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Abstract. We present recent results on positive energy representations of quantum spin
models.

1. Introduction. In this article, we review recent results on positive energy repre-

sentations for quantum models on the 1 + 1 dimensional space time. Our aim is to give

a complete list of positive energy representations.

Let A be a unital C∗-algebra and αt be a one-parameter group of automorphisms

of A. We call the pair {A, αt} a C∗-dynamical system and αt is referred to as the time

evolution.

Definition 1.1. Let {A, αt} be a C∗-dynamical system. A representation π of A on

a Hilbert space H is a positive energy representation for {A, αt} iff there exists a positive

selfadjoint operator Hπ such that the unitary group generated by Hπ implements the

time evolution αt.

eitHππ(Q)e−itHπ = π(αt(Q)) (1.1)

Physically speaking, the spectrum of the generator of the time evolution is identi-

fied with the energy of a physical state. The positivity of the spectrum is related to the

stability of the matter. In the algebraic approach to quantum field theory ([11]), the

positivity of the spectrum of the Hamiltonian is one of basic requirements for selection of

representations of the algebra of the physical local observables. The equivalence classes

of positive energy representations are called sectors. Apart from standard sectors such

as vacuum representations (with space time covariance and vacuum vector) and charged

sectors (dual objects of gauge symmetry), we have two types of exotic sectors, soliton
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sectors and infrared representations. Infrared representations arises in massless field the-

ories. They consist of infinitely many small energy states which produce representations

disjoint from vacuum sectors. Soliton sectors exist when more than two vacuum sectors

are present. A soliton sector is the interface of these two different vacuum sectors. The

construction of soliton sectors was done in P (φ)2 models by J. Frölich (cf. [8]). In that

example, the internal symmetry is broken and the different vacuum sectors are connected

by the gauge transformation. Recently D. Schlingemann obtained the general construc-

tion of soliton sectors for two dimensional models where different vacuum sectors are not

necessarily connected by the gauge symmetry (cf. [17]).

On the other hand, for electrons with a long range interaction (e.g. coulomb forces),

the positivity requirement of the spectra may be too restrictive. It might be sufficient

that the system is stable thermodynamically.

Our motivation for studying positive energy representations originated from recent

results of the kink (static soliton) for the XXZ model (see [2, 9, 10, 12, 3, 14, 15, 16]).

The existence and an explicit description of the static kink were established in [2, 9, 10],

and a complete list of positive energy representations is obtained in certain cases ([3, 14]).

We consider quantum lattice models on the integer lattice Z. We use the mathematical

framework for quantum lattice models presented in [6]. The algebra of quantum observ-

ables is the UHF C∗-algebra A (the infinite tensor product of the algebra Mn(C) of n×n
complex matrices)

A =
⊗
Z

Mn(C)
C∗

where the component of the tensor product is indexed by an integer j. Let Q be a matrix

in Mn(C). By Q(j) we denote the one site observable Q located at j. Given a subset Λ of

Z, AΛ is defined as the subalgebra of A generated by all Q(j) with Q ∈ Mn(C), j ∈ Λ.

We also set

Aloc =
⋃
|Λ|<∞

AΛ

where |Λ| is the cardinality of Λ. Suppose that ϕ is a state on A. The restriction of ϕ to

AΛ is denoted by ϕΛ

ϕ|AΛ = ϕΛ.

The lattice translation τj is an automorphism of A defined by τj(Q
(k)) = Q(j+k).

The time evolution αt of our systems is generated by the translation invariant finite

range Hamiltonian. This means that we have a selfadjoint local energy operator h0 such

that h0 = h∗0 ∈ AΛ0
where Λ0 is a finite subset of Z which contains the origin 0. The

radius of Λ0 is called the range of the interaction. We set τj(h0) = hj . The finite volume

Hamiltonian HΛ is determined by

HΛ =
∑

j: j+Λ0⊂Λ

hj (1.2)

while the formal infinite volume Hamiltonian will be denoted by

H =
∑
j∈Z

hj . (1.3)



POSITIVE ENERGY REPRESENTATIONS 311

The time evolution αt(Q) of Q ∈ A is obtained via the thermodynamic limit

αt(Q) = lim
Λ→Z

eitHΛQe−itHΛ .

