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Abstract. We introduce the notion of a completely quantum C*-system (A, G, a), i.e. a C*-
algebra A with an action a of a compact quantum group G. Spectral properties of completely
quantum systems are investigated. In particular, it is shown that G-finite elements form the

dense *

-subalgebra A of A. Furthermore, properties of ergodic systems are studied. We prove
that there exists a unique a-invariant state w on A. Its properties are described by a family of
modular operators {o.},cq acting on A. It turns out that w is a KMS state provided that w is

faithful.

1. Introduction. By a classical space we mean a locally compact topological space
X. Symmetries of a classical space are described by groups of homeomorphisms of X.
More precisely, a system with a symmetry is a triple (X, G, 7) where X is a classical space,
and 7 = {7, }4e¢ is a representation of locally compact topological group G in the group of
homeomorphisms of X. Every system with a symmetry has the dual picture (C(X), G, o)
where C'(X) is the C*-algebra of complex continuous functions on X vanishing at infinity,
and o = {ag}tgeq is the action of G on the algebra C(X) defined by [ogy(f)](z) =
f(1g-1(x)), f € C(X), z € X. By the well-known Gelfand-Naimark theorem every triple
(A, G, ) where A is an abelian C*-algebra, and « is an action of a locally compact group
G on A (cf. [9]), can be reconstructed from some classical system with a symmetry in the
described above way. A natural generalization of a system with symmetry is that with A
being an arbitrary (i.e. noncommutative in general) C*-algebra.

The aim of this paper is to investigate basic questions of a description of symmetries of
noncommutative systems. There are some reasons to believe that the class of topological
(classical) groups is not sufficient to describe the relevant full symmetries. For a deeper
discussions of this problem with the framework of algebraic quantum field theory we refer
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the reader to [4] and references given there (see also [3, 6], as well as [7]).

In our paper we will use the theory of compact quantum groups developed by Woro-
nowicz in [13, 14]. In Section 2 we recall some basic definitions and results of this theory.
Next, in Section 3 we formulate the notion of completely quantum system (A, G, @),
where A is a unital C*-algebra, G is a compact quantum group, and « is an action of G
on A. Motivated by [1, 2, 10] we treat completely quantum C*-systems as a noncommu-
tative system with a generalized (quantum) symmetry. We analyse spectral properties
of complete quantum systems. In particular, we investigate the structure of the set A of
G-finite elements of (A, G, «). Section 4 is devoted to ergodic systems. We prove that if «
is an ergodic action, then there exists a unique a-invariant state w on A. It is possible to
describe the modular properties of w by means of the family {0, }.c¢ of linear operators
on A. It appears that if w is faithful then it is a KMS state with respect to the group
{ot}ter. Tt generalizes the results from [5] that if « is an ergodic action of a compact
topological group then, the unique a-invariant state is a trace on A.

This paper is part of author’s Ph.D. Thesis ([8]) which was submitted at the Gdarisk
University. The author wishes to thank Professor S.L. Woronowicz for his interest and
hospitality during the author’s stay at the Warsaw University. Special thanks are due to
Professor W.A. Majewski, the supervisor of the thesis, for his encouragement and many
helpful discussions.

2. Compact quantum groups. In this section we briefly recall basic definitions
and properties of compact quantum groups defined by Woronowicz. We follow [13, 14].

If Ais a C*-algebra, and X,Y C A are subsets of A, then we define XY = span {zy :
reX,yeY}.

DEFINITION 2.1 ([14]). A compact quantum group is a pair G = (C, A), where C is
a separable unital C*-algebra, and A : C — C ® C' is a unital *-homomorphism such
that (A ®ide)A((b) = (ide @ A)A(D) for every b € C and the subspaces (C' ® 1¢)A(C),
(1¢ ® C)A(C) are dense in C @ C.

Let us remind that if K is a finite dimensional linear space, then by a representation

of G acting on K we mean a linear map v : K — K ® C such that
(v®ide)v = (idg ® A)v. (2.1)

If e1,e2,...,eq is a basis of K, then there are uniquely determined elements v;; € C,
i,j =1,2,...,d, such that v(e;) = Z?zl e; ®v;; for j =1,2,...,d. The condition (2.1)
implies A(v;;) = 22:1 Vil @ vk for every ¢,j =1,2,...,d. The matrix [v;;]; j=1,2,..a €
My(C) ® C is called the matriz of the representation v in the basis eq, ea, ..., eq4.

