras. An extension of the con-

struction presented in Section 3 to the case of infinitely many free ∗-algebras is very

natural. Let Ai, i ∈ N, be a family of free ∗-algebras generated by G+i . As before, denote

by Ãi = Ai ∗C[t] the free product of Ai and the algebra of polynomials in one variable t.

For each i ∈ N we identify the units of Ai and C[t] and, by abuse of notation, we denote

the unit of each product by 1. As before, take Boolean extensions φ̃i, φ̃i on Ãi, respec-

tively, where φ̃i = φi ∗h, ψ̃i = ψi ∗h, h is a ∗-homomorphism on C[t] and h(t) = 1, i ∈ N.

In the free product ∗i∈NAi we identify the units of Ai, i ∈ N. By abuse of notation, we

denote 1 = 1⊗∞.

Definition 3. For given a ∈ Gi, let

j
(2)
i (a) = T⊗(i−1) ⊗ i1(a)⊗ T⊗∞ + T

⊗(i−1)
2 ⊗ i2(a)⊗ T⊗∞2 − T⊗(n−1) ⊗ i2(a)⊗ T⊗∞,

and define the ∗-homomorphism

j(2) : ∗i∈NAi →
⊗
i∈N

Ã⊗2i

as the linear extension of j(2)(1) = 1 and

j(2)(w1 . . . wn) = j
(2)
k1

(w1) . . . j
(2)
kn

(wn)

where w1, . . . , wn are non-empty words in Ak1
, . . . ,Akn

with k1, . . . kn ∈ N.

There is no simple analogue of Proposition 1, therefore we start with the analogue of

Proposition 2. A direct proof will be presented.

Proposition 8. Let w be a non-empty word in Ai. Then

j
(2)
i (w) =

∑
w′,w′′

l(w′′)∑
r=0

(
l(w′′)

r

)
(−1)l(w

′′)−r(tl(w)−r ⊗ tl(w))⊗(i−1) ⊗

⊗ w′ ⊗ w′′ ⊗ (tl(w)−r ⊗ tl(w))⊗∞.
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P r o o f. Let w = a1 . . . an. Then

j
(2)
i (w) =

n∏
k=1

(j
(2)
i,1 (ak) + j

(2)
i,2 (ak)− j(2)i,3 (ak))

where

j
(2)
i,1 (ak) = T⊗(i−1) ⊗ i1(ak)⊗ T⊗∞, j

(2)
i,2 (ak) = T

⊗(i−1)
2 ⊗ i2(ak)⊗ T⊗∞2 ,

j
(2)
i,3 (ak) = T⊗(i−1) ⊗ i2(ak)⊗ T⊗∞.

We obtain

j
(2)
i (w) =

∑
p1,...,pn∈{1,2,3}

(−1)|J3|j
(2)
i,p1

(a1) . . . j
(2)
i,pn

(an)

where Jk = {m|pm = k}, k = 1, 2, 3. We arrive at the formula

j
(2)
i (w) =

∑
p1,...,pn∈{1,2,3}

(−1)|J3|(T |J1∪J3|T
|J2|
2 )⊗(i−1) ⊗

⊗ i1(wJ1
)i2(wJ2∪J3

)⊗ (T |J1∪J3|T
|J2|
2 )⊗∞.

We will now translate the sum into our notation from Section 3. Denote w′ = wJ1 ,

w′′ = wJ2∪J3
. Then l(w) = |J1|+ |J2|+ |J3|, l(w′) = |J1|, l(w′′) = |J2|+ |J3|. Note that

w′ is in one-to-one correspondence with J1. However, to each w′, w′′, and 0 ≤ r ≤ l(w′′)

there are
(
l(w′′)

r

)
different tuples (k1, . . . , kn) which contribute the term

(−1)l(w
′′)−r(tl(w)−r ⊗ tl(w))⊗(i−1) ⊗ w′ ⊗ w′′ ⊗ (tl(w)−r ⊗ tl(w))⊗∞,

which finishes the proof.

Before we go on, let us define

d
(2)
i (w) = (T

l(w)
2 )⊗(i−1) ⊗ i2(w)⊗ (T

l(w)
2 )⊗∞

where w is a non-empty word in Ai.

Proposition 9. Let w be a non-empty word in An. Then

j
(2)
i (w)− d(2)i (w) =

∑
R,W

(RT )⊗(i−1) ⊗W ⊗ (RT )⊗∞

where R,W are elementary tensors in C[T, T2],An ⊗An, respectively.

