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Free entropy is the entropy quantity with the right behavior with respect to free

independence. We began the study of free entropy with the one-variable case [7], taking

as definition, based on random matrix heuristics, the negative of the logarithmic energy

of the distribution. We then found in [8] a general definition of χ(X1, . . . , Xn), the free

entropy of an n-tuple of noncommutative random variables in a tracial W ∗-probability

space, using matricial microstates. The parallel to classical entropy suggests a number of

natural properties free entropy should satisfy and several of these have been established

([7, 8, 10, 4, 6]). This new machinery has had striking applications to the solution of some

old problems on von Neumann algebras ([9, 2, 3, 1]). On the other hand, from the point of

view of this parallel to classical entropy, the theory is still incomplete, which keeps certain

further applications to von Neumann algebras out of reach. The main reason for the

difficulties is that we know very little about matrix-approximants to elements in type II1
von Neumann algebras. Even the general existence question for such approximants, which

would be a first step in this direction, is unsolved and coincides with Alain Connes’ well

known problem about embedding type II1 factors into the ultraproduct of the hyperfinite

II1 factor. Under these circumstances we began in [11] to look for another approach to

free entropy which avoids matricial microstates. This should not be viewed only as an

alternative to microstates, since some of the results actually can be used within the

microstates approach.

This note summarizes the lecture we intended to give at the Gdańsk Quantum Prob-

ability meeting about our current work towards a “microstates-free” approach to free

entropy [11].
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1. Background: the definition via microstates. Throughout, (M, τ) will de-

note a tracial W ∗-probability space, i.e. a von Neumann algebra M endowed with a

faithful normal trace state τ . We recall here the definition we gave in [8] of the free

entropy χ(X1, . . . , Xn) where Xj = X∗j ∈ M , 1 ≤ j ≤ n. The set of microstates

ΓR(X1, . . . , Xn;m, k, ε) consists of n-tuples (A1, . . . , An) ∈ (Msa
k )n of self-adjoint k × k-

matrices such that ‖Aj‖ < R and |k−1TrAi1 . . . Aip − τ(Xi1 . . . Xip)| < ε, (1 ≤ p ≤ m).

The free entropy χ(X1, . . . , Xn) is obtained by taking

lim sup
k→∞

(k−2 log vol ΓR(X1, . . . , Xn;m, k, ε) +
n

2
log k)

(vol denoting the euclidean volume with respect to the Hilbert-Schmidt norm) followed

by

sup
R>0

inf
m∈N

inf
ε>0

.

The definition of χ(X1, . . . , Xn) via microstates is inspired by Boltzmann’s formula

S = k logW and the fact that free independence occurs asymptotically in random ma-

trices ([5]). Note that classical entropy can also be obtained along similar lines. If (M, τ)

is commutative, i.e. the L∞-space over some probability measure space (Ω, µ) we define

the microstates Γ similarly, with the only modification that (A1, . . . , An) ∈ (∆sa
k )n where

∆sa
k denotes the diagonal self-adjoint k×k-matrices. Going again through an appropriate

normalized limit, etc., we obtain the classical entropy

H(X1, . . . , Xn) = −
\

Rn

p(t1, . . . , tn) log p(t1, . . . , tn)dt1 . . . dtn

if τ (spectral measure of (X1, . . . , Xn)) has density p(t1, . . . , tn) with respect to Lebesgue

measure.

All this shows that the microstates approach is legitimate and rooted in statistical

physics. The main drawback is that it is a rather “philosophical” definition. To prove, for

instance, the additivity of free entropy for free random variables requires the full power

of the asymptotic freeness results for random matrices ([8, 5, 6]). Also, for the classical

entropy, the basic properties are established using the formula −
T
p log p dt, rather than

going back to microstates.

2. Fisher information versus entropy. The classical Fisher information J(f) is

defined by:

J(f) = lim
ε↓0

ε−1(H(f + ε
1
2 g)−H(f))

where f and g are independent random variables and g is (0,1)-Gaussian. If the distri-

bution of f has density p, then

J(f) =
\ (p′(t))2

p(t)
dt .

Correspondingly, the free Fisher information [7] for one variable is

Φ(X) = lim
ε↓0

ε−1(χ(X + ε
1
2S)− χ(X))
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where X = X∗ ∈M , S ∈M and X,S are free and S is (0,1)-semicircular. It follows (see

[7]) that

Φ(X) = 2
3

\
(p(t))3dt

when the distribution µX of X has density p(t) and otherwise φ(X) = +∞.

Thus, the Fisher information (classical or free) is a kind of derivative of the entropy.

Hence entropy and Fisher information are equivalent quantities, in the sense that a theory

of one quantity can be obtained from a theory of the other.

The microstates-free approach to free entropy will have the free Fisher information

as the primary quantity.

3. The idea of the microstates-free approach for one scalar variable. The

formula Φ(X) = 2
3

T
(p(t))3dt involves the Lebesgue integral for which there is not an

obvious generalization. The way out is provided by an identity for the Hilbert transform:\
p3(t) = 3

\
(Hp)2p dt.