Let v, w be representations of G acting on spaces K, L respectively. Then an operator
S : K — L is called an intertwiner between v and w if (S ® ide)v = wS. The set of
all intertwiners between v and w is denoted by Mor (v, w). Representations v and w are
called equivalent if Mor (v, w) contains an isomorphism of the linear spaces K and L.

A representation v acting on K is irreducible if Mor(v,v) = {Mp) : A € C}, where
15k denotes the identity operator on K.

If K is a finite dimensional Hilbert space, then a representation v acting on K is
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called unitary if for some orthonormal basis e, ez, .. ., eq of K the matrix [v;;] of v in the
basis is a unitary element of the algebra M,(C)® C. This is equivalent to 22:1 VigVjy =
dijle = ZZ:1 vy vk forany i,j =1,2,...,d.

A state h on the C*-algebra is called a Haar measure if (ide ® h)A(b) = h(b)1e =
(h ®ide)A(b) for every b € C. Tt is proved in [14] that every compact quantum group
admits a unique Haar measure.

Let G denote the set of equivalence classes of unitary representations of the group
G. For 7 € G by [u[k]i7k21727___’dr we denote the matrix of some representative u” of the
class 7. By ¢ we denote the equivalence class of the trivial representation, i.e. d, = 1
and u}; = l¢. In [14] Woronowicz proved that the set {u], : 7 € G, i k=12, .. dr}
forms a linear basis of a dense *-subalgebra C of C'. Moreover, for every 7 € G there
is a unique invertible matrix F, € My_(C) such that Tr F, = Tr F-! and the following
Peter-Weyl-Woronowicz relations hold:

1 T %, O 1 —1
— ﬁéq-o'(sij(Fr)kla h(uzk Ujl) = ﬁ(;Ta'(skl(FT )ij (22)

for every 7,0 € G, iwk=1,2,...,d; and 5,1 =1,2,...,d,.

Let 7 € Gand i,k =1,2,...,d,. If b € C then let p, (b) = Tr F, Zz;l(FT)iph(u;k*b)
and p7(b) = Z?;l pr;(b). Let also D], : C — C be linear operators defined by the
formula D].b = (id¢ ® p];,) A(b) for every b € C. From (2.2) we easily get

PROPOSITION 2.2. If 1, m € G, i,k=1,2,...,dr, j,l =1,2,...,dy then

h(“fk“?l*)

(a) p;rk(u;-rl) = 5Tﬂ5ij5kl, pT(U;-rl) = 57—775117 DZ—kU}TI = 5TW5MU§Z-,
(b) D} D7, = 020k D)5 DY, is a projection onto D],C = span {uj,;, ug;,...,uj ;},

(¢) h((Db)*c) = h(b*(Dj,c)) for every b,c € C.

3. Completely quantum C*-systems

DEFINITION 3.1 ([10]). Let A be a unital C*-algebra and G = (C, A) be a compact
quantum group. A unital *-homomorphism « : A — A ® C will be called an action of
the group G on A if (a ®id¢)a(z) = (ida ® A)a(x) for every x € A, and the subspace
(14 ® C)a(A) is dense in A® C.

The triple (A, G, «) will be called a completely quantum C*-system.

DEFINITION 3.2. Let (A, G, a) be a completely quantum C*-system. A G-module in
(A,G, ) is a finite dimensional linear subspace X C A such that a(X) C X ®a4 C,
where X ®,1; C =span{z®b:z € X, be C}.

An element z € A is called G-finite if x € X for some G-module X.

Let us observe that if X is a G-module then a|x : X — X ®,1, C' is a representation
of GG on the finite dimensional space X. Two G-modules X,Y are called isomorphic if
alx and aly are equivalent. A G-module X is called simple if «|x is irreducible.

