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Abstract. For a precompact subset K of a metric space and ε > 0, the covering number

N(K, ε) is defined as the smallest number of balls of radius ε whose union covers K . Knowledge

of the metric entropy, i.e., the asymptotic behaviour of covering numbers for (families of) metric

spaces is important in many areas of mathematics (geometry, functional analysis, probability,

coding theory, to name a few). In this paper we give asymptotically correct estimates for covering

numbers for a large class of homogeneous spaces of unitary (or orthogonal) groups with respect

to some natural metrics, most notably the one induced by the operator norm. This generalizes

the author’s earlier results concerning covering numbers of Grassmann manifolds; the general-

ization is motivated by applications to noncommutative probability and operator algebras. The

argument uses a characterization of geodesics in U(n) (or SO(m)) for a class of non-Riemannian

Finsler metric structures.

1. Introduction. If (M,ρ) is a metric space,K ⊂M a precompact subset and ε > 0,

the covering number N(K, ε) = N(K, ρ, ε) is defined as the smallest number of balls of

radius ε whose union covers K. If K is a ball of radius R in a normed space of real

dimension d, it is easily shown (by a standard volume comparison argument, see [23])

that, for any ε ∈ (0, R],

(R/ε)d ≤ N(K, ε) ≤ (1 + 2R/ε)d. (1)

The lower and the upper estimate in (1) differ roughly by a factor of 2d, and for many

applications such an accuracy is sufficient. On the other hand, determining more precise

asymptotics for covering numbers and their “cousins”, packing numbers (see section 2),

1991 Mathematics Subject Classification: Primary 52C17, 53C30, 46L50; Secondary 53C60,

53C22.

Research partially supported by grants from the National Science Foundation.

The paper is in final form and no version of it will be published elsewhere.

[395]



396 S. J. SZAREK

e.g. for Euclidean balls is a nontrivial proposition (and a major industry). In this paper

we attempt to obtain estimates of type (1) for homogeneous spaces of the orthogonal

group SO(n) or the unitary group U(n) (like e.g. the Grassmann manifold Gn,k or flag

manifolds, equipped with some natural metric; we admit metrics induced by unitary ideal

norms of matrices, most notably the operator norm). A typical result will be: if M is a

“nice” homogeneous space of SO(n) or U(n) and ε ∈ (0, θ(M)] (where θ(M) is some

computable “characteristic” of M , in the “regular” cases θ(M) ≈ diamM), then

(c diamM/ε)d ≤ N(M, ε) ≤ (C diamM/ε)d, (2)

where d is the (real) dimension of M and c and C are constants independent of ε and

(largely) of M . Of course universality of the constants in question is the crucial point.

We note in passing that (again, by a standard “volume comparison” argument) (2)

is equivalent to the (normalized) Haar measure of a ball of radius ε being between

(c1ε/diamM)dimM and (C1ε/diamM)dimM , where c1, C1 > 0 are constants depend-

ing only on c, C. We also point out that the underlying metric being typically non-

Riemannian, the methods of Riemannian geometry do not apply directly.

This paper is an elaboration of the note [17] by the author, where (2) was proved

in the special case of M being SO(n), U(n) or a Grassmann manifold Gn,k. (Another

argument for that was given later in [13].) The original motivation and application was the

finite-dimensional basis problem; more precisely, (2) was used in the proof of (Theorem

1.1 in [18]):

There is a constant c > 0 such that , for every positive integer n, there exists an

n-dimensional normed space B such that , for every projection P on B satisfying, say,

0.01n ≤ rankP ≤ 0.99n, we have ‖P : B → B‖ > c
√
n.

The results of [17] were subsequently applied to other problems in convexity, local the-

ory of Banach spaces, operator theory, noncommutative probability and operator algebras

(cf. e.g. [7, 8, 12, 19, 20, 25, 26]). It turned out recently (see [25]) that some questions

from the last two fields lead naturally to queries about validity of estimates of type (2)

in settings more general than that of the paper [17] (which, additionally, had a rather

limited circulation). It is the purpose of this paper to provide a reasonably general answer

to such questions; describing asymptotics for completely general homogeneous spaces of

SO(m) or U(n) is, in all likelihood, hopeless. We cover here a number of special cases,

including those that have been explicitly inquired about. We identify (easily computable)

invariants relevant to the problem and provide “tricks” that could be potentially useful

to handle cases not addressed here. Except for brief comments here and there, we restrict

our attention toM = G/H , where G = SO(m) or U(n), and H a connected Lie subgroup

of G; but clearly most of our analysis can be extended to other compact linear Lie groups.

The organization of the paper is as follows.

Section 2 explains notation and presents various preliminary results concerning cover-

ing numbers and their relatives, unitarily invariant norms and the exponential map. Most

of these are known or probably known. In particular we state there Proposition 6 which

asserts that cosets of one parameter semigroups are the geodesics in U(n) (or SO(m))

endowed with an intrinsic metric induced by a unitarily invariant norm; this result could
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be of independent interest. In section 3 we discuss several simple examples that exemplify

possible obstructions to estimates of type (2) and suggest invariants mentioned above.

We then use the results of the preceding section to show estimates of type (2) for an

abstract class of homogeneous spaces that contains U(n), SO(n) and Gn,k (Theorem 8).

In section 4 we discuss various possibilities for relaxation of assumptions from section 3,

in particular we cover the special cases motivated by applications. At the end of section

4 we briefly address the issue of extending the results to metrics generated by unitarily

invariant norms other than the operator norm.

Acknowledgements. The author would like to express his gratitude to D. Voicu-

lescu, whose encouragement was instrumental both in the inception and the completion

of this work. The final part of the research has been performed while the author was in

residence at MSRI Berkeley during the spring semester of 1996; thanks are due to the staff

of the institute and the organizers of the Convex Geometry semester for their hospitality

and support, and to many visitors and members of the institute for contributing in a

variety of ways to a stimulating atmosphere there. A preliminary exposition of the results

was included in the preprint [21].