The generator δ of αt is denoted by δ(Q) = i[H,Q]. It is known that Aloc is a core of δ.

The typical example for analysis is the spin 1/2 XXZ model where the Hamiltonian is

determined by

H = −
∑
j∈Z

{∆σ(j)
z σ(j+1)

z − (σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y )} (1.4)

where ∆ is a real parameter and σx, σy and σz are Pauli spin matrices.

We will see that the outlook of the set of all positive energy representations is quite

similar to that of quantum field theory.

2. Ground states. We begin with the notion of the ground state representation.

Consider a positive energy representation {π,H}. If the bottom of the spectrum of Hπ is

a point spectrum we call {π,H} the ground state representation, and the unit eigenvector

for the least eigenvalue is called the ground state vector. In terms of the state associated

with a ground state vector, we arrive at the following definition

Definition 2.1. A state ϕ is a ground state if and only if

ϕ(Q∗[H,Q]) = lim
Λ→Z

ϕ(Q∗[HΛ, Q]) ≥ 0 (2.1)

for any Q ∈ Aloc.

The GNS representation of a ground state satisfying (2.1) gives rise to a ground state

representation.

The standard construction of the ground state for quantum spin models is to take the

thermodynamic limit of the finite volume ground states in the following sense. As HΛ is

a strictly local element, we can regard it as a finite matrix. Take a unit eigenvector ΩΛ

with the smallest eigenvalue and consider the vector state ωΛ of AΛ associated with ΩΛ

ωΛ(Q) = (ΩΛ, QΩΛ), Q ∈ Aloc.

Take Λ = [n,m] and consider the limit

lim
n→−∞
m→+∞

ωΛ(Q) = ω∞(Q). (2.2)

The state thus obtained is a ground state in the sense specified above. This procedure

contains some ambiguity. The first point is that the ground state vector for finite volume

may not be unique. The second point is that the thermodynamic limit may not exist.

Instead of the limit (2.2), we may take the limit of subsequences and still we obtain

a ground state. Mathematical physicists often claim that the uniqueness of the ground

state follows from the uniqueness of the finite volume ground state and the existence of

the thermodynamic limit but this is not the uniqueness of the ground state in the sense

of Definition 2.1. An example which clarifies the difference of these two claims is the

quantum Ising model. The model is exactly solvable and the Hamiltonian is given by

H = −
∑
j∈Z

σ(j)
z σ(j+1)

z − 2λ
∑
k∈Z

σ(k)
x . (2.3)



312 T. MATSUI

If we choose the basis for which σz is diagonal and σx is off diagonal and real, then −HΛ

satisfies the condition of Perron Frobenius Theorem and the finite volume ground state

is unique. It is also easy to verify that the thermodynamic limit (2.2) exists, however, the

infinite volume ground state is not unique when |λ| < 1. The ground state, in the sense

of Definition 2.1, is unique for |λ| ≥ 1 (see [4]). In fact the gap between the first and the

second eigenvalue of HΛ converges to zero exponentially fast in the thermodynamic limit

if |λ| < 1 and the gap is open uniformly in Λ if |λ| > 1.

A slightly different way of construction of (infinite volume) ground states is adding

boundary terms. In the case of the XXZ model (1.4), some physicists consider the fol-

lowing ”boundary magnetic fields”

H̃Λ = HΛ +
∑
j∈∂Λ

λjσ
(j)
z

where λj is a real number dependent on the site j. The above model with an additional

boundary term is solvable but the structure of eigenstates may change according to the

value ∆. The thermodynamic limit of the ground state for H̃Λ is a ground state (again in

the sense of Definition 2.1). For example, consider the case when the model is ferromag-

netic, ∆ > 1 and Λ = [n,m]. The ground state of H̃Λ is one-dimensional if λnλm > 0.

It is two-dimensional if 0 ≤ λn = −λm <
√

∆2 − 1. The dimension of the ground state

is proportional to |Λ| when λn = −λm =
√

∆2 − 1 where this finite system obtains

the quantum group SUq(2) symmetry. In this way we obtain both translation invariant

ground states and non periodic ground states. (We will return to this model later.)