For every subset E C G let M®(E) denote the closed subspace in A generated by
elements of G-modules equivalent with u™ for some 7 € E. We will write M () instead
of M*({r}).
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PROPOSITION 3.3. Let P (z) = (ida ® pl,)a(x) for every T € G, ik=1,2...d.,

x € A, and let P™(x) = Zf;l Pr(x) for every 7 € G, x € A. Then for every 7,7 € G,
iwk=1,2,...,d; and j,l =1,2,...,d, we have

(a) PLP = 0:70;xPf; Pj, PT are projections;

(b) a(Ph(z)) = (ida ® D], )a(x), a(P7(x)) = (ida ® D7)a(x), for x € A.
Proof. It is a simple consequence of Proposition 2.2. m

PROPOSITION 3.4 ([10, 8]). For every 7 € G and = € A the following conditions are
equivalent:
(a) € M*(7);
(b) = € PTA;
(¢) there exist n < d, and linearly independent G-modules X1, Xo, ..., X, equivalent
to u” such that x € @), X;.

Remark 3.5. Definition 3.1 was first given in [10]. It was shown that M*(G) = A
(¢f. [10, Theorem 1.5]). Moreover, it was proved that for every 7 € G there exist a set of
indices J- and G-modules X ] equivalent to u” such that M*(7) = @, ;. X/ . In spite of
the fact that X are not uniquely determined, the cardinality of J; does not depend on
the choice of these subspaces. This cardinality is called the multiplicity of u” in (A4, G, @)
and is denoted by c;.

As a consequence of the above remark and Proposition 3.4 we get

THEOREM 3.6. Suppose that (A, G, «) is a completely quantum C*-system. Let A =

{r € A:a(z) € ARasC}. Then A is a dense *-subalgebra of A invariant with respect to
a, i.e. a(A) C A®alg C. Moreover

(a) A= @Teé MQ(T)a

(b) (ida ® e)a(z) =z for x € A,

(¢) (ida ®@ m)(a®ide)(ida ® k)a(x) =2 @ 1g, for x € A,
where e is the counit and k is the coinverse of the group G (cf. [14, Theorem 1.2]), and
m : C ®a1g C — C s the multiplication map.

Remark 3.7. In [14] it is proved that the *-algebra C spanned by the elements ui;
with comultiplication A has the structure of a *-Hopf algebra. It follows from Theorem
3.6 that the *-algebra A of G-finite elements with « is a right C-comodule (cf. [11]).

COROLLARY 3.8. Let (A, G, ) be a completely quantum C*-system, and let A be the
*-subalgebra defined in Theorem 3.6. Then, for every x € A, a(x) =0 implies x = 0.

Proof. Let z € A and a(z) = 0. From Proposition 3.4 we get = = Z?Zl x;, where
z; € X;5,5=1,2,...,n,and X1, Xo,..., X, are linearly independent simple G-modules.

The system of vectors {a(z;) : j =1,2,...,n} is linearly independent, because the sub-
spaces X; ®alg C are linearly independent in A ® C. But >, a(z;) = a(z) = 0, so
a(xz;) = 0 for every j = 1,2,...,n. For j = 1,2,...,n let 215,29;,...,%4,; be a ba-

sis of X such that a(z;;) = 227:1 Tj @ Uk;. Then z; = Z?;l Aizi; for some \; € C,
i=1,2,...,d:. S0, 0 = afxj) = D, Ni D) Thj @ Up; = sz XiTr; ® up;. The matrix
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elements uy; are linearly independent, hence A\;xy; = 0 for every k,7 =1,2,...,d,. The
elements x; are nonzero, so \; = 0 for every ¢ = 1,2,...,d,. This implies z; = 0 for
every j=1,2,...,n,and 2 =0. =

4. Ergodic actions. Let (A, G, a) be a completely quantum C*-system. By A% we
denote the fixed point subalgebra of A, namely A* = {x € A : a(z) =2 ® Ic}. Let us
observe that A® = M“(¢), where ¢ is the trivial representation of G. Let E, = P{,.

PROPOSITION 4.1. Let (A, G, «) be a completely quantum C*-system. Then E, is a
projection with norm 1 onto the fized point subalgebra A*.

Proof. By Proposition 3.3 E, is a projection. Moreover, we have || Eq(z)| < ||z]|
because h is a state and « is a *-homomorphism, hence it has norm 1. =

DEFINITION 4.2. The action « is called ergodic if A% = Cl 4. A state w on the algebra
A is called a-invariant if (w ® ide)a(z) = w(x)le for z € A.
PROPOSITION 4.3. If a is an ergodic action of a compact quantum group G on a

unital C*-algebra A, then there exists a unique a-invariant state w on A.