2. Notation and preliminaries. We start with several largely trivial remarks clar-

ifying the relationship between covering numbers, packing numbers and their slightly

different versions that exist on the market. First, since the centers of balls in the defi-

nition of N(K, ε), as given in the introduction, do not necessarily need to be in K, the

exact value of N(K, ·) may depend on the ambient metric space (M,ρ) containing K.

Accordingly, it is sometimes more convenient to allow sets of diameter ≤ 2ε in place of

balls of radius ε; call the resulting the quantity N ′(K, ε). If the centers of the balls in

the definition are required to be in K, call the quantity N ′′(K, ε). Finally, let the packing

number Ñ(K, ε) be defined as the maximal cardinality of an ε-separated (i.e. ρ(x, x′) > ε

if x 6= x′) set in K. The quantities N , N ′ and Ñ are related as follows

N ′(·, ε) ≤ N(·, ε) ≤ N ′′(·, ε) ≤ Ñ(·, ε) ≤ N ′(·, ε/2). (3)

Consequently, for our “asymptotic” results the four quantities are essentially interchange-

able.

If the metric space (M,ρ) is actually a normed space with a norm ‖·‖ and unit ball B,

we may write N(K, ‖ · ‖, ε) or N(K,B, ε) instead of N(K, ε) or N(K, ρ, ε). The technol-

ogy for estimating covering/packing numbers of subsets (particularly convex subsets) of

normed spaces is quite well-developed and frequently rather sophisticated (see [4], [14]).

We quote here a simple well-known result (again, proved by a “volume comparison” ar-

gument) that expresses N(·, ·) in terms of a “volume ratio”, and of which (1) is a special

case.

Lemma 1. Let K, B ⊂ Rd with B convex symmetric. Then, for any ε > 0,
(

1

ε

)d
volK

volB
≤ N(K,B, ε) ≤ N ′′(K,B, ε) ≤ N ′(K,B, ε/2) ≤

(

2

ε

)d
vol (K + ε/2B)

volB
.

The next lemma is just an observation which expresses the fact that the covering/pack-

ing numbers are invariants of Lipschitz maps.
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Lemma 2. Let (M,ρ) and (M1, ρ1) be metric spaces , K ⊂ M , Φ : K → M1, and let

L > 0. If Φ satisfies

ρ1(Φ(x),Φ(y)) ≤ Lρ(x, y) for x, y ∈ K

(i.e. Φ is a Lipschitz map with constant L), then, for every ε > 0,

N ′′(Φ(K), ρ1, Lε) ≤ N ′′(K, ρ, ε).

Moreover , N ′′ can be replaced by N ′ or Ñ and , if Φ can be extended to a function on M

that is still Lipschitz with constant L, also by N .

We now turn to our main interest, the unitary group U(n), the (special) orthogonal

group SO(n) and their homogeneous spaces. (As O(n) is geometrically a disjoint union of

two copies of SO(n), all statements about SO(n) will easily transfer to O(n).) Throughout

the paper we will reserve the letterG to denote, depending on the context, U(n) or SO(n).

Similarly, we will reserve the letter G to denote the Lie algebra of G, the space u(n) or

so(n) of skew-symmetric matrices. Since G and G are subsets of M(n) (the algebra of

n × n matrices, real or complex as appropriate), they inherit various metric structures

from the latter. In this paper we focus on the one induced by the operator norm (as an

operator on the Euclidean space, that is), but will also consider the Schatten Cp-norms

‖x‖p = (tr |x|p)1/p with the operator norm ‖ · ‖op = ‖ · ‖∞ being the limit case. We

will use the same notation ‖x‖p for the ℓnp -norm on Rn or Cn, but this should not lead

to confusion. More generally, we will also occasionally look at other unitarily invariant

norms (i.e. satisfying ‖x‖ = ‖uxv‖ if x ∈M(n) and u, v ∈ G), each necessarily associated

with a symmetric norm on Rn (which we will also denote by ‖·‖) via ‖x‖ = ‖(sk(x))nk=1‖,
where s1(x), . . . , sn(x) are singular numbers of x.

If ρ is a metric on G and H ⊂ G a closed subgroup, we consider the homogeneous

space M = G/H of left cosets of H in G as endowed with the canonical quotient metric

ρM (E,F ) = inf{ρ(u, v) : u ∈ E, v ∈ F}. A fundamental example is that of the Grass-

mann manifold Gn,k of k-dimensional subspaces of Rn (resp. Cn): the relevant subgroup

H of SO(n) (resp. U(n)) consists of matrices of the form
[

u1 0

0 u2

]

(4)

where u1 ∈ SO(k) and u2 ∈ SO(n − k) (resp. U(k), U(n − k)) and the identification of

cosets of H with the subspaces is via uH ∼ uEk, where Ek is the linear span of the first

k vectors of the standard basis of Rn (resp. Cn).

Among metric structures on M = U(n) (or SO(n), or the homogeneous space), of

particular interest to us will be intrinsicmetrics induced by (unitarily invariant) norms on

M(n): the distance between u and v is the infimum of lengths of curves in M connecting

u and v. We observe that the infimum may be taken over absolutely continuous curves

γ : [a, b] → M (the infimum is then achieved, while any rectifiable curve parametrized

by arc length is absolutely continuous). Then the length

ℓ(γ) =

1\
0

‖γ′(t)‖dt, (5)
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where, if M = G, ‖ · ‖ is the norm on M(n) in question. If M = G/H , ‖ · ‖ can be

interpreted as a quotient norm on the corresponding quotient of the relevant Lie algebra

(cf. (9) in section 3 and comments following it). We also point out that all the metrics we

consider being bi-invariant, any curve in M = G/H can be lifted (by compactness and

elementary properties of the L1-norm) to a “transversal” curve in G of the same length.

The correct abstract framework for these considerations is that of Finsler geometry (see

e.g. [3]), but since the manifolds we consider are canonically embedded in natural normed

spaces, we can afford to be more “concrete”.