Thus we generalize the above construction of the ground state. Suppose that a self-

adjoint element BΛ in AΛ satisfies the following condition

lim
Λ→Z

[HΛ +BΛ, Q] = lim
Λ→Z

[HΛ, Q]

for all Q ∈ Aloc. Consider the finite volume ground states for HΛ +BΛ, say, ωΛ and again

take the limit (2.2). We obtain again a state satisfying the condition of Definition 2.1.

Related to ground states, a notion frequently used in mathematical physics is ”zero

energy state”. A state ϕ of A is a zero energy state if and only if for any j in Z

ϕ(hj) = inf{ψ(h0)} (2.4)

where the infimum is taken among all states ψ. The zero energy state may not exist

in general. The zero energy state is automatically a ground state satisfying (2.1). Some

examples of Hamiltonian with zero energy states are the XXZ model (1.4) with ∆ ≥ 1 and

the AKLT model (cf. [1]) and its extension (cf. [7]). Physicists may claim that the model

with zero energy state is artificial as it neglects quantum frustration and fluctuation

appearing in antiferromagnetic systems.

Positive energy representations can be constructed as a bounded perturbation of the

ground state representation. Suppose a ground state ω of the perturbed Hamiltonian H ′

is given where H ′ = H + B. H is the considered Hamiltonian and B is any selfadjoint

element of A. The GNS representation associated with ω has a positive energy. Note that

the point spectrum may be unstable under bounded perturbation even if the norm of

the perturbing operator is small so that a positive energy representation constructed by
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perturbation of a ground state representation may fail to be another ground state.

It is interesting to know whether all the ground states or positive energy representa-

tions of quantum spin systems are constructed in this way. We do not have the complete

answer to this question, however we have results under some additional assumption which

we will explain later.

We next state standard results on ground states and positive energy representations.

The first is the variation principle. The following theorem is due to O. Bratteli, A. Kishi-

moto and D. Robinson (see [5]).

Theorem 2.2 (Bratteli, Kishimoto, Robinson). Let ϕ be a state on A. The following

conditions are equivalent :

(i) ϕ is a ground state;

(ii) For any integers n and m (n < m)

ϕ(H[n,m] +B[n,m]) = inf ψ(H[n,m] +B[n,m]) (2.5)

where the infimum is taken over all states ψ satisfying

ϕ[n,m]c = ψ[n,m]c .

To obtain the above theorem, O. Bratteli, A. Kishimoto and D. Robinson used the

following lemma and the theorem of Borchers.

Lemma 2.3. Suppose that Λ is a finite subset of Z and ϕ and ψ are states of A. If

these are identical outside Λ, i.e. ϕΛc = ψΛc , then the GNS representations associated

with ϕ and ψ are quasi-equivalent. In particular , when both ϕ and ψ are pure, they are

unitarily equivalent.

The theorem of Borchers tells us that we can redefine Hπ which is affiliated to the

von Neumann algebra π(A)
′′

generated by π(A) (cf. Theorem 3.2.46 in [6]).

An application of the idea of the proof of Theorem 2.2 leads to the following inequality

for our 1 + 1 dimensional models

Lemma 2.4. Let π be a positive energy representation for the Hamiltonian (1.3) on

the Hilbert space H. Let η be in the domain of Hπ. Then for Λ = [n,m]

(η, π(HΛ)η) ≤ inf spec (HΛ) + (η,Hπη) + 2r ‖h0‖ (2.6)

where inf spec (HΛ) is the infimum of the spectrum of HΛ and r is the range of interaction.

For simple cases such as the ferromagnetic XXZ model, the set of all ground states

and positive energy representations is determined by an application of the above theorem

and lemmas. Simplicity originates from the fact that the pure ground states are product

states or equivalent to product states. (We say two states are equivalent if their GNS

representations are unitarily equivalent.) We do not have satisfactory results to obtain a

complete list of positive energy representations. On the other hand, in the next section we

will see that the Hamiltonian with gapless spectrum possesses uncountably many positive

energy (infrared) representations which are not ground state representations. Probably

these representations are not physically meaningful.

