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Wita Stwosza 57, 80-952 Gdańsk, Poland
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Abstract. We construct an example of a noncommutative dynamical system defined over
a two dimensional noncommutative differential manifold with two positive Lyapunov exponents
equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the
half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted
as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift
and the expanding map of the circle and moreover as an example of the noncommutative Pesin
theorem.

1. Introduction. This paper is motivated by the standard example of a metric

isomorphism between two classical dynamical systems: the one sided ( 1
d , ...,

1
d )-Bernoulli

scheme and the expanding map of the circle z 7→ zd [7].

The (one-sided) Bernoulli shift is an example of a system studied in the ergodic

theory based on probability spaces with measure preserving endomorphisms. The chaotic

properties are quantitatively described by a single parameter - the Kolmogorov-Sinai

entropy which is equal to ln d. On the other hand the circle {z ∈ C; |z| = 1} possesses

a differential structure compatible with the Lebesgue measure. The expanding map is

smooth and its chaotic properties are indicated by the positive Lyapunov exponent which

is equal to ln d (and as expected equal to K-S entropy) in this case.

The natural quantum generalization of the ( 1
d , ..,

1
d )-Bernoulli scheme is given by a

shift acting on the infinite spin half-chain with a tracial state. This is an example of a

noncommutative C∗-algebraic dynamical system with a quasi-local C∗-algebra of observ-

ables obtained as an infinite tensor product of the single-site d×d-matrix algebras and a

shift invariant state. The models of this type with general shift-invariant states have been

discussed in numerous papers and their different ergodic properties were studied in de-
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tail. Among others, the noncommutative generalization of the Kolmogorov-Sinai entropy

proposed and developed in the references [2,3,4,12] can be applied and yields the value

2 ln d. The present paper deals with the following question: is it possible to construct a

noncommutative dynamical system which is isomorphic in a certain sense to the model

discussed above and moreover possesses a noncommutative differential structure which

supports quantum Lyapunov exponents? We expect also that the sum of positive Lya-

punov exponents should be equal to 2 ln d. In Section 4 we shall give a positive answer

to this question constructing the noncommutative expanding map acting on a two di-

mensional ”quantum manifold” and with two positive Lyapunov exponents each of them

equal to ln d . For a completely different example of quantum expanding map see ref. [1].

2. Quantum Bernoulli scheme and its dynamical entropy. A discrete-time

noncommutative C∗-algebraic dynamical system is described in terms of a unital C∗-

algebra A, an endomorphism Θ of A, and a state ω, invariant under Θ. In the following

we shall use a particular quantum analog of the Kolmogorov-Sinai entropy presented

in our previous papers [2,3,4,12](see also [10]) and named Alf entropy in honor of the

nice alien hero of the TV series. As an additional structure we need a specified unital

∗-subalgebra A0 ⊂ A, globally invariant under Θ, which represents “local” or “smooth”

observables of the system. The fundamental object is the operational partition of unity

X = (xi; 1 ≤ i ≤ k) which consists of elements of A satisfying:

k∑
i=1

x∗i xi = 1 . (1)

Two partitions X = {xi; 1 ≤ i ≤ k} and Y = {yj ; 1 ≤ j ≤ l} produce a new partition

X ◦ Y = {xiyj ; 1 ≤ i ≤ k, 1 ≤ j ≤ l} and the time evolution of the partition X gives the

partition Θ(X ) = {Θ(xi); 1 ≤ i ≤ k}.
A given partition X of size k defines a k × k density matrix ρ[X ] with (i, j) matrix

element equal to ω(x∗jxi) . The dynamical entropy is constructed in terms of the usual

von Neumann entropy for the density matrix S(ρ) = −Tr ρ ln ρ as

h(A0,Θ,ω) = sup
X⊂A0

{
lim sup

m

1

m
S(ρ[Θm−1(X ) ◦ · · · ◦Θ(X ) ◦ X ])

}
. (2)

We consider a quantum spin half-chain with a single site algebraMd of d×d matrices.