Here Hp is the Hilbert transform of p, i.e., if dµ = p dt, then

Hp(s) = c
\ dµ(t)

s− t
where c is a constant and the integral is in the principal value sense). Hence up to

constants Φ(X) coincides with ‖Hp‖2L2(µ).

Moreover the Hilbert transform of p viewed as an element of L2(µ) can be expressed

using the difference quotient derivation:

(∂f)(s, t) =
f(s)− f(t)

s− t
viewed as an unbounded operator from L2(µ) to L2(µ)⊗ L2(µ). Indeed, then we have

Hµ = ∂∗(1⊗ 1).

This simple idea, suitably generalized, is the basis for the microstates-free approach.

4. Noncommutative Hilbert transforms ([11]). If 1 ∈ B ⊂M is a ∗-subalgebra

and X = X∗ ∈ M let B[X] denote the subalgebra generated by B and X. If X and B

are algebraically free (i.e. there is no nontrivial algebraic relation between X and B) let

∂X : B[X]→ B[X]⊗B[X]

be the derivation of B[X] into the B[X]-bimodule B[X]⊗B[X] (here m1(a1 ⊗ a2)m2 =

m1a1 ⊗ a2m2) so that ∂X(X) = 1⊗ 1 and ∂X(B) = 0. This means

∂X(b0Xb1X . . . bn) =

n∑
j=1

b0X . . . bj−1 ⊗ bjX . . . bn.

Definition 1. An affiliated operator with W ∗(B[X]), ξ ∈ L1(W ∗(B[X])), is called

the conjugate of X with respect to B, denoted J (X : B), if

τ(ξm) = (τ ⊗ τ)(∂Xm)

for all m ∈ B[X].
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R e m a r k s. 1) The definition is equivalent to ξ = ∂∗X(1⊗ 1).

2) If B = C, then ∂X : C[X]→ C[X]⊗ C[X] coincides with the difference quotient.

Here is a list of the main results we have obtained concerning conjugates (i.e. non-

commutative Hilbert transforms).

Facts. 1. If B = C and µ is the distribution of X and if dµ = p dt with p ∈ L3 with

respect to Lebesgue measure, then J (X : C) = g(X), where g = 2π Hp.

2. If 1 ∈ B ⊂ M , 1 ∈ C ⊂ M are ∗-subalgebras and C and B[X] are free in (M, τ),

then

J (X : B) = J (X : W ∗(B ∪ C))

3. If 1 ∈ B ⊂ M , 1 ∈ C ⊂ M are ∗-subalgebras, Xj = X∗j ∈ M , Yj = Y ∗j ∈ M ,

1 ≤ j ≤ n and B[X1, . . . , Xn] and C[Y1, . . . , Yn] are free, then

J (X1 + Y1 : (B ∨ C)[X2 + Y2, . . . , Xn + Yn])

= E(B∨C)[X1+Y1,...,Xn+Yn]J (X1 : B[X2, . . . , Xn]).

(Here B ∨ C is the algebra generated by B and C and E denotes the conditional expec-

tation.)

4. If S is (0,1)-semicircular and S and B[X] are free in (M, τ), then J (X + εS : B) =

ε−1EB[X+εS]S. In particular,

‖J (X + εS : B)‖ ≤ 2ε−1 .

5. Let S be (0,1)-semicircular and free with respect to B[X] and assume ‖J (X :

B)‖ <∞. Then

τ(b0(X +
ε

2
J (X : B))b1(X +

ε

2
J (X : B)) . . . bn)

= τ(b0(X + ε
1
2S)b1(X + ε

1
2S) . . . bn) +O(ε2).

6. Let Xj = X∗j ∈ M , 1 ≤ j ≤ n and assume χ(X1, . . . , Xn) > −∞ and J (Xk :

C[X1, . . . , Xk−1, Xk+1, . . . , Xn]) for 1≤k≤n exist. Let further Pj =P ∗j ∈C[X1, . . . , Xn].

Then
d

dε
χ(X1 + εP1, . . . , Xn + εPn)|ε=0

=
∑

1≤j≤n

τ(PjJ (Xj : C[X1, . . . , Xj−1, Xj+1, . . . , Xn]).

Some comments on these properties are in order. 1 shows that J (X : B) is a

generalization of the usual Hilbert transform. 2 and 3 show that J (X : B) has cer-

tain nice properties with respect to free independence. 4 is quite important technically:

small semicircular perturbations regularize the noncommutative Hilbert transform and

assure its existence and boundedness. 5 connects J (X : B) with the free Brownian

motion starting at X. 6 establishes an infinitesimal connection between free entropy

and noncommutative Hilbert transforms. The partial noncommutative Hilbert transform

(J (Xj : C[X1, . . . , Xj−1, Xj+1, . . . , Xn])1≤j≤n acts as a gradient of the free entropy.
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5. The relative free Fisher information ([11]). With the noncommutative Hil-

bert transform at hand we can now pass to the free Fisher information, i.e. to the primary

quantity of the microstates-free approach. At present this approach takes the form of a

parallel development with some bridges between the two. Further down the road, I expect

more results relating the two approaches. In view of this we had to devise some parallel

rules for notations. Roughly, the corresponding quantities in the new approach will have

an asterisk. So χ denotes entropy defined via microstates, while χ∗ will denote the entropy

in the new approach and similarly Φ is the free Fisher information that goes with χ, while

Φ∗ will be the Fisher information of the new approach. Note however that in χ(. . . : · · ·)
and χ∗(. . . : · · ·) the colon sign will have a different meaning.