For the Hamiltonian with spectral gap, we will present a partial answer to classification

of positive energy and ground state representations in Section 4.
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3. Infrared representations. We now consider infrared representations. As is sta-

ted briefly in Section 1, the infrared representation appears as an exotic positive energy

representation in the massless quantum field theory. A state in infrared representation

can be constructed as follows.

Consider a ground state representation π on H and the positive Hamiltonian Hπ on

H. Let Ω be a ground state vector for Hπ. Suppose that the spectrum of Hπ is gapless,

i.e. spec(Hπ) ∩ (0, ε) 6= ∅ for any small ε > 0. Take a sequence of positive numbers

{ε1, ε2, ε3, . . .} such that the sum is finite: E =
∑
j εj < ∞. Take mutually orthogonal

unit vectors ηj with energy smaller than εj . Let Aj be a creation operator for a (qua-

si-)particle carrying energy smaller than εj such that AjΩ = ηj . Next, consider the state

ϕ obtained by the following weak* limit.

ϕ(Q) = lim
j→∞

(
∏j
k=1AkΩ , Q

∏j
k=1AkΩ )

‖
∏j

1AkΩ ‖2
. (3.1)

The state ϕ has a finite energy smaller than E. But as infinitely many particles are

created to produce ϕ, it is natural to expect that ϕ is not equivalent to the ground state

originally given. On the other hand, if there is no bound state (Hπ has only continuous

spectra), we may expect that ϕ is not invariant under the time evolution αt. Thus we

may conclude ϕ is not a ground state but a positive energy state.

In general this heuristic argument may not work, however, for free massless bosons

and fermions we can construct the infrared representation precisely in this way. The

same construction works for the XY model (see [3]). The Hamiltonian of the XY model

is determined by

H =
∑
j∈Z

{(1 + γ)σ(j)
x σ(j+1)

x + (1− γ)σ(j)
y σ(j+1)

y }+ 2λ
∑
j

σ(j)
z (3.2)

where λ and γ are real parameters. This is an exactly solved model. By using the Jordan

Wigner transformation, the Hamiltonian is formally equivalent to the quasi-free fermion

one. More precisely, consider the formal transformation

a∗j = σ
(j)
+

j−1∏
k=−∞

σ(k)
z , aj = σ

(j)
−

j−1∏
k=−∞

σ(k)
z .

Then a∗j and aj satisfy the canonical anti-commutation relations{
a∗j , a

∗
k

}
= {aj , ak} = 0,

{
a∗j , ak

}
= δj,k1.

The Hamiltonian (3.2) of the XY model is bilinear in a∗j and ak. We can give a mathe-

matical meaning of the Jordan Wigner transformation for infinite systems (see [4]). The

model has the unique ground state with gapless spectrum if |λ| = 1 or if γ = 0 and

|λ| < 1. Araki has constructed non-type I infrared representations for the XY model.

The von Neumann algebra generated by A can be any hyperfinite factor type I, II and

IIIλ (0 < λ ≤ 1).

We can also construct the infrared representation for the ferromagnetic isotropic

Heisenberg model (∆ = 1) XXX model using only product states. Here we sketch the



POSITIVE ENERGY REPRESENTATIONS 315

construction. The Hamiltonian is now determined by the following equation

H =
∑
j∈Z

{1− (σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y + σ(j)
z σ(j+1)

z )} (3.3)

We define the positive operator hXXX
j by

hXXX
j = {1− (σ(j)

x σ(j+1)
x + σ(j)

y σ(j+1)
y + σ(j)

z σ(j+1)
z )} ≥ 0 . (3.4)

Koma and Nachtergaele proved that any ground state ϕ of the model satisfies the zero

energy condition (2.4) (cf. [13])

ϕ(hXXX
j ) = 0 ∀j ∈ Z.

This zero energy condition implies that the pure ground state is a translation invariant

product state. Thus a pure ground state is parameterized by a unit vector in the two

dimensional Hilbert space. Let ϕξ be the pure ground state of the ferromagnetic isotropic

Heisenberg model specified by the condition

ϕξ(Q
(j)) = (ξ,Qξ) .