P r o o f. In the expression for j
(2)
i (w) given by Proposition 8 there is only one ele-

mentary tensor which does not have t in all tensor sites lying to the right and to the left

of the 2i − 1-th and 2i-th sites. This term is exactly equal to d
(2)
i (w). Therefore, if we

subtract it, the remaining terms are of the desired form.

We introduce the infinite tensor product versions of Φ̃(2) and Ψ(2) of Section 3, by

abuse of notation denoting them

Φ̃(2) ≡
⊗
i∈N

Φ̃
(2)
i =

⊗
i∈N

(φ̃i ⊗ ψ̃i), Ψ(2) =
⊗
i∈N

(id⊗ ψ̃i)

where ψ̃i(t) = φ̃i(t) = h(t) = 1. Then it is easy to see that Φ̃(2)◦j(2)i = φi and Ψ(2)◦d(2)i =

ψi1, i ∈ N.
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Lemma 10. Let w1, . . . , wn be non-empty words in Ak1 , . . . ,Akn , respectively , where

k1 6= k2 6= . . . 6= kn. Then

Φ̃(2)[(j
(2)
k1

(w1)− d(2)k1
(w1)) . . . (j

(2)
kn

(wn)− d(2)kn
(wn))]

= (φk1
(w1)− ψk1

(w1)) . . . (φkn
(wn)− ψkn

(wn)).

P r o o f. It is enough to show the factorization for the elementary tensors of Proposi-

tion 9. We order k1, . . . , kn so that {k1, . . . , kn} = {r1, . . . , rl} and r1 < . . . < rl, l ≤ n.

Then

Φ̃(2)
[ n∏
i=1

((RiT )⊗(ki−1) ⊗Wi ⊗ (RiT )⊗∞)
]

=

=

l∏
m=1

( ∏
j∈Pm

Φ̃(2)
rm(Wj)

∏
j 6∈Pm

Φ̃(2)
rm(RjT )

) ∏
j 6∈{r1,...,rl}

∏
i=1,...,n

Φ̃
(2)
j (RiT )

=

n∏
i=1

Φ̃(2)[(RiT )⊗(ki−1) ⊗Wi ⊗ (RiT )⊗∞],

where P = {P1, . . . , Pl} is the partition of {1, . . . , n} associated with {k1, . . . , kn}, given

by Pm = {s|ks = rm}, m = 1, . . . , l. Use Proposition 9 to get the final result.

Lemma 11. Let Ψ(2) =
⊗

i∈N(ψ̃i ⊗ id) and let w1, . . . , wn be non-empty words in

Ak1
, . . . ,Akn

, respectively , where k1 6= k2 6= . . . , 6= kn. Then Ψ(2) has the following

multiplicative property :

(Ψ(2) ◦ j(2))(w1 . . . wn) = (Ψ(2) ◦ j(2)k1
)(w1) . . . (Ψ(2) ◦ j(2)kn

)(wn)

P r o o f. By Proposition 8 it is enough to show the factorization for products of ele-

mentary tensors of the form

(t′m ⊗ t′′m)km−1 ⊗ w′m ⊗ w′′m ⊗ (t′m ⊗ t′′m)⊗∞,

m = 1, . . . , n. As in the proof of Lemma 3.7, this boils down to showing the appropriate

factorization for ψi, i ∈ N. Namely, if in the free product w1 . . . wn, words wj , wk, where

j < k, belong to the same algebra, say Ap, and are separated by words from other

algebras, then at the 2p-th site they are separated by tl(wj+1)+...+l(wk−1). Applying Ψ(2)

to this site produces

ψp(. . . tl(wj−1)w′′j t
l(wj+1)+...+l(wk−1)w′′k t

l(wk+1) . . .)

= ψp(. . . tl(wj−1))ψp(w′′j )ψp(tl(wj+1)) . . . ψp(tl(wk−1))ψp(w′′k)ψp(tl(wk+1) . . .),

which implies the desired factorization for Ψ(2).

Theorem 12. Let Φ̃(2) =
⊗

i∈N Φ̃
(2)
i , Φ̃

(2)
i = ψ̃i⊗ φ̃i, where ψ̃i = ψi∗B h, φ̃i = φi∗B h

and ψi, φi are states on the free ∗-algebra Ai, i ∈ N, and h is a ∗-homomorphism from

C[t] into C such that h(t) = 1. Then, Φ̃(2) ◦ j(2) agrees with ∗i∈NAi on words w1 . . . wn

for n ≤ 4.

