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Abstract. Last years, the search for a good theory of quantum dynamical entropy has been
very much intensified. This is not only due to its usefulness in quantum probability but mainly
because it is a very promising tool for the theory of quantum chaos. Nowadays, there are several
constructions which try to fulfill this need, some of which are more mathematically inspired such
as CNT (Connes, Narnhofer, Thirring), and the one proposed by Voiculescu, others are more
inspired by physics such as ALF (Alicki, Lindblad, Fannes). Therefore, a natural question arises
whether there is a relation between all these different notions. In this paper we will indicate that
the CNT entropy turns out to be smaller than the ALF dynamical entropy.

1. Introduction. The aim of this paper is to study the relation between the dynam-

ical entropy as proposed by Alicki, Lindblad and Fannes (ALF) and the one proposed

by Connes, Narnhofer, Thirring and Størmer (CNT). The main difference between both

theories is that the one of CNT is more inspired by mathematics while the ALF theory

got its inspiration in physics.

The CNT entropy couples the quantum system to a classical system and computes

then the mutual information of the composed system. The classical system represents

the measuring device. Although, it has all natural properties that one expects from a

dynamical entropy, it is hard to compute in concrete models. ALF on the other hand,

couples the quantum system to its coarse grained model which is again a quantum system.

Hence, in this theory one tries to model a quantum mechanical system in a quantum

manner. As coarse grained model one uses a quantum spin chain and the dynamics on

the system translates into a shift on the quantum spin chain. This approach gives nice

results in concrete models but it is much harder to prove general properties.

It turns out that there is a relation between the CNT and the ALF entropy in the

sense that CNT can be expressed in terms of partitions of unity. This relation will then be
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used to prove the inequality between both after one time step. However, we still believe

that this result can be extended to infinitely long times but we found a gap in our proof.

Therefore, the result is formulated as a conjecture.

The paper is organized as follows. Section 2 reformulates the ALF entropy as a cou-

pling with another quantum system. For the original construction we refer to [AF]. In

order to be able to explain the relation between CNT and ALF we recall very briefly in

section 3 the construction of CNT. In section 4 we present some examples to illustrate the

inequality between both entropies. The most striking difference is found in the example of

the free shift. The other two examples that we present are the quantum cat map and the

shift on a quantum spin chain. In section 5 finally, the relation between both is shown.

For proofs however we refer the interested reader to [TUY].

2. The ALF dynamical entropy. The goal of this section is to interprete the

construction, as proposed in [AF], in terms of a coupling of the quantum dynamical system

(A,Θ, ω) with the coarse grained model i.e. a quantum spin chain. By a coupling between

a dynamical system and a coarse grained model, say Mk, we will mean a completely

positive map:

Φ :Mk ⊗A → A.
Therefore, the starting point is a sequence of extreme completely positive, unity preserv-

ing mappings {Φn}n:

Φn :M⊗[0,n−1]
k ⊗A → A.

To each mapping Φn, we associate a new mapping denoted by Φ̂n:

Φ̂n :M⊗[0,n−1]
k → A

which is obtained as a restriction of the mapping Φn to M⊗[0,n]
k , i.e. for all A ∈M⊗[0,n]

k

Φ̂n(A) = Φn(A⊗ 1IA).

On the other hand, we denote the restriction of the map Φ1 to the algebra A by Γ. The

map Γ : A → A is hence defined as:

Γ(x) = Φ1(1IMk
⊗ x) for all x ∈ A,

and consequently completely positive. We require that this sequence of mappings satisfies

the following conditions:

i) {Φ̂n} is a sequence of unity preserving completely positive mappings that are com-

patible: for A ∈M⊗[0,n]
k

Φ̂n+1(A⊗ 1I) = Φ̂n(A).

ii) In order to make a coarse grained picture of the dynamical system (A,Θ, ω) on the

spin chain M⊗Nk , in such a way that one time step of the dynamics is translated into a

shift to the right on the spin model, we impose the following condition:

Φ̂∞ ◦ S(A) = Γ ◦Θ ◦ Φ̂∞(A)

for A an arbitrary element in the quasi local algebra M⊗Nk . By S we denote the shift

to the right on M⊗Nk and by Φ̂∞ the extension of the maps Φ̂n to M⊗Nk . Because of

compatibility, the relation ω∞ ≡ ω ◦ Φ̂∞ defines a state on the spin chain M⊗Nk . The
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quantum dynamical entropy of the system (A,Θ, ω) is then computed as the supremum

of the entropy densities of the states ω∞:

hALF = sup
CP

σ(ω∞) = sup
CP

lim
n→∞

1

n
S(ωn).

CP stands for the set of all compatible completely positive mappings that are constructed

by means of the mappings Φ∞ and satisfy the conditions i) and ii). It is readily seen

that partitions of unity are within this new setting. For a partition of unity of size k:
χ = (x0, . . . , xk−1) the mappings above have the following explicit form:

Φ1 : Mk ⊗A → A : [ai,j ]i,j 7→
∑
i,j

x∗i ai,jxj

Γ : A → A : x 7→
k−1∑
i=0

x∗i xxi

Φ̂1 : Mk → A : A 7→
∑
i,j

Aijx
∗
i xj .

It follows immediately that the state ω1 := ω ◦ Φ̂1 on Mk has density matrix ρ[χ]. At

time t one recovers in this way the density matrices ρ[0,t][χ]. Hence, these couplings yield

the original structure of ALF in [AF].

3. CNT entropy. We will follow here the approach as presented by J.L. Sauvageot

and J.P. Thouvenot in [Sau] since it is more closely related to the notion of partition of

unity. We start from the quantum probability space (R, ω).

By a coupling between (R, ω) and an Abelian algebra B is meant a state λ on the

tensor product algebra R⊗B such that its restriction to R is ω.

For a finite dimensional algebra B and a coupling λ with R, one can decompose any

state ω on R according to the minimal projections δx in B. Define ωx(a) = λ(a ⊗ δx).

Then, one obtains a decomposition of the state ω:

ω =
∑
x∈X

ωx =
∑
x∈X

µ(x)ω̂x.

where X is the spectrum of B and µ(x) = λ(1I ⊗ δx). With the notations of above, the

mutual information ελ(R,P) associated to the coupling λ of R with a finite dimensional

Abelian algebra P is given by

ελ(R,P) = S(µ) +
∑
x∈X

S(ωx, ω).

By a finite partition of a unital Abelian C∗-algebra B, we will mean a finite partition

C = {C0, . . . , Ck−1} of the spectrum X of B or in other words a finite dimensional unital

subalgebra P of B or a finite family of projection operators {χCi}k−1
i=0 whose sum equals

1IB. The main contribution in [Sau] consists in proving the claim that one only has to

look at stationary couplings in order to compute the CNT entropy.

A stationary coupling of the system (R,Θ, ω) with a classical dynamical system (P, σ)

is a state λ on the C∗-algebra R ⊗ P that is invariant under the automorphism Θ ⊗ σ
and whose restriction to R is the state ω.
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The entropy associated to a stationary coupling λ between the dynamical system

(R,Θ, ω) and the classical couple (P, σ) is defined as:

h(P, λ) = lim
n→∞

1

n
ελ(R,

n∨
k=1

σkP). (1)

The CNT dynamical entropy of the system (R,Θ, ω) is then given by the following

formula:

hCNT
ω (Θ) = sup h(P, λ) (2)

where the supremum has to be taken over all possible stationary couplings λ with all

possible classical systems and for each λ over all possible finite partitions in the classical

system.

4. Examples. Here, we present some examples to illustrate the theorem that we

want to state later. We start with a model in which the difference between the ALF and

the CNT entropy becomes extreme: the free shift. This model is not so important from

the physical point of view but it is one of these systems for which the CNT entropy can

be computed exactly.