We consider ϕ± = ϕξ± determined uniquely by

ϕ±(σ(j)
z ) = ±1 (3.5)

for any j in Z. Equivalently, ξ± is the vector such that

σ(j)
z ξ± = ±ξ±.

ϕ± is the state with all the spin in ± z direction.

Next, we introduce the local gauge transform Vk (k ∈ Z) which flips the spin at some

point of lattice with a cost of small energy. First, we set

p(k) =

k∑
j=1

j3 =
k2(k + 1)2

4
.

Then

Vk = exp

(
i

2π

k3

p(k+1)−1∑
j=p(k)

(j − p(k)) σ(j)
z

)
. (3.6)

We consider

ϕ̃±(Q) = lim
l→∞

ϕ± ◦ ad
( l∏
k=2

Vk

)
(Q), Q ∈ A (3.7)

where

ad
( l∏
k=2

Vk

)
(Q) =

( l∏
k=2

Vk

)
Q
( l∏
k=2

Vk

)−1

.

Each adjoint action of Vk creates a state with a reversed spin. The cost of the energy is

proportional to 1
k2 so that we get ϕ̃± with a finite loss of energy. As ϕ̃± contains infinitely

many reversed spins the representation is not equivalent to any ground state.

Proposition 3.1. The GNS representation associated with ϕ̃± is a positive energy

representation which is disjoint from any ground state representation of the isotropic

ferromagnetic Heisenberg model.
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We can construct many mutually disjoint infrared representations for the above ex-

ample in the same manner. We feel that the set of infrared representations is too large to

be described in a compact form and this is always the case for Hamiltonians with gapless

spectra.

4. Soliton sectors. Suppose we have two pure translation invariant ground states

ϕ±. Consider the situation where any unit vector ξ in another representation {π,H}
satisfies the following asymptotic property

lim
j→±∞

(ξ, π(τj(Q))ξ) = ϕ±(Q). (4.1)

The state satisfying (4.1) may be regarded as the (classical) soliton-like object which

interpolates two different vacuum by the tunneling effect. So by soliton sector, we mean

a sector which connects two mutually non equivalent ground states. Obviously the sec-

tor satisfying (4.1) is constructed by the GNS representation associated with the state

ϕ−(−∞,−1] ⊗ ϕ+[0,∞). Theorem 5.4 implies that positive energy representations which

contain non-translation invariant ground state vector should be of this form if the Hamil-

tonian has the spectral gap.

Constructing non-translation invariant ground states for a translation invariant Hamil-

tonian is not an easy task. No criterion for the existence of non-translation invariant

ground states is known at the moment. In principle, it is easier to obtain candidates of

positive energy representations which contain non-translation invariant ground state vec-

tors due to Theorem 5.4. The problem of searching non-translation invariant ground states

is reduced to that of perturbation of point of spectrum. We explain the situation more

explicitly in the case of ferromagnetic XXZ models with a large anisotropy (∆ >> 1).

The existence of the non-translation invariant ground state is verified from consideration

of symmetry. The Hamiltonian we consider is presented in a slightly different but still

equivalent form

H =
∑
j∈Z

{
1− σ(j)

z σ(j+1)
z +

1

∆
(σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y )

}
with ∆ > 1. Any factor positive energy representation for the model is obtained by the

GNS construction associated with either ϕ± of (3.5), ψK or ψAK where ψK and ψAK are

defined by

ψK = ϕ−(−∞,−1] ⊗ ϕ+[0,∞), ψAK = ϕ+(−∞,−1] ⊗ ϕ−[0,∞).

We consider the sector associated with ψK . Let {πK ,HK ,ΩK} be the GNS triple for

ψK where ΩK is the GNS cyclic vector. It is known that this representation contains

the non-translation invariant ground state vectors ([9]). These non-translation invariant

ground states were discovered in connection with the quantum group SUq(2) symmetry.