P r o o f. The proof is similar to that of Theorem 7 (Lemmas 10-11 are used).
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5. Construction of the associated ∗-bialgebra. We would like to associate a ∗-

bialgebra with 2-freeness. It seems that one should be able to do that using a ∗-subalgebra

of the double tensor product Ã ⊗ Ã. Nevertheless, it turns out that one needs to take

the free product ∗-bialgebra Ã∗(2) ≡ Ã ∗ Ã instead. The construction of this ∗-bialgebra

is presented below. First, we must introduce a free version of the ∗-homomorphism j(2).

Definition 4. For given a ∈ G1, b ∈ G2, let a(1), a(2) denote different copies of a in

Ã1 ∗ Ã1, b(1), b(2) denote different copies of b in Ã2 ∗ Ã2, and t(1), t(2) stand for different

copies of t in both products. Let

ĵ
(2)
1 (a) = a(1) ⊗ t(1)t(2) + a(2) ⊗ (t(1) − t(1)t(2)),

ĵ
(2)
2 (b) = t(1)t(2) ⊗ b(1) + (t(1) − t(1)t(2))⊗ b(2)

and define the ∗-homomorphism

ĵ(2) : A1 ∗ A2 → (Ã1 ∗ Ã1)⊗ (Ã2 ∗ Ã2)

as the linear extension of ĵ(2)(1) = 1⊗ 1 and

ĵ(2)(w1 . . . wn) = ĵ
(2)
k1

(w1) . . . ĵ
(2)
kn

(wn),

where w1, . . . , wn are non-empty words in Ak1
, . . . ,Akn

, where k1, . . . , kn ∈ {1, 2}.
Note that if we take a(1) = a⊗ 1, a(2) = 1⊗ a, b(1) = b⊗ 1, b(2) = 1⊗ b, t(1) = t⊗ 1,

t(2) = 1⊗ t, we obtain Definition 2.

Let A1 = A2 = A in the above definition. We can associate a cocommutative ∗-

bialgebra with the pair (A, ĵ). This is done in the theorem below which also shows how

close ĵ(2) ◦ δ is to a coproduct.

Theorem 13. The ∗-algebra Ã∗(2) can be equipped with the coproduct

∆(2)(1) = 1⊗ 1, ∆(2)(t(1)) = t(1) ⊗ t(1), ∆(2)(t(2)) = t(2) ⊗ t(2),
∆(2)(a(2)) = a(2) ⊗ t(2) + t(2) ⊗ a(2), ∆(2)(a(0)) = a(0) ⊗ t(1)t(2) + t(1)t(2) ⊗ a(0),

and the counit

ε(2)(t(1)) = ε(2)(t(2)) = ε(2)(1) = 1, ε(2)(a(1)) = ε(2)(a(0)) = 0

where a(0) = a(1) − a(2) and a(1), a(2) are different copies of a ∈ G in Ã∗(2). Moreover , if

δ : A → A ∗ A is the ∗-homomorphism defined by δ(1) = 1, δ(a) = a′ + a′′, where a′, a′′

are different copies of a in A ∗ A, then

ĵ(2) ◦ δ = ∆(2) ◦ î1
where î1 : A → Ã∗(2) is the canonical ∗-homomorphic embedding given by î1(a) = a(1).

P r o o f. It is easy to check that ∆(2) is coassociative and that ε(2) is the counit.

Therefore (A∗(2),∆(2), ε(2)) becomes a ∗-bialgebra.

Now, (ĵ(2) ◦ δ)(1) = 1⊗ 1 = (∆(2) ◦ î1(1). If a ∈ G, then

(ĵ(2) ◦ δ)(a) = ĵ
(2)
1 (a) + ĵ

(2)
2 (a)

= a(1) ⊗ t(1)t(2) + t(1)t(2) ⊗ a(1) + a(2) ⊗ t(2) +

+t(2) ⊗ a(2) − a(2) ⊗ t(1)t(2) − t(1)t(2) ⊗ a(2)
= ∆(a(1)) = (∆ ◦ î1)(a).
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This implies that this identity holds also for arbitrary words in A since ĵ(2), δ,∆(2) and

î1 are ∗-homomorphisms.

One can say that ĵ(2) ◦δ agrees with the coproduct ∆(2) restricted to the ∗-subalgebra

î1(A). Note that ∆(2) takes î1(A) out of î1(A)⊗ î1(A) and that is the reason why we have

to take Ã∗(2) and one copy of A is not enough. Moreover, note that the coproduct defined

above preserves the relation t(1)t(2) = t(2)t(1), but it does not preserve a(1)ã(2) = ã(2)a(1).