Mathematically the model can be formulated as follows: let A be the universal C∗-

algebra generated by the infinite number of generators {ei| i ∈ Z} which satisfy the

following rules:

ei = e∗i (3)

e2
i = 1I. (4)

In A it is useful to consider the norm dense subalgebra A0 which consists of finite linear

combinations of words. A word w is a monomial in the generators ei which cannot be

simplified by means of the relations 3, 4. In concreto, this means that a word of length n

is of the following form: ei1ei2 . . . ein with i1 6= i2, i2 6= i3, . . . , in−1 6= in.

The free shift is defined on the generators as follows: Θ(ei) = ei+1. Θ extends to an

automorphism on A. There is a unique tracial state on this algebra which is given by:

τ(1I) = 1, τ(w) = 0. τ is invariant under the shift and we will take it as the invariant state

of the dynamical system. The von Neumann algebra R associated to the C∗-algebra A is

the II1 factor L(F∞) obtained from the left regular representation of the free group F∞
in an infinite number of generators.

Theorem 1. Let R be the von Neumann algebra generated by the free generators with

the free shift Θ and invariant trace τ . Then,

hALF
(R,Θ,τ) =∞.

P r o o f. As explained in section 2, we can start from a partition of unity. Choose the

following partition

χ =

(
e1√
k
,
e1e2e1√

k
, · · · , e1e2e1 · · · e2e1√

k

)
.
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Then, by the shift it is transformed into

Θ(χ) =

(
e2√
k
,
e2e3e2√

k
, · · · , e2e3e2 · · · e3e2√

k

)
.

A general element of the partition Θn−1χ ◦ · · ·Θχ ◦ χ can be written symbolically as

follows:

[en · · · en]× [en−1 · · · en−1]× . . .× [e1 · · · e1].

This yields the following matrix elements for them-step evolved density matrix ρ[0,m−1][χ]:

put i = (i0, . . . , im−1) and j = (j0, . . . , jm−1) then:

ρ[0,m−1][χ]i,j =
1

km
τ([e1 . . . e1]jo . . . [em . . . em]jm−1 [em . . . em]im−1 . . . [e1 . . . e1]i0)

A small computation shows that with the previous definitions this density matrix is the

trace onM[0,m−1]
k . The entropy density of this state is therefore log k. Since the size k of

the starting partition χ was arbitrary, this yields:

hALF
(R,Θ,τ) =∞.

It was computed by E. Størmer [Sto] that for this model the CNT entropy equals zero

in spite of the fact that the algebra increases enormously under the shift. Moreover, it was

proven by R. Alicki and H. Narnhofer in [AN] that for the same model also hALF
(R,Θ2,τ) =∞

whereas for the CNT entropy this entropy is also zero by additivity.

As a second example, we present the quantum Arnold cat map. For a detailed dis-

cussion we refer the interested reader to [AAFT], [AFTA],[FT], [TUY]. The algebras

describing these systems are the rotation algebras which are generated by two unitaries

u and v satisfying the following twisted commutation relation:

uv = e2iπqvu.

It is useful to consider the Weyl like operators

W (χ) = e−iqmn/2umvn χ =
(m
n

)
.

In this setting the cat dynamics looks like a quasifree dynamics on the CCR:

ΘTW (χ) = W (Tχ) for T ∈ SL(2,Z).

Again, it is easy to verify that ΘT extends to an automorphism on the rotation algebras

generated by the unitaries u and v. The matrix T has two eigenvalues λ+ and λ− satisfying

λ+ λ− = 1. The gauge automorphism:

γα(W (χ)) = ei〈α,χ〉W (χ)

leads to the following horocycle rule

ΘT ◦ γα = γTα ◦ΘT .

Therefore, the numbers log λ+ and log λ− may be interpreted as Lyapunov exponents.

Finally, we mention that there is a tracial state τ on the von Neumann algebras generated

by the unitaries u, v, which we will denote by Rq. We formulate the main theorem on the

entropy of this system without proof. For a proof, we refer the reader to [TUY], [FT].
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Theorem 2. The dynamical entropy of the system (Rq,ΘT , ϕ) equals its positive Lya-

punov exponent log λ+, for any normal state ϕ on Rq and partitions chosen in the algebra

of Schwartz functions on the non-commutative torus.