An example of non-translation invariant ground states is

ΩK =

∞⊗
j=−∞

1√
1 + q2j

(
1

qj

)
where ∆ = 1/2(q+q−1), 0 < q < 1. However we can prove the existence of non-translation



POSITIVE ENERGY REPRESENTATIONS 317

invariant ground state vector without handling SUq(2) symmetry. Consider the following

perturbed XXZ Hamiltonian H̃n (n > 0) defined by

H̃n =

(
1− 1

∆

)
H̃Ising
n +

1

∆

∑
|j|≤n, n 6=−1

hXXX
j ≥ 0 (4.2)

where hXXX
j is defined in (3.4) and

H̃Ising
n =

(
1− 1

∆

) n∑
j=−n

(1− σ(j)
z σ(j+1)

z ) + (σ(−n)
z − σ(n+1)

z ) ≥ 0. (4.3)

ψK is a pure zero energy state for both H̃n and H̃Ising
n , i.e. for any n > 0

ψK(H̃n) = ψK(H̃Ising
n ) = 0.

The following limit exists in the sense of the strong resolvent convergence

lim
n→∞

πK(H̃n) = H̃ ≥ 0, lim
n→∞

πK(H̃Ising
n ) = H̃Ising ≥ 0.

Both H̃ and H̃Ising are positive operators with the spectral gap. The gap of H̃ is bounded

below by 2
(
1− 1

∆

)
. The Hamiltonian H of the (translation invariant) original model can

be defined as the bounded perturbation of H̃ .

Set

Sz =
∑
j<0

(1 + σ(j)
z )−

∑
j≥0

(1− σ(j)
z ).

Sz is well defined on {πK( ),HK} and commutes (strongly) with H̃ , H and H̃Ising. Our

aim is to establish the existence of point spectrum at the bottom of spectra of H. It

suffices to show the same claim in all the subspaces Hs of the Sz spin = s.

H0 = {η ∈ HK |Szη = s} .
Thus we consider the reduction of the Hamiltonian H̃ on the subspaceH0 . (The reduction

to other spaces Hs can be handled in the same way.) It is straightforward to show that

the GNS cyclic vector ΩK is the unique vector (up to scalar) satisfying

H̃ΩK = 0, SzΩK = 0.

Due to presence of spectral gap for H̃ we can apply the analytic perturbation theory for

the ground state of the perturbed Hamiltonian H̃(δ) defined by

H̃(δ) = H̃ + δhXXX
−1 .

It turns out that the ground state (the point spectrum in the bottom of spectra) of

H̃(δ) exists in H0. Moreover, if ∆ is sufficiently large we can set ∆ = δ which implies

the existence of the non-translation invariant ground state. We can continue the same

procedure as far as the spectral gap is open and we obtain the non-translation invariant

ground state for any ∆ > 1.

The above argument shows that static soliton sectors (soliton sector with time invari-

ant vectors) exist for the ferromagnetic XXZ model with spin 1/2. We have not carried

out any computation to arrive at the conclusion. We expect that the argument itself may

be valid for more complicated systems.
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5. Complete list of positive energy representations. The aim of this section is

to present a complete list of positive energy representations. We assume that Hamiltonians

have the spectral gap. We also assume another condition. To state it we fix notations.

Consider HΛ of (1.2). Let EΛ be the smallest eigenvalue for HΛ. Set

e∞ = inf ψ(h0) (5.1)

where the infimum is taken among all translation invariant states. It is known that e∞
is attained by a translation invariant state ϕ, e∞ = ϕ(h0), if and only if ϕ is a ground

state (see [5]).

In what follows, a subset Λ of Z will be an interval Λ = [n,m] = {n, n+1, n+2, . . . ,m}.
The limit limΛ→Z means n→ −∞ , m→∞.

Assumption 5.1. The following limit exists,

lim
Λ→Z

|EΛ − |Λ|e∞| = 0 (5.2)

for Λ = [n,m].

R e m a r k 5.2. Assumption 5.1 is satisfied for the Hamiltonian with the zero energy

state. In fact, the existence of the zero energy state implies that EΛ = |Λ|e∞. We can

also verify Assumption 5.1 for certain models by the cluster expansion technique, e.g. for

the XYZ model

H =
∑
j∈Z

{σ(j)
x σ(j+1)

x + ε1σ
(j)
y σ(j+1)

y + ε2σ
(j)
z σ(j+1)

z } (5.3)

with large anisotropy, i.e. such that |ε1| << 1 and |ε2| << 1.