Definition 2. If 1 ∈ B ⊂ M is a ∗-subalgebra and Xj = X∗j ∈ M , 1 ≤ j ≤ n, the

relative free Fisher information of X1, . . . , Xn with respect to B is given by

Φ∗(X1, . . . , Xn : B) =
∑

1≤j≤n

|J (Xj : B[X1, . . . , Xj−1, Xj+1, . . . Xn])|22

if J (Xj : B[X1, . . . , Xj−1, Xj+1, . . . Xn]) ∈ L2(M), (1 ≤ j ≤ n) and is otherwise equal to

+∞.

Facts. 1. If C and B[X1, . . . , Xn] are free in (M, τ) then

Φ∗(X1, . . . , Xn : B ∨ C) = Φ∗(X1, . . . , Xn : B).

2. If B[X1, . . . , Xn] and C[Y1, . . . , Ym] are free, then

Φ∗(X1, . . . , Xn, Y1, . . . , Ym : B ∨ C) = Φ∗(X1, . . . , Xn : B) + Φ∗(Y1, . . . , Ym : C).

3. Without a freeness assumption in the conclusion of (2), the equal sign is replaced

by ≥.

4. (Free analogue of the Stam inequality.) If B[X1, . . . , Xn] and C[Y1, . . . , Yn] are free,

then

(Φ∗(X1 + Y1, . . . , Xn + Yn : B ∨ C))−1

≥ (Φ∗(X1, . . . , Xn : B))−1 + (Φ∗(Y1, . . . , Yn : C))−1.

5. (Free analogue of the Cramer-Rao inequality.)

Φ∗(X1, . . . , Xn : B)τ(X2
1 + . . .+X2

1 ) ≥ n2.
Equality holds if and only if B, {X1}, . . . , {Xn} are free and the Xj ’s have equal centered

semicircular distributions.

6. If each Sj is (0,1) semicircular (1 ≤ j ≤ n) and B[X1, . . . , Xn], {S1}, . . . , {Sn} are

free, then

[0,∞) 3 t→ Φ∗(X1 + t
1
2S1, . . . , Xn + t

1
2Sn : B) ∈ (0,∞]

is decreasing and right continuous. Moreover

n2(C2 + nt)−1 ≤ Φ∗(X1 + t
1
2S1, . . . Xn + t

1
2Sn : B) ≤ nt−1

where C2 = τ(X2
1 + . . .+X2

n).
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6. The relative free entropy ([11])

Definition 3. Let 1 ∈ B ⊂ M be a ∗-subalgebra and Xj = X∗j ∈ M , 1 ≤ j ≤ n.

The relative free entropy of X1, . . . , Xn with respect to B is given by

χ∗(X1, . . . , Xn :B) = 1
2

∞\

0

(
n

1 + t
− Φ∗(X1 + t

1
2S1, . . . , Xn + t

1
2Sn :B)

)
dt+

n

2
log 2πe

where the Sj are (0,1)-semicircular and B[X1, . . . , Xn], {S1}, . . . , {Sn} are free.

Facts. 1. χ∗(X : C) = χ(X).

2. χ∗(X1, . . . , Xn : B) ≤ n
2 log(2πen−1C) where C2 = τ(X2

1 + . . .+X2
n).

3. χ∗(X1, . . . , Xn, Y1, . . . , Ym :B∨C) ≤ χ∗(X1, . . . , Xn :B)+χ∗(Y1, . . . , Ym :C).

4. If B[X1, . . . , Xn], C[Y1, . . . , Ym] are free, then

χ∗(X1, . . . , Xn : B) + χ∗(Y1, . . . , Ym : C) = χ∗(X1, . . . , Xn, Y1, . . . , Ym : B ∨ C).

5. If X
(k)
j = X

(k)∗

j ∈M , 1 ≤ j ≤ n, k ∈ N and

s− lim
k→∞

X
(k)
j = Xj , (1 ≤ j ≤ n)

then

lim sup
k→∞

χ∗(X
(k)
1 , . . . X(k)

n : B) ≤ χ∗(X1, . . . , Xn : B)

6. If the Sj are (0,1)-semicircular and B[X1, . . . , Xn], {S1}, . . . , {Sn} are free let

h(t) = χ∗(X1 + t
1
2S1, . . . , Xn + t

1
2Sn : B).

Then h : [0,∞) → R ∪ {−∞} is concave, continuous, increasing and h(t) ≥ n
2 log(2πet).

Moreover

lim
ε↓0

ε−1(h(t+ ε)− h(t)) = 1
2Φ∗(X1 + t

1
2S1, . . . , Xn + t

1
2Sn : B).
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