It was proven in [BNS] that the CNT entropy of this system is zero if the deformation

parameter q is an irrational number. For rational deformation parameters it equals the

positive Lyapunov exponent.

Finally, we comment very briefly on the dynamical entropy for the shift on a quantum

spin chain. The algebra describing the system is a UHF algebra which we will denote by⊗
i∈ZMd. The shift Θ maps an element that lives on a finite volume Λ of Z onto one that

lives on the volume Λ+1. As invariant state, one can take any translation invariant state

ω on
⊗

i∈ZMd. In [FT], [TUY], we constructed a subalgebra A∞q,fin of elements whose

tails converge to the identity as e−q|j|, j ∈ Z. If one restricts the choice of partitions to

the subalgebra A∞q,fin then one has the following result:

Theorem 3. The dynamical entropy of the sytem (
⊗

i∈ZMd,Θ, ω) equals

σ(ω) + log d

where σ(ω) is the entropy density of the state ω.

It can be proven that under certain clustering conditions of the state ω the CNT

entropy of this system is equal to the entropy density of the state ω. For a completely

random system, i.e. the invariant state is the trace, the ALF entropy is twice as large as

the CNT entropy: log d.

5. Relation between hCNT and hALF. The following lemma indicates that there is

a relation between the CNT construction and the notion of partitions of unity.

Lemma 1. Let ω be a faithful , normal state on R that is decomposed into positive

functionals ωi:

ω =

n∑
i=1

ωi.

Then, there exists a partition of unity χ in R which realizes this decomposition. Moreover ,

ω ◦ Γχ = ω where Γχ denotes the completely positive map associated to χ.

The maps Φ1 associated to a partition χ induce states ω
χ

on R ⊗Mk as follows.

Take [ai,j ]i,j in R⊗Mk then:

ω
χ

([ai,j ]i,j) = (ω ◦ Φ1)([ai,j ]i,j). (5)

It can be easily seen that the restriction of ω
χ

to R is the state ω and its marginal on

Mk gives the density matrix is ρ[χ]. We introduce the diagonalization mapping.

Γd :Mn ⊗R → Cn ⊗R : [ai,j ]i,j 7→ [ai,iδi,j ]i,j . (6)

The map Γd defined in equation 6 is a unity preserving completely positive map. Given

a state ω on a von Neumann algebra R and a partition χ in R that leaves ω invariant,

we denote by ωi the positive functional that is defined by the relation: ωi(z) ≡ ω(x∗i zxi).
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From the definition of the state ω
χ

in (5) and of the map Γd in (6) we can derive:

ω
χ ◦ Γd([ai,j ]i,j) =

n∑
i=1

ωi(ai,i),

or stated in another way:

ω
χ ◦ Γd =

n⊕
i=1

ωi.

On the other hand:

(ρ[χ]⊗ ω) ◦ Γd = ρd[χ]⊗ ω
where ρd[χ] is the diagonal matrix ρ[χ] = [ω(x∗i xj)δi,j ]i,j .

In order to compare hALF with hCNT we will use the notion of relative entropy together

with the Uhlmann monotonicity theorem [OP]. In particular, we will have to compute

S(ω
χ
, ω⊗ ρ[χ]) and S(ω

χ ◦ Γ, ω⊗ ρ[χ]d). On the technical level this means that we need

the modular operators ∆
ω
χ
,ω⊗ρ[χ]

and ∆
ω
χ◦Γ,ω⊗ρ[χ]d

. Therefore, we construct the GNS

representations of these states.

First of all it is well known that if the triple (Hω1
, π1, ω1) is the GNS representation

of the algebra A1 with respect to the state ω1 and (Hω2 , π2, ω2) is that of A2 with respect

to ω2 then the GNS representation of the algebra A1 ⊗ A2 with respect to the product

state ω1 ⊗ ω2 is given by (Hω1 ⊗Hω2 , π1 ⊗ π2,Ω1 ⊗ Ω2).