For future reference we point out that the (operator) norm distance and the corre-

sponding intrinsic distance ρ are related via

‖u− v‖ = |1− ei ρ(u,v)|. (6)

This is an immediate consequence of Proposition 6 that follows; however, here we just wish

to point out that the two metrics differ by a factor of π/2 at the most and this particular

fact is implied by the more or less obvious inequalities ρ(u, v) ≥ ‖u− v‖ ≥ |1− ei ρ(u,v)|.
Since, by definition, the quotient metrics are distances between cosets, the corresponding

two metric structures on homogeneous spaces are related in the way analogous to (6).

Accordingly, estimates of type (2) will transfer easily from one metric to the other, and

the choice of the one to work with will only be a matter of convenience and/or elegance.

Because of the invariance of the metric under the action of G (= U(n) or SO(n)),

one can give estimates for the covering numbers of M (analogous to those of Lemma 1)

in terms of the Haar measures of balls (cf. the comment following (2)). However, since

the dependence of the measure of a ball on the radius is much less transparent now than

in the “linear” case, such estimates are not necessarily useful. To overcome this difficulty

we “linearize” the problem via the exponential map (composed with the quotient map

q : G → M if necessary) and then use Lemma 2. Since we operate in the “classical”

context, the exponential map is the standard one

expx = ex =
∞
∑

k=0

xk

k!
for x ∈M(n),

and it will be normally sufficient to consider the restriction of exp to G (= u(n) or so(n)),

the Lie algebra of G (= U(n) or SO(n)). In order to be able to apply Lemma 2 we must

“understand” the map Φ = q ◦ exp. Specifically, we need to know for which K ⊂ G
we have Φ(K) = M (or at least when Φ(K) is “large”) and for which K the restriction

Φ|K (resp. Φ−1
|Φ(K)) is Lipschitz. Concerning the first point, it is well known that, in our

context, exp(G) = G. Moreover, we have

Lemma 3. Let K = {x ∈ G : ‖x‖∞ ≤ π} be the ball of radius π in G in the operator

norm. Then

(a) exp(K) = G,

(b) exp is one-to-one on the interior of K.

The above is a special case of a more general fact for Lie groups, but in the present

setting can be seen directly from the fact that every unitary matrix can be diagonalized,

with the argument for SO(n) being just slightly more complicated.
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Lemma 3 asserts that G resembles, in a sense, a ball in G. However, for our purposes
we need more quantitative information about exp, which we collect in the next lemma.

Lemma 4. For any unitarily invariant norm and the corresponding metric on G (ex-

trinsic on intrinsic), the map exp : G → G is a contraction.

On the other hand , let ‖ · ‖ be such a unitarily invariant norm and set , for θ > 0,

φ(θ) = inf{‖ex − ey‖/‖x− y‖ : x, y ∈ G, x 6= y, ‖x‖∞ ≤ θ, ‖y‖∞ ≤ θ}.
Then φ(θ) > 0 if θ < π. Moreover , if θ ∈ [0, 2π/3), then

φ(θ) ≥
∞
∏

k=1

(1− |1− eiθ/2
k |).

In particular φ(θ) ≥ 0.4 if θ ≤ π/4.

P r o o f. The first assertion is classical for the extrinsic (norm) metric and hence

follows formally for the intrinsic metric. For the other assertions, we observe first that

since the derivative of the exponential map at 0 is the identity,

lim
θ→0+

φ(θ) = 1. (7)

Let x, y be as in the definition of φ(θ). We have

ex − ey = e
x
2 (e

x
2 − e

y

2 ) + (e
x
2 − e

y

2 )e
y

2

= 2(e
x
2 − e

y
2 ) + (e

x
2 − I)(e

x
2 − e

y
2 ) + (e

x
2 − e

y
2 )(e

y
2 − I)

and so, by the ideal property of unitarily invariant norms,

‖ex − ey‖ ≥ ‖e x
2 − e

y

2 ‖(2− ‖e x
2 − I‖∞ − ‖e y

2 − I‖∞)

≥ φ(θ/2)‖x− y‖ · (1 − |1− e
iθ
2 |).

Iterating and using (7) we obtain the third (and hence the last) assertion of the lemma.

For the second assertion (φ(θ) > 0 if θ < π, not used in the sequel), we just briefly sketch

the argument for G = U(n). Let θ ∈ (0, π) and δ > 0. Consider first the case of the

operator norm. We need to show that if A,B are Hermitian with spectra contained in

[−θ, θ] and ‖eiA−eiB‖ ≤ δ, then ‖A−B‖ ≤ C(θ)δ, where C(θ) depends only on θ (and not

on A,B or n). By [2], Theorem 13.6, the eigenvalues of A and B (multiplicities counted)

are, in a certain precise sense, “close”, and so, by perturbation, we may assume that

they are identical; we may also assume that all those eigenvalues are integral multiples

of δ. Let u ∈ U(n) be such that B = uAu−1; we need to show that ‖eiAu − ueiA‖ ≤ 4δ

implies ‖Au − uA‖ ≤ C(θ)δ and this follows by writing u as a “block matrix” in the

spectral subspaces of A. For a general unitarily invariant norm we note that the assertion

is roughly equivalent to uniform boundedness (with respect to the norm in question and

with a bound depending only on θ) of the inverse of the derivative of the exponential map.

That derivative is, in a proper orthonormal basis, an antisymmetric “Schur multiplier”

(see [24], Theorem 2.14.3 and its proof). As a consequence, the inverse is also such a

multiplier, and so its norm with respect to the operator norm equals to the norm on

the trace class C1 (by duality) and dominates the norm with respect to any unitarily

invariant norm by interpolation (cf. [23], §28 or [10]).
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Rema r k s. (i) In all likelihood, a version of Lemma 4 (and of Lemma 5 that follows)

should be known, at least for the operator norm, but we couldn’t find a reference. It would

be nice to have an elegant proof which gives good constants in the full range of θ (∈ (0, π)).

We point out that the “Schur multiplier” argument indicated above provides a simple

“functional calculus” proof (with fairly good constants) in the case of the Hilbert-Schmidt

C2-norm.