The dynamics Λ is given by the right shift and the state is now a canonical normalized

trace τ on the quasi-local algebra U = (Md)
N. Choosing for the subalgebra A0 the

strictly local algebra U0, which consists of observables involving only a finite number of

spins, one obtains [3]

h(U0,Λ,τ) = 2 ln d. (3)

It is interesting that the other approaches to noncommutative dynamical entropy yield

quite different results. Namely, the CNT entropy can be computed for this model too and

is equal to ln d [6], the same value has been obtained for the Voiculescu growth-entropy

[13] and the Hudetz ”hybrid” entropy [9]. The Alf entropy depends on the additional

structure of local or smooth observables. However, its numerical value does not change

if we replace the local algebra by the algebra of smooth elements defined, for example,
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in terms of oscillation norms [12]. On the other hand working within the W ∗-algebraic

scheme and taking as A0 the full von Neumann algebra of the dynamical system one

obtains typically an infinite Alf entropy. This suggests deeper connections between our

dynamical entropy and the noncommutative geometry of quantum dynamical systems.

3.Quantum Lyapunov exponents. There were several attempts to define quantum

Lyapunov exponents [8,11]. In the abstract context of a C∗-algebraic dynamical system

(A,Θ) with the additional structure of unbounded derivations {Di} over a Θ-invariant

smooth subalgebra A∞ ⊂ A the Lyapunov exponents can be defined as [8]

λi(X) = lim
n→∞

1

n
ln ‖Di(Θn(X))‖ , X ∈ A∞. (4)

In the interesting cases λi(X) should take only a finite number of values. However, in

a general situation there exist no canonical derivations which could span a noncommu-

tative analog of the tangent space. The nice special case is the noncommutative torus

given by the irrational rotation algebra Aθ generated by two unitaries and possessing a

corresponding two dimensional ”tangent space” of outer derivations [8]. In the example

discussed below such a natural system of derivations has not been found and instead we

introduce a weaker geometrical structure supporting the notion of Lyapunov exponents.

Namely, we assume the existence of a nonnegative bilinear form on Cν ⊗ A∞ denoted

by ∆(F,G);F,G ∈ Cν ⊗A∞. Here Cν may be treated as a (complexified) model of the

”tangent space”. For any ξ ∈ Cν and X ∈ A∞ we can define the associated Lyapunov

exponent

λ(ξ,X) = lim
n→∞

1

2n
ln{∆(ξ ⊗Θn(X), ξ ⊗Θn(X))} . (5)

One can expect that similarly to the classical case Cν can be decomposed into one dimen-

sional subspaces corresponding to a finite sequence {λi} of Lyapunov exponents which

are independent on X. In the cases for which there exists a canonical set of derivations

{Dj} we put

∆(ej ⊗X, ek ⊗ Y ) = ω(Dj(X∗)Dk(Y )) (6)

where {ej} is a linear basis in Cν and ω is a Θ-invariant state on A.

4. Quantum expanding maps. We begin with some preliminary definitions and

notation. Fix an orthonormal basis {e1, ..., ed} of Cd and consider two unitary matrices

u and v defined by the action on the basis

uej = γjej and vej = ej+1 (7)

where γ is the dth root exp(2πi/d) of 1 and where the subscript d + 1 is identified with

1. It is easy to check that u and v satisfy the commutation relation

uv = γvu (8)

and ud = vd = 1. An elementary proof shows that {u, v} generate the full matrix algebra

Md. In the following we shall use the exponential form

u = eia, v = eib . (9)
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We return to the one-sided quantum Bernoulli system (U ,Λ, τ) described in Section 2.

