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Abstract. New experiments on neutral K-mesons might turn out to be promising tests of

the hypothesis of Complete Positivity in the physics of open quantum systems. In particular, a

consistent dynamical description of correlated neutral kaons seems to ask for Complete Positivity.

1. Introduction. Quantum dynamical semigroups provide a useful framework for the

description of quite a variety of quantum open systems (S) ([1, 2]). From a general point

of view, the latter are considered as subsystems interacting with a suitable environment

(E). If the coupling between S and E is sufficiently weak, the effective evolution of S

is expected to be irreversible and free from complicated feed-back and memory effects.

Under these hypothesis, via weak-coupling limits techniques, one can indeed deduce an

effective Markoffian dynamics ([1-4]). That is, the space of states ρ (density matrices)

of S is transformed into itself by a one-parameter family γt : ρ 7→ γt[ρ] of linear maps

satisfying γs ◦ γt = γt+s for s, t ≥ 0 and preserving the positivity of any initial state ρ.

However, it turns out that the dynamical maps γt obtained in this way enjoy the

stronger property of being completely positive ([5, 6]). That is, they remain positive

when naturally extended from linear transformations on the state-space of S to linear

transformations on the state-space of the system S coupled with any finite-level system

En of arbitrary dimension n:

(1.1) γt on S −→ γt ⊗ 1n on S + En.
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(Complete Positivity is usually defined for linear transformations on observables. Via

duality, the property is then extended to linear maps on the state-space as formulated

in (1.1).)

The importance of complete positivity for addressing the description of quantum

measurement processes has been pointed out in [6] and the consequences on the generators

of quantum dynamical semigroups in [7, 8].

If we ask that the effective dynamics of a finite-level quantum open system S be de-

scribed by a probability preserving quantum dynamical semigroup, the evolution equation

satisfied by the states of S has the typical Lindblad form

(1.2)
∂

∂t
γt[ρ] = −i [H, γt[ρ]]−

1

2

∑

j

{A†
jAj γt[ρ] + γt[ρ]A

†
jAj}+

∑

j

Aj γt[ρ]A
†
j .

From (1.2) it follows that the request of complete positivity forced upon the dynamics of

a quantum open system has striking consequences on the phenomenological parameters

governing the effective description: typically, relaxation times satisfy certain inequali-

ties ([1]).

The question naturally arises whether complete positivity is really necessary. After all,

it results as a constraint from the coupling of S with a dynamically totally independent

external system En. Why should this apparently trivial “interaction” have dynamical

effects on S which, in itself, is not at all influenced by En but for the correlations built

in the common state of S + En ([9])?

In effect, renouncing complete positivity asks for some price to be paid, in terms

either of internal inconsistencies or of lack of generality in defining a consistent reduced

dynamics ([10]). Indeed, generic compound states of S + En are entangled, that is they

cannot be put in the “separated” form

(1.3) ρS+En
=

∑

i,j

λij ρ
i
S ⊗ ρjEn

,

where ρiS , respectively ρ
j
En

, are states of S, respectively En and λij are positive weights.

Then (compare also [11,12]),

1. If γt is completely positive on S, all states of S + En, whether entangled or not,

are transformed into states of S + En by γt ⊗ 1n, for all n.

2. If γt is just positive on S, there exist an En and a non-separable state ρ∗S+En
of

S+En such that the spectrum of γt⊗1n[ρ
∗
S+En

] is not positive any more and γt⊗1n[ρ
∗
S+En

]

cannot be thus interpreted as a state of S + En.

Whether the latter fact may have any importance for physics is, at first sight, doubtful

in view of the physical triviality of the coupling (1.1) and the possible physical hawkward-

ness of the pathological state ρ∗S+En
. Nevertheless, by considering the system of neutral

K-mesons (kaons) ([13]), in the following we will present arguments that would illustrate

points 1. and 2. above.