(ii) What is really important in Lemma 3 and the auxiliary results that follow is that

the estimates are “dimension free”. We could have used cruder, and slightly easier to

prove, inequalities (e.g., it would be enough to know that φ(θ) > 0 for some θ > 0),

but we thought it worthwhile to add a few lines here and there to get reasonable, if not

optimal, estimates.

Lemma 5. Let G = U(n) (resp. SO(n)) and ρ the intrinsic metric on G induced by

a unitarily invariant norm ‖ · ‖ on M(n). Then, for any x, y ∈ G,
ρ(ex+y, exey) ≤ ‖[x, y]‖.

P r o o f. The argument is similar to, but slightly more complicated than that of the

previous lemma. Denote, for t ≥ 0,

ψ(t) = max{ρ(et(x+y), etxety), ρ(et(x+y), etyetx)}.
Clearly ψ(0) = 0. Moreover, expanding the exponentials and noting that ρ(u, v)/‖u− v‖
→ 1 as ‖u− v‖ → 0 (this follows from (6), but can also be seen from the inequalities in

the paragraph following (6), which do not depend on Proposition 6) we conclude that

lim
t→0

ψ(t)/t2 = ‖[x, y]‖. (8)

Now

ρ(ex+y, exey) ≤ ρ(ex+y, e
x+y
2 e

x
2 e

y
2 ) + ρ(e

x+y
2 e

x
2 e

y
2 , e

x
2 e

y
2 e

x
2 e

y
2 )

+ ρ(e
x
2 e

y

2 e
x
2 e

y

2 , e
x
2 e

x+y

2 e
y

2 ) + ρ(e
x
2 e

x+y

2 e
y

2 , exey)

= 3ρ(e
x+y
2 , e

x
2 e

y
2 ) + ρ(e

y
2 e

x
2 , e

x+y
2 ).

Hence ψ(1) ≤ 4ψ(12 ) and, by the same argument, ψ(t) ≤ 4ψ( t2 ) or
ψ(t)
t2 ≤ ψ( t

2
)

( t
2
)2

for t ≥ 0.

In combination with (8) this implies the lemma.

Our last auxiliary result involves the non-Riemannian geometry of G = U(n) (or

SO(n)). It is very well known, in a much more general context, that if G is endowed

with a bi-invariant Riemannian structure (which is, in our case, the one induced by the

Hilbert-Schmidt C2-norm on M(n)), then the geodesics of G are exactly the cosets of

one-parameter subgroups (see [11], p. 148, Ex. 5, 6). However, it is not immediately

clear how general is this phenomenon. Since geodesics are normally defined via affine

connections, we reiterate here that we employ the “metric” approach in the spirit of

classical Finsler geometry: a curve in a manifold M endowed with a metric is a geodesic

if it locally realizes the (intrinsic) distance between points as explained in the paragraph

containing (5). We have

Proposition 6 ([22]). Let ‖ · ‖ be a unitarily invariant norm on M(n) and ρ the

induced intrinsic metric on G (= U(n) or SO(n)). Then
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(a) cosets of one parametric semigroups (i.e. curves of the form γ(t) = uetx, u ∈ G,

x ∈ G) are geodesics in (G, ρ),

(b) if ‖ · ‖ is strictly convex (which happens in particular if ‖ · ‖ = ‖ · ‖p for some

p ∈ (1,∞)), then all geodesics are, up to a change of parameter , of the form given in (a)

(or arcs of curves of such form),

(c) if , furthermore, the spectrum of u−1v does not contain −1, the curve of shortest

length (geodesic arc) connecting u and v is unique.

Rema r k s. (i) A unitarily invariant norm on M(n) is strictly convex (i.e. the unit

sphere {x : ‖x‖ = 1} does not contain a segment) iff the associated symmetric norm on

Rn is (this is, e.g., implicit in [10], §II.4 and §III.3; see also [1] for a “definite” treatment

of the Cp case). The operator norm and the trace class C1-norm are not strictly convex,

while the Schatten Cp-norms for p ∈ (1,∞) are strictly convex.

(ii) The proof of Proposition 6 is based on (and in fact very close to) the results on

spectral variation of unitary matrices presented in [2], §13, 14.

3. The “1-cocomplemented” subgroups. Let G = SO(m) or U(n) and G (=

so(n) or u(n)) the Lie algebra of G. Let H be a connected Lie subgroup of G, H the

corresponding Lie subalgebra of G and M = G/H . In this section we concentrate on the

case when G and M are endowed with metric structures induced by the operator norm,

we will denote the respective metrics by ρ and ρM (for technical purposes, we may use

other unitary ideal norms, though). The purpose of this section is to prove, in the above

context, an estimate of type (2) for an abstract class of homogeneous spaces that contains

U(n), SO(n) and the Grassmannians Gn,k. The argument will depend on a careful, but

elementary analysis of the exponential map exp : G → G and maps obtained from it;

as an illustration we point out here that the following result from [17] is an immediate

consequence of the results from the preceding two sections.

Theorem 7. If G = SO(n) or U(n) (endowed with the operator norm or the induced

intrinsic metric ρ) and ε ∈ (0, 2], then

(c/ε)d ≤ N(G, ε) ≤ (C/ε)d,

where d is the (real) dimension of G and c and C are universal numerical constants.

P r o o f. By Lemma 3 and the first assertion of Lemma 4, exp is a contractive surjective

map from the (closed) ball of radius π in G to G. Consequently, Lemma 2 applied with

Φ = exp and L = 1 and combined with the second inequality in (1) (or, more precisely,

the upper estimate on N ′′ given by Lemma 1) yields the upper estimate for N(G, ε).

The lower estimate is obtained similarly by applying Lemma 2 to Φ = exp−1, L = 2.5

and K = {u ∈ G : ρ(u, I) ≤ π/4}, using the first inequality in (1) (or, again more

precisely, the lower estimate on Ñ given by Lemma 1), the last assertion of Lemma 4

and Proposition 6(a). (Proposition 6(a) is needed only for the definition of K and its use

may be avoided here.)