Proof. Definition 4.2 and Proposition 4.1 imply that for every x € A there exists
w(z) € C such that Ey(x) = w(z)ly. The map w : A — C is a continuous linear
functional on A such that w(14) = 1. The projection E,, is a positive map (cf. Proposition
4.1 and [12]), so w is a state. Let us show that w is a-invariant. If z € A then

14 ® (w®ide)a(z) =
= (Ey®ide)a(r) = (lda @ h®ide)(a®ide)a(z) = [ida @ (h ® ide) Ala(x)
= (lda®h)a(z)®@1c = Ey(z) @ 1 = 14 @ w(z)le.

The fourth equality follows from properties of the Haar measure h. Suppose that w’ is
another a-invariant state on A. Then for every x € A the a-invariance of w implies

W' () h(W' (2)1¢) = (idg ® h) (v’ @ ide)a(z) = (W ®idg)(ida @ h)a(x)
= W(Ea(2)) = w'(w(2)ls) = w(z)w'(14) = w(z),

so the state w is uniqely determined. m

LEMMA 4.4. Let ¢ be a faithful positive linear functional on a *-algebra B. If n €
IN and by, bg,...,b, € B are linearly independent then the matriz [¢(b;b;)]i j=1.2,...n s
strictly positive definite.

Proof. Let A, Ag,..., Ay € €. Then 3, 6(bib) Ay = ¢ ((Zi A (Y, Ajbj)) >
0, hence the matrix [¢(b;b;)] is positive definite. If 3, - ¢(brbj)Aid; = 0, then Y7, X;ib; = 0
because the state ¢ is faithful. The system by, bs, ..., b, is linearly independent, so A; =0
foreachi=1,2,...,n. =

PROPOSITION 4.5. Let (A, G,a) be a completely quantum C*-system with an ergodic
action a, and let A be the *-subalgebra of G-finite elements and let w be the a-invariant
state described in Proposition 4.3. For every x € A, if w(z*x) =0 then x = 0.
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Proof. Let x € A. As in the proof of Proposition 4.3 we get
w(x*x)la = (da @ h)a(z*z) = (idg @ h)(a(z) a(z)). (4.1)

Theorem 3.6 yields a(x) € A ®a1¢ C. Hence, there are n € IN and z1,22,...,2, € A,
b1,b2,...,b, € C such that by, bo,...,0b, are linearly independent and

alx) = in ® b;. (4.2)

Suppose that w(z*2) = 0. Then (4.1) implies
> h(biby)asa; = 0. (4.3)
]

The state h is faithful on C (¢f. [13, Theorem 4.2.5]). Due to Lemma 4.4 and properties
of positive definite matrices there are constants aj,as,...,a, > 0 and a unitary matrix
[Yijli,j=1,2,...,n such that h(bjb;) = >, vikar¥Vjk. (4.3) yields 0 = Z” Dok VikOETRT T =
Sopar O viexy) (O viex))™, so >, yaw} = 0 for every k = 1,2,...,n. Consequently,
0 = > u ik 2 vikx; = Do Qop Wokvik) = D 0ijaf = af for every j = 1,2,...,n.
Combining this result with (4.2) we get a(z) = 0. Now, Corollary 3.8 implies x = 0. =

PROPOSITION 4.6. Suppose (A, G,Of) is a completely quantum C*-system with an er-
godic action a. Then for every T € G and i,k = 1,2,...,d; we have w((PLx)*y) =
w(z*(PLy)) for x,y € A.

Proof. Let 7€ G, i,k=1,2,...,d, and z,y € A. Then

w((Pz) y)la =
= (ida ® h)a((Pjx)"y) = (ida ® h)(a(Pjz)"a(y))
= (ida @ h)((ida ® Djp)a(x)"e(y)) = (ida @ h)(a(z)"(ida @ Di;)e(y))
= (ida @ h)(a(z")a(Py)) = (ida © h)(a(z* (Py)) = w(z" (Phy)) a.
The first equality follows from the proof of Proposition 4.3, the third from Proposition

3.3.(b), the fourth from Proposition 2.2.(c), the fifth from Proposition 3.3.(b), and the
last equality from the proof of Proposition 4.3. =

PROPOSITION 4.7. Let (A, G, «) be a completely quantum C*-system with an ergodic
action o and let 7 € G. Then for every N € IN such that N < dim P A there exists
a set of indices T with cardinality N and there are elements x,; € M*(1), p € I,
i=1,2,...,d,, such that

w(@),; ;) = Opunbij, (4.4)
and

d,
a(r,;) = Z Tk © U (4.5)
k=1

for every p,v €L and i, j =1,2,...,d,.