The following theorem tells us explicitly how the GNS representations of the states

ω ⊗ ρ[χ] and ω ⊗ ρ[χ]d can be constructed.

Corollary 1. Let ρ be a density matrix on Mk and let {λ0, . . . , λd−1} be the set

of non-zero eigenvalues with corresponding eigenvectors {e0, . . . , ed−1}. Consider also a

state ω on a C∗-algebra A with GNS triplet (Hω, π,Ω). Then the GNS triplet of the

algebraMk ⊗A with respect to the product state ρ⊗ Ω is given by :(
Ck ⊗Cd ⊗Hω,

d−1∑
i=0

λ
1/2
i ei ⊗ ei ⊗ Ω, π1 ⊗ π

)
where d is the number of nonzero eigenvalues of the matrix ρ and

π1 ⊗ π :Mk ⊗A →Mk ⊗Md ⊗ B(Hω) : A⊗ x 7→ A⊗ 1Id ⊗ π(x).

Another representation that is missing is that of the state ω
χ

. It is again not hard to

verify that the algebra Mk ⊗A can be represented on the Hilbert space Ck ⊗C⊗Hω.

The representation map π is then given by:

π :Mk ⊗A →Mk ⊗C⊗ B(Hω) : A⊗ x 7→ A⊗ 1I⊗ x
and the state ω

χ
by the vector:

k−1∑
i=0

ei ⊗ ξ ⊗ Ω.

Denote by Ωρ the cyclic vector
∑k−1
i=0 λ

1/2
i ei ⊗ ei ⊗ xiΩ representing the state A ⊗ x 7→

(Tr ρ[χ]A)ω(x). Here the λi are the eigenvalues of ρ[χ] and the ei are the corresponding
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eigenvectors. In order to compute S(Ωχ,Ωρ), we have to construct the relative modular

operator ∆Ωχ,Ωρ . This is the content of the next lemma.

Lemma 2. The relative modular operator ∆Ωχ,Ωρ equals:

∆Ωχ,Ωρ =

k−1∑
i,j=0

Ei,j ⊗ ρ[χ]−1 ⊗ xi∆Ωx
∗
j

where ∆Ω is the modular operator of the vector Ω representing the state ω. Moreover ,∑
i,j

Ei,j ⊗ 1I⊗ xi∆Ωx
∗
jΩχ = Ωχ.

Analogously, it follows that the cyclic vector representing the state ω
χ ◦Γ is given by

ΩΓ
χ :=

∑k−1
i=0 ei ⊗ ei ⊗ xiΩ in the representation π : A ⊗ x 7→ A ⊗ 1I ⊗ x and the vector

representing the state ρd[χ] ⊗ ω is Ωdρ :=
∑k−1
i=0 µ(i)ei ⊗ ei ⊗ Ω where µ(i) = ω(x∗i xi).

Another small computation shows then that

∆ΩΓ
χ,Ω

d
ρ

=

k−1∑
j=0

Ejj ⊗ ρd[χ]−1 ⊗∆ωj ,ω. (7)

At this point, we are in a position where we are able to prove the following proposition

which provides us with the basic inequality to prove the relation between hALF and hCNT

after one time step.

Proposition 4. Let R be a von Neumann algebra on a Hilbert space H and let ω

be a state on R and Γ be the completely positive map from equation 6. Consider also a

partition of unity χ such that ω ◦ Γχ = ω. Then

S(ρ[χ]) ≥ S({ωi(1I)}k−1
i=0 ) +

k−1∑
i=0

S(ω, ωi).

P r o o f. We exploit the Uhlmann monotonicity theorem [OP] and the previous lem-

mas.

S(ω
χ
, ρ[χ]⊗ ω) ≥ S(ω

χ ◦ Γ, ρd[χ]⊗ ω).

The left hand side of the inequality yields:

〈Ωχ, log
( k−1∑
i,j=0

Ei,j ⊗ 1I⊗ xi∆Ωx
∗
j

)
Ωχ〉 − 〈Ωχ, 1I⊗ log ρ[χ]⊗ 1I Ωχ〉.