If M 6= G, the approach will be similar, but the situation is (necessarily) more com-

plicated. Let q : G → G/H = M be the quotient map and consider the short exact
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sequence 0 → H → G→M → 0 and the induced sequence of maps between the tangent

spaces (at resp. I ∈ H , I ∈ G and H ∈M = G/H)

0 → H → G → THM → 0 (9)

and so THM can be identified with the quotient space G/H; we mean by that isometrically

identified whenever all metric structures are induced by a given unitarily invariant norm.

Since the derivative of the exponential map at 0 is the identity (in particular an isometry),

we can realize that identification by the canonical factorization of the derivative of q ◦ exp
at 0 (which maps G to THM and vanishes on H) through G/H. This shows that (at

least small) neighborhoods in M resemble balls in the normed space G/H and gives

some heuristic evidence that inequalities of type (2) may hold for M . However, for a

proof of such an inequality one needs “uniform isomorphic” (rather than “infinitesimal”)

estimates, and we will obtain these under some additional technical assumptions. Since

the additive structure on G and the group structure on G are not intertwined by the

exponential (or any other) map, it will be more convenient to identify G/H with X = H⊥

(the orthogonal complement of H in G) and to consider Φ = q ◦ exp|X , hoping that the

direct sum X ⊕H = G is “well-behaving” with respect to the operator norm (or any other

unitarily invariant norm that we may need to consider), which happens in many natural

examples. This leads to our first invariant related to a homogeneous space. We set

κ(M) = ‖PX ‖ = ‖I − PH‖, (10)

where PE denotes the orthogonal projection from G onto E and ‖ · ‖ is calculated with

respect to the operator norm on G.
Before stating the results, we will present a simple but illuminating example which

shows that, in general, the “linearization” ofM of the type suggested above may work only

on the “infinitesimal” scale (i.e. only very small neighborhoods are “equivalent” to balls in

the tangent space), and which leads to one more invariant of M . Let G = U(n) and H =

SU(n). It is then easily seen thatM = U(n)/SU(n) is isometric to a circle of radius 1/n

and so covering numbers of N(M, ε) are “trivial” if ε > π/n. (Since M is 1-dimensional,

it is necessarily “isotropic” and so there are neighborhoods resembling segments of size

comparable to the diameter of M ; in particular (2) still holds. However, one can also

produce “nonisotropic” examples: consider e.g., H = {I} × SU(n − 1) ⊂ U(n) = G.)

The reason for this phenomenon is that SU(n) (or, via the exponential map, H) is very

“densely woven” into U(n). For example, e2πi/nI ∈ SU(n) and ‖e2πi/nI − I‖ < 2π/n

(more precisely, ρ(e2πi/nI, I) = 2π/n by Proposition 6(a)), even though the shortest

path connecting I and e2πi/nI and contained in SU(n) is of length 2π(1 − 1/n) (this

follows e.g. from the proof of Proposition 6(a) in [22], the length in question must be

≥ than the length of the shortest path connecting (−2π + 2π/n, 2π/n, . . . , 2π/n) and

0 in ℓn∞/Sn that is contained in the plane {(xk) ∈ Rn :
∑

xk = 0}; another way to

express this is that e2πi/nI = ex with x ∈ H forces ‖x‖ ≥ 2π(1− 1/n)). To quantify the

phenomenon we introduce the following concept. Given θ > 0, we will say that a closed

connected Lie subgroupH of G = U(n) (or SO(n)) is θ-woven if whenever u ∈ H satisfies

ρ(u, I) ≤ θ (ρ is the intrinsic metric induced by the operator norm ‖ · ‖∞), then there

exists x ∈ H, ‖x‖∞ < π such that u = ex. If M = G/H , we set
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θ(M) = sup{θ > 0 : H is θ-woven} = dist(I,H\ exp(BH(π)), (11)

the distance being calculated using ρ. We then have

Theorem 8. In the notation above, assume that κ(M) = 1. Then, for any ε ∈
(0, diamM ],

N(M, ε) ≤
(

CdiamM

ε

)d

,

where d is the (real) dimension of M , diamM is calculated with respect to ρM , and C > 0

is a universal constant. Moreover , if ε ∈ (0, θ(M)/4], then

N(M, ε) ≥
(

cθ(M)

ε

)d

,

where c > 0 is a universal constant. The last estimate holds also if κ(M) > 1, but the

constant c may then depend on κ(M).

P r o o f. As suggested earlier, the proof will involve applying Lemma 2 to the (properly

restricted) map q ◦ exp|X and its inverse, where X is the orthogonal complement in G
of H (the Lie subalgebra of G corresponding to the subgroup H), and will be based

on two lemmas that follow. Given r > 0, let BX (r) be the ball in X of radius r (with

respect to the operator norm) and centered at the origin. We then have, in the notation

of Theorem 8:

Lemma 9. If κ(M) = 1, then q(exp(BX (diamM))) =M .

Lemma 10. There exist positive constants λ = λ(κ(M)) and r0 = r0(κ(M)) such that

if r = min{r0, θ(M)/4} and x, x′ ∈ BX (r), then

ρM (q(ex), q(ex
′

)) ≥ λ‖x− x′‖.
Rema r k s. (i) Calculating θ(M) is not difficult, particularly when H is semisimple.

Indeed, suppose θ(M)<π (clearly the maximal possible value) and let u∈H\ exp(BH(π))

be such that u = eh, ‖h‖∞ ≥ π, while ‖u − I‖∞ = θ(M) < π, in particular u = ex for

some x ∈ G, ‖x‖∞ < π. Since the commutants of u and x are the same, it follows that

θ(M) is“witnessed” inside a torus T in G containing u; moreover, T may be assumed to

contain the one-parameter semigroup {etx : t ∈ R} and to be such that T ∩H is maximal

in H . Consequently, to determine θ(M) we only need to examine maximal tori in H and

their extensions to maximal tori in G. This is particularly easy if H is semi-simple: all

configurations of the tori in question are then related by conjugation, and since the metric

we consider is invariant under conjugation, it suffices to check just one such configuration.