Proof. Let (-,-) be a sesquilinear form on A which is defined by the formula (z,y) =
w(z*y) for z,y € A. Theorem 3.6.(a) implies that P[{A C M%(r) C A, so using
Proposition 4.5 one concludes that (-, ) is a scalar product on P/} A. We assumed that
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N < dim P[; A, hence there is an orthonormal system {x,,1 : ¢ € Z} of elements of P[; A,

where 7 is a set of indices such that cardZ = N. Let us define x,,; = flx“l for p € 7 and
1=1,2,...,d,. Then we have w(:z:m:cl,]) =w((Phzu)* (Pflzyl)) w(z, (PMPJlxl,l))

5ijw(:c;"da:y1) = 0;j0,,,, where the first equality follows from PI‘OpOSlthI’l 4.6, the third
from Proposition 3.3.(a), and the last equality follows from orthonormality of the system
{zu1: 1 €T} Hence, (4.4) follows.

Proposition 3.3.(b) yields a(z,1) = a(Plizu1) = (ida ® D];)a(z,1). So, from Propo-
sition 2.2.(c) we have a(x,1) C A ®alg span {uiy, uly,...,uj ;}. Therefore there are el-
ements yi,y2,...,yq. € A such that a(z,) = 22;1 Yp @ up,. 4 =1,2,...,d; then
ui = Phon = (da ® ph)ale,) = Y3l yeph(uf) = 240, ykd = yi. Hence,
a(zu) = a(Phzn) = (ida @ D)) = S50, @ @ D () = Y4, 2 ® u,
and (4.5) is proved. =

PROPOSITION 4.8. Suppose « is an ergodic action of a compact quantum group G =
(C, A) on a unital C*-algebra A and T € G. Then ¢, < Tr F,.

Proof. Let N,Z, x,, p € Z,1 = 1,2,...,d, be as in Proposition 4.7. Let d = d,,
F =F, and M = Tr F, = Tr ', Firstly, we will show that for u,v € Z, the element
Ty = Z?’j:l(F’l)”xm:ﬂw is a fixed point. Indeed, using (4.5) and (2.2) we get

— * * — * 1 —
Eo(rp) = Y (F Yyaiaab(up u)) = Y (F 1)ij$pkalM6ij(F pIY
‘,j,k l i,5,k,1
= — Z Dt > (F maipan =3 (F i = 1.
k.l k.l

The above calculations and Proposition 4.1 imply that r,, € A%. So, r,, = w(ruw)la,
where we have used the ergodicity of o. On the other hand, relations (4.4) imply w(r,,) =

Zi,j(F_l)Uw(xuszj) Zi,j(F_l)ija;wéij = 5uy Zi(F_l)ii = (SMVM. Hence
Z(F_l)ljxple/j - 5;LVM]1A (46)

0.

Secondly, let s, = Zle zux,,; with p,v € Z. Simple computations making use of
(4.5) and unitarity of [u ”} show that a(s,,) = su ® 14. So s, € A*. Hence, there are
constants A, € C such that

Spy = AN M1 4. (4.7
The matrix [A,.],vez € Mn(C) is selfadjoint (cf. (4.7)). Therefore, one can find elements
Ty, p €L, i=1,2,...,d, such that the relations (4.4), (4.5) hold for the system {z;
and additionally

i

Z 'T,LL’L'II//’L* - 5,LLU)\MM]1A7 (48)

where A\, u € Z, are eigenvalues of the matrix [A,,]. For simplicity, we will write z,;
instead of ;.
Let a = [ZueI :mew] ij=1,2,....d € Mq(C) ® A. Then, (4.6) implies

E aik(F laljfg E Ty, (F klxyle]fMg Tz, = Mai;.