By the previous lemma we know that the vector Ωχ is invariant under the operator∑
i,j Ei,j ⊗ 1I ⊗ xi∆Ωx

∗
j . Therefore the first term of the previous equation is zero. Since

the restriction of the state Ωχ to the algebra Mk is the density matrix ρ[χ], the second

term and hence the whole equation equals S(ρ[χ]). Because

log ∆Ωdχ,Ω
d
ρ

= −1I⊗ log ρd[χ]⊗ 1I +

k−1∑
j=0

Ejj ⊗ 1I⊗ log ∆ωj ,ω,
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the right hand side becomes:

S(µ) +

k−1∑
i=0

S(ωi, ω).

where µ is the measure (µ(0), . . . , µ(k − 1)) and µ(i) = ω(x∗i xi). So that finally we have:

S(ρ[χ]) ≥ S(µ) +

k−1∑
i=0

S(ωi, ω). (8)

The term S({ωi(1I)}k−1
i=0 ) can be seen as the entropy of a classical measure on the finite

state space Zk. In order to give a full proof of the fact that hALF ≥ hCNT we should also

implement the time evolution. This is not so easy as we thought at first sight. One has

to prove that the fine decompositions of the state ω after n time steps can be made by

means of completely positive mappings Φn and this turns out to be highly non-trivial

problem. However, because of all the examples we still believe that hALF ≥ hCNT and

therefore it has to be considered as a conjecture.

6. Information theory. We will show here that the quantum dynamical entropy

can be used to estimate the capacity of a quantum channel through which one sends

messages consisting of a classical alphabet.

We consider the following situation: a message has to be encoded by quantum means

(photons and optical fibers) and to be decoded in the final station. We will assume that the

messages consist of letters belonging to a finite alphabet A = {1, 2, . . . ,m}. The encoding

transmission device is a quantum dynamical system for which we will take the shift on a

quantum spin chain. The encoding procedure will be modeled by a perturbation of the

reference state ω. Such a perturbation will be realized by a completely positive mapping

generated by a partition of unity χ. Hence, to each letter α ∈ A there is associated a

partition of unity χα = (xα0 , . . . , x
α
k(α)−1). Denoting by (π,Hω,Ω) the GNS representation

of (A, ω), we consider the following perturbation of the state ω in order to encode a letter

α:

ω ◦ Γχα(z) = Tr

k(α)∑
i=0

|π(xαi )Ω〉〈π(xαi )Ω|π(z).

We model the receiver by a measuring device, i.e. a set of observables Z = {zi| i =

0, . . . ,m− 1} such that
∑k−1
i=0 zi = 1I. The standard notion that measures the amount of

information that can be sent through a communication channel is

I(α|β) = S(Pi) + S(Po)− S(Pio).

Here, we denoted by Pi the input probability measure for letters belonging to A, and by

Po the output probability measure. The measure Pio(α|β) gives the so called input-output

probability. It can be easily verified that the measures Pi and Po are the marginals of

the measure Pio and hence one has by subadditivity and monotonicity of the entropy the

following upper bound on the information capacity:

0 ≤ I(α|β) ≤ min{S(Pi),S(Po)}
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However, a more useful inequality is the Holevo-Levitin inequality for the information

capacity. It provides the following upper bound:

I(α|β) ≤ S(
∑
α∈A

Pi(α)ρα)−
∑
α∈A

Pi(α)S(ρα)

where ρα =
∑k−1
i=0 |π(xαi )Ω〉〈π(xαi )Ω|. The quantity that determines the efficiency of the

communication channel is the averaged amount of information per time unit J(α|β). The

input probability measure is a measure on the classical spin chain AN. As dynamical

system that models the transmission device we take the shift on a quantum spin chain.

By means of the Holevo-Levitin inequality the following theorem then easily follows:

Theorem 5. The speed of information transmission J(.|.) is bounded above by the

dynamical entropy hALF
(M⊗Z

d
,Θ,ω)

.
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