Such an examination will also reveal that θ(M) = π, should that be the case.

(ii) Since diamU(n) = π (we recall that we are dealing with the intrinsic metric

induced by ‖·‖op) and q, being a quotient map, is a contraction, one always has diamM ≤
π. In any case, by Proposition 6, one can always calculate diamM by examining images

of one-parameter semigroups of G under q.

(iii) While there seems to be no reason for the assertion of Lemma 9 to hold when

κ(M) > 1, it is imaginable that we always have, e.g., q(exp(BX (κ(M)diamM))) = M .

However, we haven’t found any argument to that (or similar) effect.
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(iv) If M = Gn,k (the Grassmann manifold), one verifies directly that κ(M) = 1 and

diamM = π/2. The former follows from the fact that X consists of those matrices in G
(= u(n) or so(n)) that are of the form (cf. (4))

[

0 x

−x∗ 0

]

.

The latter is elementary: for two (k-dimensional) subspaces E,F of Rn (resp. Cn)),

ρGn,k
(E,F ) is the largest of the main angles between E and F (see (4) and comments

following it for the framework and, e.g., [17], p. 174 for the more precise analysis). Finally,

it follows immediately from Remark (ii) above that θ(Gn,k) = π (the maximal tori in H

are also maximal in G).

(v) If κ(M) = 1, one can take r = 0.12 and λ = 0.4 in Lemma 10. If, moreover, x′ = 0,

one can take r = 5/9 and λ = 0.4; it follows that q ◦ exp (BX (5/9)) ⊃ {E ∈ G/H :

ρM (E, q(I)) ≤ 2/9} and that q ◦ exp−1 restricted to any of these two sets is Lipschitz

with constant 4.5.

(vi) The proof gives λ(t) and r0(t) to be of order 1/t. The argument would be slightly

more efficient if we considered X as endowed with the quotient norm G/H, which is more

natural in the context.

Assuming the two lemmas above, Theorem 8 is shown almost exactly as Theorem 7:

one applies Lemma 2, first with Φ = q ◦ exp|X , L = 1 and K = BX (diamM) for the

upper estimate and then with the inverse map restricted to K = q(exp(BX (r))) and with

L = λ−1 for the lower estimate. (All the fine points are hidden in Lemmas 9 and 10.)

Proof of Lemma 9. We will show that, for every p ∈ [2,∞), setting

Kp = {x ∈ X : ‖x‖p ≤ n1/pdiamM}
(i.e. Kp is a ball in X of radius n1/pdiamM in the Schatten Cp-norm ‖ · ‖p), we have

q(exp(Kp)) =M ; (12)

the assertion of the Lemma will then follow by letting p→ ∞. To this end, observe that

since the R-linear orthogonal projection M(n) → G is of norm one (with respect to any

unitarily invariant norm), κ(M) equals the norm of the orthogonal projection fromM(n)

onto X . Now, since (M(n), ‖ · ‖p) is (for p ≥ 2) a complex interpolation space between

(M(n), ‖ · ‖∞) and (M(n), ‖ · ‖2), it follows that PX is also contractive with respect to

the Cp-norm (for any p ≥ 1; more generally, of norm ≤ κ(M)|1−2/p|). Furthermore, since

the Cp-norm is strictly convex for p ∈ (1,∞), we conclude that

y 6∈ X ⇒ ‖y − PHy‖p = ‖PX y‖p < ‖y‖p. (13)

For clarity, we will denote byMp the manifoldM equipped with the quotient metric ρp,M
induced by the Schatten Cp-norm. Note that since the operator norm and the Cp-norm

differ by a factor n1/p at the most, we have diamMp ≤ n1/pdiamM . Let gH ∈ Mp and

let γ be the shortest geodesic in Mp connecting H and gH , then ℓ(γ) ≤ n1/pdiamM . Let

γ̃ be a transversal lifting of γ to G, i.e. a curve in G such that q ◦ γ̃ = γ and ℓ(γ̃) = ℓ(γ).

Then of course γ̃ is a geodesic in G (with respect to the intrinsic metric ρp induced by

the Cp-norm) and without loss of generality we may assume that the initial point of γ̃
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is I. By Proposition 6, γ̃ must be (perhaps after a change of parameter) of the form

γ̃(t) = ety, 0 ≤ t ≤ 1 for some y ∈ G and ℓ(γ̃) = ‖y‖p ≤ n1/pdiamM , and so (12) will

follow if we show that y ∈ X . Indeed, if that were not the case, (13) would imply that

‖y − PHy‖p < ‖y‖p and so, for t > 0 sufficiently small we would have

ρp,M (etyH,H) ≤ ρp(e
ty, etPHy) ≤ ‖ty − tPHy‖p < t‖y‖p

and consequently

ℓ(γ̃) = ρp,M (H, gH) = ρp,M (H, eyH)

≤ ρp,M (H, etyH) + ρp,M (etyH, eyH) < t‖y‖p + (1− t)‖y‖p ,
a contradiction. This proves Lemma 9.

Proof of Lemma 10. We need to show that if x, x′ ∈ BX (r) and h ∈ H, then

∆ ≡ ρ(ex
′

, exeh) ≥ λ‖x− x′‖.
Since ‖x− x′‖ ≥ ρ(ex

′

, ex) = ρ(e−xex
′

, I) and ∆ = ρ(e−xex
′

, eh), it is enough to consider

h ∈ H such that

ρ(eh, I) ≤ (1 + λ)‖x− x′‖ ≤ (1 + λ)2r ≤ 4r.

If r ≤ θ(M)/4 (or just 2(1 + λ)r ≤ θ(M)), it follows from the definition of θ(M) (i.e.

(11)) that h ∈ H may be further assumed to satisfy ‖h‖∞ < π, hence

‖h‖∞ = ρ(eh, I) ≤ (1 + λ)‖x− x′‖ ≤ (1 + λ)2r ≤ 4r.