The observation that the quantum fluctuations of the gravitational field at Planck’s

scale originate loss of quantum coherence ([14, 15]) transforming pure states into mix-

tures ([16, 17]) was one of the physical motivations to describe the neutral kaon system as

an open quantum system ([18, 19]). This approach essentially amounts to postulating for
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unstable particles like kaons a dynamics not of the standard (Weisskopf-Wigner) form. In

turn, such non-standard time-evolution would induce violations of the symmetries under

Charge-Parity (CP -) and even under CP plus Time-reversal (CPT -) transformations.

Interestingly enough, the consequences of such an hypothesis could be compared with

existing experimental data.

In [20] it was observed that the dissipative semigroup dynamics of [18, 19] cannot be

completely positive in general. Instead, in [20-23] the K0-K0 system has been treated

as a quantum open system evolving according to a quantum dynamical semigroup of

completely positive maps. Indeed, the coupling between the kaon system and the quantum

gravitational background can be certainly supposed to be weak enough to justify an

effective reduced dynamics with such a property. Moreover, one can conceive different

mechanisms ([24, 25]) than quantum gravity as responsible for theK0-K0 dissipative open

dynamics. In such a case quantum dynamical semigroups provide a rather flexible and rich

framework for a convenient description of the kaon decay. The dissipative modification of

the standard Weisskopf-Wigner evolution equation introduces six new phenomenological

parameters a, b, c, α, β and γ that must obey certain inequalities. These inequalities can,

in principle, be checked by using the available experimental data on the neutral kaon

system.

Unfortunately ([23]), the accuracies of experimental data available at present are

too poor to perform such a test. However, planned future experiments at the so-called

φ-factories involving pair of correlated neutral kaons are expected to provide much better

accuracies ([26, 27]). Moreover, the natural extension of the quantum open system de-

scription to the physics of the entangled kaons at a φ-factory points to complete positivity

as a necessary property against the appearance of unphysical negative eigenvalues in the

spectrum of the two-kaon states ([21, 22]).

2. Neutral kaon system. The evolution and decay of the neutral kaons K0 and K0

is usually described by means of a two-dimensional Hilbert space ([13]). The kaon states

|K0〉 and |K0〉 with strangeness quantum number +1, respectively −1 are exchanged one

into the other under a CP (Charge-Parity) transformation. The CP (Charge-Parity)

eigenstates

(2.1) |K1〉 =
1√
2
[|K0〉+ |K0〉], |K2〉 =

1√
2
[|K0〉 − |K0〉]

will be used as a Hilbert space basis and mixed kaon states (density matrices) will be

accordingly represented as:

(2.2) ρ =

(
ρ0 + ρ3 ρ1 − iρ2
ρ1 + iρ2 ρ0 − ρ3

)
.

Because they interact weakly, neither strangeness nor CP -invariance is preserved and

the above states decay in time. In the standard quantum mechanical description, the

decay properties of the K0-K0 system are described by an effective (Weisskopf-Wigner)

Hamiltonian

(2.3) H =M − i

2
Γ,
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where M and Γ are positive 2 × 2 matrices, Γ characterizing the decaying properties of

the system.

As explained in the introduction, we will abandon the standard description and treat

neutral kaons as open quantum systems evolving in time according to a semigroup of

dynamical maps generated by a Weisskopf-Wigner term −i H ρ(t) + i ρ(t) H† plus a

dissipative one LD[ρ(t)] of Lindblad form:

(2.4)
∂

∂t
ρ(t) = −iHρ(t) + iρ(t)H† + LD[ρ(t)],

(2.5) LD[ρ(t)] = −1

2
(Rρ(t) + ρ(t)R) +

∑

j

Aj ρ(t)A
†
j ,

where R :=
∑

j A
†
jAj and LD[ρ] are well-defined 2× 2 matrices for any given state ρ.

A part from being probability decreasing (d/dt Trρ(t) = −Tr(ρ(t)Γ ) ≤ 0), (2.4)

generates a quantum dynamical semigroup ([1, 3, 7]), namely the linear maps γt : ρ 7→ ρ(t)

are completely positive.