That is why we have to take the free product Ã∗(2) instead of the tensor product Ã⊗2
which, at least at the first sight, seemed natural. In other words, in order to be able

to associate a ∗-bialgebra with 2-freeness, we have to resign from the tensor product of

different copies of Ã in favor of the free product. Thus, we can lift Φ̃(2) to Ã∗(2) ⊗ Ã∗(2)
or to Ã∗(2)/T0 ⊗ Ã∗(2)/T0, where T0 is the two-sided ideal generated by

t(1)t(2) − t(2)t(1), t(1)a(2) − a(2)t(1), t(2)a(1) − a(1)t(2),
where a ∈ G, since T0 is a coideal (∆(2) preserves the above relations).

Let us look now at the convolutions of states. It is known how to define convolutions

of states for ∗-bialgebras. Namely, if Φ1,Φ2 are two states on a ∗-bialgebra (B,∆, ε), then

the convolution of Φ1 and Φ2 is given by

Φ1 ? Φ2 ≡ (Φ1 ⊗ Φ2) ◦∆.

In turn, the conditionally free convolution of states on A is a state on A given by

(φ1, ψ1) ? (φ2, ψ2) = ∗i∈{1,2}(φi, ψi) ◦ δ.
Thus, Theorem 7 enables us to give the second order approximation of the conditionally

free convolution of states on a given free ∗-algebra A in terms of the convolution of states

on the ∗-bialgebra (Ã∗(2),∆(2), ε(2)).

For that purpose, we lift the states Φ̃
(2)
k , k = 1, 2, defined on Ã⊗2 to states on Ã∗(2).

By abuse of notation we also denote them by Φ̃
(2)
k , k = 1, 2. Then we can conclude that

(Φ̃1 ? Φ̃2) ◦ î1 agrees with (φ1, ψ1) ? (φ2, ψ2) on products w1 . . . wn for n ≤ 4.

Successive iterations of δ and ∆ can be defined in order to study convolutions of

higher order in a manner analogous to the one presented above.

6. Hierarchy of freeness. The approach to freeness via tensor product construc-

tions can be generalized and successive approximations of freeness can be defined. We

discuss it in this section for two free ∗-algebras, but an extension to infinitely many or

even uncountably many free ∗-algebras presents no difficulty.

Thus, for each m ∈ N take as the quantum probability space the pair (Ã(m), Φ̃(m)),

where

Ã(m) ≡ Ã⊗m1 ⊗ Ã⊗m2

and

Φ̃(m) ≡ Φ̃
(m)
1 ⊗ Φ̃

(m)
2 ,

where

Φ̃
(m)
k = φ̃k ⊗ ψ̃⊗(m−1)k
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and k = 1, 2. Then, one can define the corresponding sequence j(m) of ∗-homomorphisms

as follows.

For given a ∈ G1, b ∈ G2 and m ∈ N let

j
(m)
1 (a) =

m∑
k=1

(ik,m(a)− ik+1,m(a))⊗ t[k,m],

j
(m)
2 (b) =

m∑
k=1

t[k,m] ⊗ (ik,m(b)− ik+1,m(b))

where t[k,m] = Ik−1 ⊗ t⊗(m−k+1), ik,m(a) = Ik−1 ⊗ a⊗ Im−k, where Ik = 1⊗k. Define the
∗-homomorphism

j(m) : A1 ∗ A2 → Ã(m)

as the linear extension of j(m)(1) = Im ⊗ Im and

j(m)(w1 . . . wn) = j
(m)
k1

(w1) . . . j
(m)
kn

(wn),

where w1, . . . , wn are non-empty words in Ak1
, . . . ,Akn

, where k1, . . . , kn ∈ {1, 2}.
Then generalizations of Theorems 7 and 12 can be proven to hold. Namely, one can

show that Φ̃ ◦ j(m) agrees with the conditionally free product on words w1 . . . wn, where

n ≤ 2m. Thus we obtain a hierarchy of freeness in the sense that we have a sequence of

quantum probability spaces that are closer and closer to the conditionally free product

of ∗-algebras. Moreover, we can embed all those spaces in the infinite tensor product

Ã⊗∞1 ⊗ Ã⊗∞2 with the infinite tensor product of states Φ̃ ≡ Φ̃1 ⊗ Φ̃2, where

Φ̃k = φ̃k ⊗ ψ̃⊗∞k ,

and thus obtain one quantum probability space in which each m-freeness lives. In this

framework, freeness will correspond to m =∞. Details of this approach will be presented

elsewhere.
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