Now, by Lemma 4 and Lemma 5,

∆ ≡ ρ(ex
′

, exeh) ≥ ρ(ex
′

e−h/2, exeh/2)

≥ ρ(ex
′−h/2, ex+h/2)− ‖[x′, h/2]‖ − ‖[x, h/2]‖

≥ φ(r + ‖h‖/2)‖x− x′ − h‖ − 2r‖h‖
≥ φ(r + ‖h‖/2)‖x− x′‖ − 2r‖h‖
≥ (φ(r + (1 + λ)r) − 2r(1 + λ))‖x− x′‖
≥ (φ(3r) − 4r)‖x− x′‖,

where φ(·) is the function from Lemma 4. It is now clear from Lemma 4 that if r > 0 is

small enough, then φ(3r)−4r > 0. A more careful calculation along the same lines shows

that if r = .12, then λ = .4 works (as indicated in Remark (v) above).

Finally, if κ(M) > 1, we can only use ‖x − x′ − h‖ ≥ κ(M)−1‖x − x′‖ in the fourth

inequality in the above argument. This leads to the minorization (φ(3r)κ(M)−1−4r)‖x−
x′‖ for ∆ and to r0 and λ of order κ(M)−1 in the assertion of the Lemma.

4. Extensions and other tricks. The scheme presented in the preceding section

yields reasonable estimates for covering numbers N(M, ε) (with respect to the metric

induced by the operator norm) of a homogeneous spaceM = G/M whenever ε ≤ diamM

or ε ≤ θ(M) (for the upper and lower estimate respectively) and whenever κ(M) is “under

control”. This leaves several cases and gray areas that are not covered.

(i) The range θ(M) < ε < diamM even if κ(M) = 1 and, in general, a clarification of

the role of the ratio diamM/θ(M) (the lower and upper estimates differing roughly by

(diamM/θ(M))d).

(ii) The upper estimate whenever κ(M) > 1, but still “under control”.
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(iii) The case when we do not control κ(M).

With regard to (i), a modification of the example that led to the definition of θ(M)

suggested there (H = {I}×SU(n− 1) ⊂ U(n) = G) shows that it is possible for diamM

and θ(M) to differ by a large factor (of order n in that case). Even though an analysis

of such cases is imaginably possible, it would be clearly combinatorial and/or algebraic

in nature and we do not attempt it here.

Concerning (iii), it is also conceivable that the phenomenon of having κ(M) “large”

can be “dissected” and expressed in terms of combinatorial/algebraic invariants suggested

above, but, again, in the examples motivating this work (see below) we have ‖PH‖ = 1

and hence κ(M) ≤ 2.

It remains to analyze the gap related to (ii): the examples with, say, 1 < κ(M) ≤ 2

do naturally occur and it would be nice to have, at least for that case, an upper estimate

for covering numbers of M of the type (CdiamM/ε)d (cf. also Remark (iii) following

Lemma 10). Unfortunately, we do not know how to settle that question in full generality.

Instead, we present a “bag of tricks” that allow to handle various special cases. This, and

some comments concerning covering numbers relative to metrics generated by unitarily

invariant norms other than the operator norm constitutes this section.

The first observation is that trying to mimic the proof of Lemma 9 in the case when

κ(M) > 1 one arrives at the following picture. Let Q : G → G/H be the quotient map,

and consider the semi-norm p on G defined by p(x) = ‖Qx‖∞. Let Λ : G/H → G be a

norm-preserving lifting of Q (in general nonlinear). The argument imitating the proof of

Lemma 9 connects then geodesics in M with “rays” in the range of Λ and we could give

upper estimates for entropy of M if we were able to control entropy of the range of M

(e.g. with respect to the semi-norm p).

The two specific subgroups of U(n), for which estimates for covering numbers of the

respective homogeneous spaces are of interest from the point of view of free probability

(cf. [25], Remark 7.2 and [26]), consist of unitaries of some C∗-subalgebras of M(n),

namely

(I) The “block-diagonal” algebra: the commutant of {P1, P2, . . . , Pm}, where Pj ’s are
orthogonal projections whose ranges form an orthogonal decomposition of Cn; the cor-

responding homogeneous space is then a (partial) flag manifold.

(II) The “tensor-factor” algebra: if n = mk, identify Cn with Cm ⊗Ck and consider

matrices of the form I⊗x, x ∈M(k); these can be also thought of as block matrices with

m identical k × k blocks along the diagonal.

In both cases (I) and (II) the subgroup H (resp. the Lie algebra H) consists of (all)

unitaries (resp. skew-symmetric matrices) having form (I) or (II), and the conditional

expectation is a norm one (with respect to any unitarily invariant norm) projection from

G, the Lie algebra of G = U(n), onto H, in particular κ(G/H) ≤ 2. However, except for

the case m = 1 or m = 2 (the Grassmann manifold for (I)), we have κ(G/H) > 1.

Concerning the other parameters, it is easily seen (cf. Remarks (i) and (ii) following

Lemma 10) that in all cases θ(G/H) = 2 and π/2 ≤ diamG/H ≤ π. Accordingly,

Theorem 8 gives good lower estimates for the covering numbers of G/H and it remains

to handle the upper ones. We will use the following (ad hoc)
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Theorem 11. Let α ∈ (0, 1/2]; let n, G (= U(n) or SO(n)), H , M = G/H , G, H,

and d be as before and assume that

min{θ(M), diamM,κ(M)−1} ≥ α.

Furthermore, assume that one of the following holds :

(a) dim H ≤ (1− α) dim G,

(b) H acts reducibly on Cn (resp. Rn) and there is a reducing subspace E with αn ≤
dim E ≤ (1− α)n,

(c) H acts reducibly on Cn (resp. Rn) and there is a reducing subspace E with

dim E ≡ k ≥ αn and such that the orthogonal decomposition Cn = E⊕E⊥ induces an iso-

morphism H → U(k)×H0 for some subgroup H0 of U(n−k) (resp. Rn, SO(k), SO(n−k)).
Then, for any ε ∈ (0, diamM ],

(c/ε)d ≤ N(M, ε) ≤ (C/ε)d,

where c, C > 0 are constants depending only on α.