Lemma 1. The generator in (2.4 ) can always be written as

(2.6)

L[ρ] =− i [M,ρ(t)]− 1

2
(Γρ+ ρΓ )

+
1

2

3∑

i,k=1

vik [2σk ρ σi − σiσk ρ− ρ σiσk] ,

where vik = 〈ai|ak〉, with |ai〉, i = 1, 2, 3, suitable square-summable complex vectors and

the σi are the Pauli matrices.

P r o o f. With σ0 the identity 2× 2 matrix, we consider (2.5) and write the (at most

countably many) operators Aj as Aj=
∑3

µ=0 ajµσµ. Let |aµ〉, µ = 0, 1, 2, 3, be the vectors

of components ajµ: they are square-summable as we assumed LD[ρ] to be a well-defined

linear map from the algebra of 2× 2 matrices into itself. Then, (2.5) reads

(2.7) LD[ρ] = i

3∑

k=1

Im(v0k) [σk, ρ] +
1

2

3∑

i,k=1

vik [2σk ρ σi − σiσk ρ − ρ σiσk] .

On the other hand, writing the mass matrix in the Weisskopf-Wigner term of (2.4) as

M =
∑3

µ=0mµσµ, we get −i [M,ρ] = −i
∑3

k=1mk [σk, ρ].

Thus, we see that the first part of the contribution of the dissipative component LD[ρ]

of the generator can be absorbed in a redefinition of the matrix M in (2.3) in such a way

that this latter coincides with the phenomenological matrix of physical masses.

R ema r k 1. The dissipative term (second line) of (2.6) is in Kossakowski’s form ([1,

4]). Notice that it is now completely separated from the Hamiltonian part (first line).

Finally, the 3× 3 matrix

(2.8) V =




v11 v12 v13
v21 v22 v23
v31 v32 v33



 ,
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where vij = 〈ai|aj〉 = v∗ji, is a positive definite matrix. The latter is also a sufficient

condition for the evolution generated by (2.6) to be a quantum dynamical semigroup,

that is for the maps γt : ρ 7→ ρ(t) to be completely positive. Indeed, if V ≥ 0 then its

entries can be always written as scalar products of 3 suitable (square-summable) complex

vectors.

Next, as an application of the algebra of the Pauli matrices we have (see [1]):

Lemma 2. Writing 2×2 density matrices ρ as ρ =
∑3

µ=0 ρµσµ, the action ρ 7→ LD[ρ]

amounts to |ρ〉 7→ L|ρ〉, where, in vectorial notation, |ρ〉 = (ρ0, ρ1, ρ2, ρ3) and

(2.9) L = −2




0 0 0 0
2Im(v32) v22 + v33 −Re(v12) −Re(v13)

2Im(v13) −Re(v12) v11 + v33 −Re(v23)

2Im(v21) −Re(v13) −Re(v23) v11 + v22



.

According to the idea that coherence is being lost in the course of time as outlined

in the introduction, we want the dissipative non-standard modification LD[ρ] to increase

the von Neumann entropy of any initial state.

Lemma 3. Let ρ(t) := exp(t LD) ρ, with Tr(ρ) = 1 and Tr (LD[ρ]) = 0. Necessary

and sufficient condition for the von Neumann entropy S(ρ(t)) := −Tr (ρ(t) log ρ(t)) not

to decrease is that Im(vij) = 0 for i 6= j, i = 1, 2, 3, and that

(2.10) M =




v22 + v33 −v12 −v13
−v12 v11 + v33 −v23
−v13 −v23 v11 + v22





be positive definite.

P r o o f. Let ρ be a kaon state as in (2.2), with ρ0 = 1/2, 1/4 ≥ |ρ|2 ≡ ρ21 + ρ22 + ρ23,

its eigenvalues, respectively eigenprojections being given by:

(2.11) ρ± =
1± 2|ρ|

2
, R± =

1

2|ρ|

(
|ρ| ± ρ3 ±(ρ1 − iρ2)

±(ρ1 + iρ2) |ρ| ∓ ρ3

)
.