k0 pv Iz
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Therefore a(F~! @ 14)a = Ma. It means that the element M~1(F~2 @ 14)a(F~2 @ 1,)
is a projector in the algebra My(C) @ A. So, 0 < a < M(F ® 14). If ¢ is the normalized
trace on the algebra My(C) then (p @ w)(a) < M(¢p @ w)(F ® 14) = Mp(F) = M2d~!.
But (p@w)(a) =d™ 'Y, w (X, zu),;) = Md~" 3, N, Therefore we arrived at

DoM< M (4.9)

Thirdly, let us observe that due to the fact that x,; are not zero, (4.8) implies that
1
Ay > 0 for every p € I. Let y,; = A\, for p € 7,4 = 1,2,...,d. (4.5) leads to

Qi

a(yui) = 22:1 Yuk @ uf,;”. It is easy to check that the elements Zgzl YiYvis v € I,
are fixed points. Moreover, the relations (4.8) imply

Z yzz’yvi = 5/LVM]1A' (410)

Fourthly, suppose b = [3_ <7 yui¥;;lij=1,2,....a € Ma(C) ® A. Then, taking into ac-
count (4.10) one can check that > = Mb. Hence, b = Mp where p is a projector in
My(C)® A, and 0 < b < M1, If ¢ is again the normalized trace on My(C), then

(p@w)(b) =d? oW i) = A7 30 3 A w(m ) = 30, AL This leads to
St M (4.11)
m

Finally, for every A > 0 the inequality A+A~! > 2 holds. So, the inequalities (4.9) and
(4.11) give 2N < 37 (A, + ;") < 2M. Therefore N < M. Recall that N is the number
of elements of any finite orthonormal system in P[; A. Consequently dim P[;A < M. =

COROLLARY 4.9. Suppose « is an ergodic action of a compact quantum group G =
(C,A) on a unital C*-algebra A. Then ¢, = card J, < oo for every 7 € G (cf. Remark
3.5). Moreover, there is a basis {z],; : T € G, p € Jr, i =1,2,...,d} of the linear space

A and positive constats \,, T € G, p € T, such that a(z],) = Z;l;1 Tl @ up,;, and

w(a),; xy;) = 0 ij,  w(@,270,") = 0rndu ), (Fr)ij (4.12)

for everyT,ﬂEG, pweT,veTnt=12...,d, 7=1,2,...,d;.

Proof. For given 7 € G let J- be a set of indices such that card J, = dim P/, A.
Let {x,T“ cp€Jr,i=1,2,...,d,;} be the system constructed in Proposition 4.7 for
N = dim P{; A. In order to prove (4.12) it is enough to show the second equality. But

this follows from straightforward calculations based on a-invariance of w, (4.5), (2.2) and
(4.8). m

Now we are in a position to describe the modular properties of the state w. In this
description we will use the notion of a holomorphic function of exponential growth on the
upper halfplane. Let us recall that f is such a function provided that there exist positive
constants C, M such that |f(z)| < CeM™* for every 2z € C with Im z > 0.

THEOREM 4.10. Let o be an ergodic action of a compact quantum group G = (C, A)
on a unital C*-algebra A, A its *-subalgebra of G-finite elements, and let w be the unique
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a-invariant state on A. Then there exists a family {0.}.cq of linear maps o, : A — A

such that:

(i) For every linear functional ¢ on A and x € A the function f2(z) A d(o.(x)) is a

holomorphic function with exponential growth on the upper halfplane;
(i4) 0,(14) =14 for every z € C;
(#01) 0,(0.(2)) = Opgrr () for every x € A, 2,2 € C. Moreover o9 = id 4;
)

(

*

iv) For every z € C and x,y € A we have 0,(zy) = 0,(z)o,(y) and o,(x*) = oz(x)*;
(v) w(zy) = w(yoi(x)) for every x € A and y € A.

Proof. Let {z}, : 7 € G ued., i= 1,2,...,d;} be the system of elements of A
described in Corollary 4.9. The constants ], are positive numbers and matrices I are

v

strictly positive definite. Therefore, for every z € C we can define (\})* = e*1°8 N and
F? = ¢*lo8Fr Tet 2 € C. We define
d,
ou(@ns) = )= S (Fri#) a7, (4.13)
j=1

for every 7 € G, we T, i=1,2...,d;.