Corollary 12. If H ⊂ U(n) is the group of unitaries of a “block-diagonal” or

“tensor-factor” algebra (described in (I ) or (II )), then the assertion of Theorem 11 holds

(e.g., with constants corresponding to α = 1/3).

P r o o f. We may of course assumem ≥ 2. In the case (II) the condition (b) of Theorem

11 is always satisfied (with α = 1/3). The same is true in the case (I) except if one of the

projections Pj is of rank ≥ n/3, in which case (c) holds.

R ema r k s. (i) As was pointed out in [25], Remark 7.2, the estimates for covering

numbers given by our Corollary 12 (the “block-diagonal” case) allow sharp free entropy

and free entropy dimension estimates. Similarly, the “tensor-factor” case of the Corollary

implies estimates for free entropy and free entropy dimension of certain generators of free

product von Neumann algebras ([26]).

(ii) The “block-diagonal” case of Corollary 12 implies estimates for covering numbers

of some sets of matrices needed in [6].

Proof of Theorem 11. As observed earlier, it is enough to show the upper estimate.

(a) The condition (a) is equivalent to dim M ≥ α dim G. It follows from Theorem 7

that, for any ε ∈ (0, 2], G (hence, by Lemma 2,M = G/H) admits an ε-net of cardinality

≤ (C/ε)dim G . If ε ≥ β and (a) holds, this does not exceed C(α, β)dim M (the real

dimension). It follows now from Lemma 10 that the image of BX (r) (where r = r(α))

contains a ball in M of radius r1 = r1(α), and so the former and the latter admit,

for ε ≤ r, an ε-net of cardinality ≤ (C1r/ε)
dim M . Combining this with the preceding

observation (applied to β = r1) we get the required upper estimate.

(b) The condition (b) implies (a) (with α(1 − α) in place of α).

(c) Since the arguments in the real and complex case are identical, we restrict the

discussion to the latter. The condition (c) is not included in (b) only if dim E ≡ k >

(1− α)n, in particular k > n/2. Let H1 ⊂ G be the subgroup of the form U(k)× {I} in

the sense indicated in the condition (c), then H1 ⊂ H and so M = G/H is a quotient of

M1 = G/H1. Now M1 is isomorphic to Gn,k × U(n − k) (for sure Lipschitz isomorphic
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with constant 2 if the product metric on the latter is defined in the “ℓ∞ sense”), and so,

by Theorems 7 and 8, it admits, for any ε ∈ (0, 2], an ε-net of cardinality ≤ (C2

ε )dim M1

(again, the real dimension). Since k > n/2 implies dim M1 < 2 dim M , arguing as in (a)

we obtain the assertion.

In some applications (see e.g. [19], [20]) it is important to know the metric entropy of

M equipped with a metric induced by unitarily invariant norms other than the operator

norm. The scheme presented in this paper can be adapted to yield fairly sharp results in

the general case. Indeed, Lemmas 4, 5 and 6 involve statements about generic unitarily

invariant norms. Similarly, Lemma 10 and its proof carry over almost word by word to

the case of an arbitrary unitarily invariant norm ‖ · ‖ once the parameters such as θ and

κ are properly interpreted: the balls BH(·), BX (·) are to remain to be defined by the

operator norm ‖ · ‖∞, but θ(M) has to be the distance between I and H\ exp(BH(π))

in the intrinsic metric on G induced by ‖ · ‖; κ(M) may be calculated using ‖ · ‖ (which

results in a quantity not larger than the one given by the operator norm, in particular

κ(M) = 1 if ‖ · ‖ is the Hilbert Schmidt norm). The “linearization” procedure can be

then implemented and the problem is reduced to estimating covering numbers of balls in

X in the operator norm with respect to ‖ · ‖. As indicated in section 2 (see Lemma 1 and

the paragraph preceding it), there exist numerous tools for obtaining such estimates. In

particular, in many natural cases (e.g. M = U(n), SO(n) or the Grassmann manifolds

Gn,k), the volumes of a ball in X with respect to a unitarily invariant norm ‖ · ‖ and the

inscribed operator norm ball differ by a factor Cd, C - a universal constant (this is easily

implied e.g., by classical facts from [16], [5], cf. [18], p. 162; see also [9] or [15]), which

allows to use Lemma 1 to show that logN(M, ε) ≈ d log(diamM/ε) (and diamM ≈ ‖I‖
if M = U(n) or SO(n), diamM ≈ ‖P‖, where P is an orthogonal projection of rank

equal to min{k, n− k} if M = Gn,k); these cases have been worked out in [17].
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[16] L. A. Santal ó, Un invariante afin para los cuerpos convexos del espacio de n dimensiones,

Port. Math. 8(1949), 155-161.

[17] S. J. Szarek, Nets of Grassmann manifolds and orthogonal groups, Proceedings of Banach

Space Workshop, University of Iowa Press 1982, 169-185.

[18] S. J. Szarek, The finite dimensional basis problem with an appendix on nets of Grassmann

manifolds, Acta Math. 151 (1983), 153-179.

[19] S. J. Szarek, An exotic quasidiagonal operator , J. Funct. Anal. 89 (1990), 274-290.

[20] S. J. Szarek, Spaces with large distance to l
n

∞
and random matrices, Amer. J. Math. 112

(1990), 899-942.

[21] S. J. Szarek, Metric entropy of homogeneous spaces and Finsler geometry of classical Lie

groups, MSRI preprint 1997-010.

[22] S. J. Szarek, Geodesics for Invariant Finsler Geometries on Classical Lie Groups, to

appear.

[23] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator

ideals, Longman Scientific & Technical, Harlow 1989.

[24] V. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer Verlag,

New York 1984.

[25] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free

probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996),

172-199.

[26] D. Voiculescu, personal communication.