Expanding R± = (σ0 ±
∑3

i=1 niσi)/2, with ni = ρi/|ρ|, and, by means of (2.9), LD[ρ] =∑3
i=1 ℓiσi, with ℓi =

∑3
µ=0 Liµρµ, we obtain

dS(ρ(t))

dt

∣∣∣∣
t=0

= −Tr

(
dρ(t)

dt

∣∣∣∣
t=0

log ρ

)
(2.12)

= − Tr (R+LD[ρ]) log ρ+ − Tr (R−LD[ρ]) log ρ−

= − Tr
(( 3∑

i=1

niσi

)( 3∑

k=1

ℓkσk

))
log

ρ+
ρ−

= −
( 3∑

i=1

niℓi

)
log

ρ+
ρ−

= − 1

|ρ|

(
1

2

3∑

i=1

Li0ρi +

3∑

i,j=1

Lijρiρj

)
log

ρ+
ρ−

.
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Let ρ1 = ε, |ε| ≤ 1/2 and ρ2 = ρ3 = 0. Then, using (2.9), (2.12) reads

(2.13)
dS(ρ(t))

dt

∣∣∣∣
t=0

=
2

|ε|
(
(v22 + v33)ε

2 + Im(v32) ε
)
log

ρ+
ρ−

.

The Schwartz and binomial inequalities imply |Im(v32)|≤
√
v22v33 ≤ (v22+v33)/2. Then,

since ρ+ ≥ ρ−, the right hand side of (2.13) can be always made negative by choosing

(2.14) sign(ε) = −sign(Im(v32)), |ε| ≤ |Im(v32)|
v22 + v33

,

unless Im(v32) = 0 which implies v23 = Re(v23) = v23.

When ρ1 = ρ3 = 0, ρ2 = ε and ρ1 = ρ2 = 0, ρ3 = ε, analogous arguments lead to

Im(v21) = Im(v13) = 0, v12 = Re(v12) = v21. Then,

(2.15)
dS(ρ(t))

dt

∣∣∣∣
t=0

= − 1

|ρ|
( 3∑

i,k=1

Likρiρk

)
log

ρ+
ρ−

.

The proof is completed by setting −2 Mij = Lij , i, j = 1, 2, 3.

Lemma 4. Given the positive definite matrix V in (2.8 ) with vij = vji, the matrix M
in (2.10 ) is positive definite.

P r o o f. As V is positive definite

(2.16)

v11 ≥ 0, v212 ≤ v11v22

v22 ≥ 0, v213 ≤ v11v33

v33 ≥ 0, v223 ≤ v22v33

and

(2.17) DetV = v11v22v33 + 2v12v23v13 − v11v
2
23 − v22v

2
13 − v33v

2
12 ≥ 0.

From (2.16) it follows v11v22v33 ≥ |v12v23v13| . Therefore
DetM = (v22 + v33)(v11 + v33)(v11 + v22) − 2 v12v23v13(2.18)

− (v22 + v33) v
2
23 − (v11 + v22) v

2
12 − (v11 + v33) v

2
13

= 2(v11v22v33 − v12v23v13) + v11v22 (v11v22 − v212)

+ v11v33 (v11v33 − v213) + v22v33 (v22v33 − v223) ≥ 0.

Rema r k 2. In conclusion, a part from suitable redefinitions of the mass matrix M ,

the most general choice in (2.4-5) ensuring entropy increase is Aj =
∑3

µ=0 ajµσµ, such

that

(2.19) vik =
∑

j

a∗jiajk = vki, Im(vi0) =
∑

j

a∗jiaj0 − a∗j0aji

2i
= 0, i, k = 1, 2, 3.