Let W denote the class of holomorphic functions of exponential growth on the upper
halfplane. Let us observe that if A > 0 then |A=%*| = A™Z_ Hence, the function C >
z + A7% € ( is an element of W. Thus, for any functional ¢ the function ff;i (2) =

(A7) Zj(F’iz)ijqﬁ(x;j) is a linear combination of elements of YW. Due to the fact that

T

W has the structure of a complex linear space we infer that fjf_ € W. We observe that
ni

for every ¢ and = € A the function f¢ is a linear combination of functions fff. So f¢ is
i

also an element of W. This ends the proof of (i).

(ii) follows from the fact that 14 = )1, where ¢ is the trivial representation of G, p
is the only element of J,, A}, = 1 and F, = 1. (4.13) and rules of matrix calculations lead
to ().

To prove (v) we observe that (4.13) implies o;(2];) = A, >_;(Fr)ijz],;. Therefore, it

vy

and y = a7.*. But this follows from

is enough to prove the equality of (v) for x = a7, i

e
(4.12).
It remains to prove (iv). Let z,y € A. Firstly, take z = 4. Using (v) for every w € A
we get w(wo;(zy)) = w(zyw) = w(ywo;(z)) = w(wo;(x)o;(y)). Puting w = (o;(xy) —
oi(x)o;(y))* in this equlity we are led to

w((oi(zy) — oi(x)oi(y)) " (oi(zy) — 0i(x)oi(y))) = 0.
Taking into account Proposition 4.5 we get the first equality of (iv) for z = i. On the other
hand, we infer from (iii) and (v) that for a given z € A we have w(wo;(z*)) = w(z*w) =
w(w*z) = wlo_i(z)w*) = w(wo_;(x)*) for any w € A. A similar argument leads to the
second equality of (iv) for z = 4. Combining this result with (iii) we can show by induction
that both equalities hold for z = ki where £ = 1,2,.... Let ¢ be any functional and let
xz,y € A. Let f1(2) = ¢(0.(zy)) and fa(z) = ¢(0.(x)o.(y)) where z € C. Both functions
are elements of WW. The above considerations also imply f1 (ki) = fo(ki) for £k =1,2,....
Now, let us observe that the functions g;(z) = f;(iz), j = 1,2, fulfil the assumptions of
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Lemma 5.5 in [13]. So g1 = g2, and consequently ¢(o,(xy)) = ¢(0.(x)o.(y)) for every
z € C. As ¢ is arbitrary, the first equality is proved. Similarly the second equality follows
and the Theorem is proved. m

THEOREM 4.11. Let (A, G, ) be as in the previous theorem. Suppose w is faithful.
Then there exists a one-parameter group {oi}icm of automorphisms of the algebra A
such that w is a KMS state with respect to this group.

Proof. Let {0,}.c¢ be the family constructed in the previous theorem. Obviously,
the family {0} }1er is a one-parameter group of automorphisms of *-algebra A. Let {z7,
be the basis described in Corollary 4.9. Taking into account (4.12) and (4.13) we check
that w(ot(z],;)) = w(z]y,) for every t € R and ;. Let (Hy, 0y, 2y) be the GNS repre-
sentation of the system (A, w). The faithfulness of w implies the same property of 7, i.e.
the representation 7, : A — B(H,,) is faithful. The group {o;}+cr is implemented by
a group of unitary operators {V; }:cr because w is o;-invariant. The representation 7, is
faithful, so the mappings o; have extensions on the whole algebra A. By Theorem 4.10
the *-algebra is contained in the *-algebra of analytic elements of the group {o;}icR.
Moreover, points (iii) and (v) of Theorem 4.10 yield w(o,(z)y) = w(yo,4:(x)) for every
ze€C,z e A,y € A. The *-algebra A is dense in A, so we can complete our proof by
applying Theorem 8.12.3 from [9]. =

Note added in proof. The author wishes to express his gratitude to W. Pusz for
drawing the author’s attention to the paper of F. Boca ( Ergodic actions of compact matrix
pseudogroups on C*-algebras, in: Recent Advances in Operator Algebras, Astérisque 232
(1995), pp. 93-109) which concerns the same topic.
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