On the other hand, for solvable massless models, the above assumption may not be

valid. It seems that

EΛ ∼ |Λ|e∞ + |∂Λ|c
where c 6= 0 may be determined by the conformal field theory.

The next assumption is the existence of spectral gap uniformly in Λ.

Assumption 5.3. There exists a positive number γ > 0 independent of Λ and there

are δΛ > 0 such that

lim
Λ→Z

δΛ = 0

and

spec (HΛ) ∩ (EΛ + δΛ, EΛ + δΛ + γ) = ∅.
Note that we assume the uniform spectral gap for HΛ and we do not assume anything

for the Hamiltonian with an additional boundary term.

The following theorem is the extension of the main result of our previous paper [14].

Theorem 5.4. Suppose that Assumption 5.1 and 5.3 are valid. Let π be a factor

positive energy representation of A on H. Then π is quasi-equivalent to a pure ground

state representation πg for the Hamiltonian H −HΛ0 with some Λ0 = [−n, n].

H −HΛ0
=

∑
|j|>n−r

hj
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where r is the range of interaction. Moreover the pure ground state ϕg in πg is obtained

by the thermodynamic limit of a sequence of finite volume ground states ϕΛn of HΛn .

ϕΛn(Q∗[HΛn , Q]) ≥ 0, Q ∈ AΛn ,

ϕg(Q) = lim
n→∞

ϕΛn(Q), Q ∈ A.

The result is rephrased as follows. Consider the half infinite Hamiltonians H[0,∞) and

H(−∞,−1]. Let G(+) be the set of all ground state representations for H[0,∞) obtained

from the thermodynamic limit. Let G(+) be the set of all ground state representations for

H(−∞,−1]. Any positive energy representation is quasi-equivalent to a subrepresentation

in the universal positive energy representation π̃ on H defined by

{π̃,H} =
∑
{⊕ π− ⊗ π+ , ⊕H− ⊗H+} (5.4)

where the direct sum is taken for all representations {π+,H+} in G(+) and {π−,H−} in

G(−). If an infinite number of equivalence classes of ground state representations in G(+)

or in G(−) exists, the above statement should be corrected suitably (direct integral etc.).

As a corollary to our theorem for positive energy representations, we obtain that the

strong resolvent convergence of HΛ − EΛ1 to Hπ. Thus we obtain the following result.

Corollary 5.5. Suppose that Assumption 5.1 and 5.3 are valid. Let π be a (not

necessarily translation invariant) ground state representation on H and let Hπ be the

positive selfadjoint operator satisfying (1.1). Then for γ > 0 of Assumption 5.3 ,

(inf Hπ, inf Hπ + γ ) ∩ spec (Hπ) = ∅. (5.5)

The exact gap of the spectrum may depend on choice of the representation π. Suppose π

is a non-translation invariant ground state such that π = π− ⊗ π+ for some half infinite

ground state representations π− and π+. The spectral gap is bounded below by that of

Hπ− and Hπ+ .

In the case of the XYZ model (5.3) with sufficiently small |ε1| and |ε2|, we can check

our assumptions with the aid of expansion techniques. Even though the model is solvable

we are not certain that the solution is complete and we may also have other difficulties

in taking the thermodynamic limit so we employed expansion techniques. There are four

equivalence classes of positive energy representations. In fact, by using expansion tech-

niques, we can show that there exist precisely two periodic pure ground states ϕeven and

ϕodd such that ϕeven = ϕodd ◦ τ1 and any periodic ground state is a convex combination

of ϕeven and ϕodd. Other two sectors are obtained by the GNS representation for ψK or

ψAK where

ψK = ϕeven|(−∞,−1] ⊗ ϕodd|[0,∞), ψAK = ϕodd|(−∞,−1] ⊗ ϕeven|[0,∞).

An open question is whether non periodic ground states for the model exist. The problem

is equivalent to showing that the bottom of the spectrum of Hπ is in these sectors.
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