With the Aj as in the previous Remark, it is convenient to introduce the following

parametrization:

(2.20)

a = v22 + v33, b = −v12, c = −v13,
α = v11 + v33, β = −v23,
γ = v11 + v22.
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Then, (2.9) reads

(2.21) L = −2




0 0 0 0
0 a b c
0 b α β
0 c β γ


 ,

while, the inequalities (necessary and sufficient to complete positivity) are expressed by

(compare (2.16-17)):

(2.22)

0 ≤ a ≤ α+ γ,

0 ≤ α ≤ a+ γ,

0 ≤ γ ≤ a+ α,

4b2 ≤ γ2 −
(
a− α

)2
,

4c2 ≤ α2 −
(
a− γ

)2
,

4β2 ≤ a2 −
(
α− γ

)2

and

(2.23)

(α+ γ − a)(a+ γ − α)(a+ α− γ)

8
− 2b c β

− β2 α+ γ − a

2
− c2

a+ γ − α

2
− b2

a+ α− γ

2
≥ 0.

Rema r k 3. In [18, 19] the proposed non-standard quantum mechanical kaon time-

evolution is generated as in (2.4), but the non-standard piece of the generator corresponds

to a 4× 4 matrix

(2.24) L = −2




0 0 0 0
0 0 0 0
0 0 α β
0 0 β γ


 ,

with α ≥ 0, γ ≥ 0 and αγ ≥ β2. It is easy to check that the inequalities (2.22-23) can be

satisfied only if α = γ, β = 0. Even such almost trivial non-standard modification seems

to be ruled out by the available experimental data that point to α >> γ.

Thus, the non-standard evolution proposed in [18, 19] can only be a very particular

instance of complete positive dynamical map: it is more likely to be only positive, failing

to be already two-positive ([21]).

3. Comparison with experimental results. The most interesting aspect of K-

meson physics is that the hypothesis of a non-standard dissipative quantum mechanical

evolution and its supposedly completely positive character have a chance to be submitted

to experimental tests. Before explaining how, it is useful to translate the evolution

equation (2.6) in a vectorial way (see Lemma 2) by means of (2.21) and by rewriting

the Weisskopf-Wigner term in the generator as a 4 × 4 matrix H acting on the 4-vector

|ρ(t)〉 = (ρ0(t), ρ1(t), ρ2(t), ρ3(t)):

(3.1)
∂

∂t
|ρ(t) = (H + L) |ρ(t)〉.

K-mesons (weakly) interact violating Charge-Parity conservation. The eigenstates of the

Weisskopf-Wigner Hamiltonian (2.3) effectively describing such state of affair:

(3.2) |KS〉 = NS(|K1〉+ ǫS |K2〉), |KL〉 = NL(|K2〉+ ǫL|K2〉),
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where NS,L = [1 + |ǫS,L|2]−1/2, cannot coincide with the CP -eigenstates |K1,2〉 of (2.1).
Thus, the complex parameters ǫS,L measure the degree of CP -violation (and also of

CPT -violation for ǫS 6= ǫL) ([27]).

The entries of the Weisskopf-Wigner Hamiltonian can be expressed in terms of the

complex parameters ǫS , ǫL, and the four real parameters, mS , γS and mL, γL character-

izing the eigenvalues of H : λS,L = mS,L − i
2γS,L. Experimentally, the quantities

(3.3) ∆Γ = γS − γL, ∆m = mL −mS ,

corresponding to the differences between decay widths (γ−1
S ≃10−10 sec , γ−1

L ≃10−8 sec)

and masses of the states KS and KL, turn out to be positive with ∆Γ of the order of

10−14 GeV and ∆Γ ≃ 2∆m. The CP -violating parameters ǫS,L are of the order 10−3.

Under physically motivated arguments ([18, 19]) the non-standard phenomenological

parameters a, b, c, α, β and γ are expected to be small (of the order of ǫS,L∆Γ). One can

thus try a perturbative solution of the Schrödinger-like equation (3.1) by distinguishing

the various orders of contribution with respect to the small parameters ǫS,L in H:

(3.4) T := H + L = H0 + (H1 + L) + H2 + . . . .