We define now two elements in U

U =
⊗
j∈N

eia/d
j

, V =
⊗
j∈N

eib/d
j

. (10)

The unital C∗-algebra Ũ ⊂ U generated by U and V is shift invariant and the following

formula justifies the name quantum expanding map for the dynamical system (Ũ ,Λ)

Λ(U) = Ud ,Λ(V ) = V d . (11)

Therefore we can consider a C∗-algebraic dynamical system (Ũ ,Λ) with a shift invariant

trace τ and a subalgebra of smooth elements Ũ∞ which consists of linear combinations of

monomials in U,U−1, V, V −1 with rapidly decreasing coefficients. As Ũ is generated by

two unitaries and hence can be interpreted to a two dimensional ”quantum manifold”(a

kind of ”quantum torus” but different from the irrational rotation algebra) we seek for a

natural bilinear form ∆ on C2 ⊗ Ũ∞. It can be defined as

∆(ei ⊗X, ej ⊗ Y ) = lim
n→∞

d2nτ(D
(n)
i (X∗), D

(n)
j (Y )) i, j = 1, 2 (12)

where

D
(n)
1 (X) = i[a(n), X] , D

(n)
2 (X) = i[b(n), X] (13)

and a(n) = 1⊗···⊗a⊗1⊗··· with the matrix a placed at the site n, etc. Putting as X and Y

the monomials in U,U−1, V, V −1 one can easily check that the limit in Eq.(12) exists and

can be extended to the whole smooth algebra Ũ∞. Similar explicit computation taking

into account the Eqs.(11-13) shows that independently of ξ the Lyapunov exponent is

equal to ln d. These results are summarized by the following theorem.

Theorem 1. For any X,Y ∈ Ũ∞ the limit in Eq(12 ) exists and defines a nonnegative

bilinear form on C2 ⊗ Ũ∞. For any X ∈ Ũ∞ and any ξ ∈ C2 such ∆(ξ ⊗X, ξ ⊗X) > 0

the limit in Eq.(5 ) exists and is equal to ln d.

It follows from Theorem 1 that we obtain a doubly degenerated Lyapunov exponent

equal to ln d and hence the sum of Lyapunov exponents is equal to the Alf entropy.

In the general case of a C∗-algebraic dynamical system (A,Θ, ω) one can consider its

Hilbert space representation. Let Hω be a Hilbert space, Ψω ∈ Hω a cyclic separating

vector and π : A 7→ B(Hω) a faithful representation obtained by means of the GNS

representation. The state ω is represented as ω(A) =< Ψω, π(A)Ψω > and the dynamical

map is implemented by the isometry WΘ acting on Hω, π(Θ(X)) = WΘπ(X)W ∗Θ and

satisfying WΘΨω = Ψω. The von Neumann algebra generated by a given subalgebra

C ⊂ B(Hω) will be denoted by M(C). The triple {M(π(A)),WΘ,Ψω} is called a W ∗-

dynamical system.

Theorem 2 shows the isomorphism, on the level of W ∗-dynamical systems, between

the quantum Bernoulli shift and the constructed quantum expanding map.

Theorem 2. The triple (M(π(Ũ)),WΛ,Ψτ ) is a W ∗-dynamical system isomorphic

to a W ∗-dynamical system (M(π(U)),WΛ,Ψτ ).

P r o o f. As Λ leaves Ũ invariant then WΛM(π(Ũ))W ∗Λ ⊂ M(π(Ũ)) and (M(π(Ũ)),

WΛ,Ψτ ) is a W ∗-dynamical system. ObviouslyM(π(Ũ)) ⊂M(π(U)). The von Neumann
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algebraM(π(U)) is generated by the elements {π(Λj(u)), π(Λj(v)); j ∈ N} where we use

the convention that u and v live on the site j = 0. Hence it is enough to show that

π(u), π(v) ∈ M(π(Ũ)). But π(u) and analogously π(v) can be expressed in terms of

operations which are allowed within the von Neumann algebra. Namely

π(u) = π(U)[π(Λ(U∗))]1/d.

The example discussed in this note provides another supporting argument for the

usefulness of the Alf dynamical entropy. It seems that our approach is the only from the

existing ones which allows the relations between the quantum Lyapunov exponents and

the noncommutative dynamical entropy suggested by the classical theory. The necessity

of investigation of (often hidden) noncommutative geometry [5] of quantum dynamical

systems is another obvious conclusion.
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