For later applications it is more convenient to change representation and to write kaon

states as 4-vectors |ρ〉 = (ρ1, ρ2, ρ3, ρ4) with components from (2.2) where, now,

(3.5) ρ =

(
ρ1 ρ3
ρ4 ρ2

)
, ρ4 = ρ∗3.

Then ([20])

(3.6a) H0 =




−γS 0 0 0
0 −γL 0 0
0 0 −Γ− 0
0 0 0 −Γ+


 ,

(3.6b) H1 =
1

2




0 0 ǫ∗L∆Γ+ ǫL∆Γ−

0 0 −ǫS∆Γ− −ǫ∗S∆Γ+

−ǫ∗S∆Γ+ ǫL∆Γ− 0 0
−ǫS∆Γ− ǫ∗L∆Γ+ 0 0


 ,

(3.6c)

H2 =




−Re(ǫSǫL∆Γ−) 0 0 0
0 Re(ǫSǫL∆Γ−) 0 0
0 0 −iIm(ǫSǫL∆Γ−) 0
0 0 0 iIm(ǫSǫL∆Γ−)


 ,

while the matrix L takes the form

(3.7) L =




−γ γ −C −C∗

γ −γ C C∗

−C∗ C∗ −A B
−C C B∗ −A


 ,

where we have introduced the convenient notation:

(3.8) A = α+ a, B = α− a+ 2ib, C = c+ iβ.
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One can now separate the diagonal H0 from the rest and solve (3.1) iteratively. For our

purposes, it will be sufficient to keep up to second order contributions ([20]):

|ρ(t)〉 = eH0t |ρ(0)〉(3.9)

+

t\
0

ds eH0(t−s)
[
H1 + T

]
eH0s |ρ(0)〉 +

t\
0

ds eH0(t−s) H2 e
H0s |ρ(0)〉

+

t\
0

ds1

s1\
0

ds2 e
H0(t−s1)

[
H1 + T

]
eH0(s1−s2)

[
H1 + T

]
eH0s2 |ρ(0)〉.

That is, for a given initial state ρ, the components of the solution |ρ(t)〉 to (3.1) can be

approximated by

(3.10) ρi(t) ≃
4∑

j=1

[M
(0)
ij (t) + M

(1)
ij (t) + M

(2)
ij (t)] ρj , i = 1, 2, 3, 4.

The matrix M (0) has only diagonal non-vanishing entries:

(3.11)
M

(0)
11 (t) = e−γSt,

M
(0)
22 (t) = e−γLt

,
M

(0)
33 (t) = e−Γ̃−t,

M
(0)
44 (t) = e−Γ̃+t,

where

(3.12) Γ̃± = Γ± +A− γ − 2Re [C(ǫ∗S − ǫL)]∓ i
|B|2
2∆m

∓ 8i∆m

∣∣∣∣
C

∆Γ+

∣∣∣∣
2

and

(3.13) Γ± = Γ± i∆m, ∆Γ± = ∆Γ± 2i∆m, Γ =
γS + γL

2
.

The entries of M (1), M (2) contain first, second order terms in the small parame-

ters ([20]). One can also extract the contributions ρL and ρS that correspond to the KL

and KS neutral kaons:

(3.14) ρL =




∣∣∣ǫL + 2C∗

∆Γ−

∣∣∣
2

+ γ
∆Γ − 8

∣∣∣ C
∆Γ+

∣∣∣
2

− 4Re
(
ǫLC
∆Γ

)
ǫL + 2C∗

∆Γ−

ǫ∗L + 2C
∆Γ+

1


 ,

and

(3.15) ρS =




1 ǫ∗S + 2C∗

∆Γ+

ǫS + 2C
∆Γ−

∣∣∣ǫS + 2C
∆Γ−

∣∣∣
2

− γ
∆Γ − 8

∣∣∣ C
∆Γ+

∣∣∣
2

− 4Re
(
ǫSC

∗

∆Γ

)



 .

Rema r k 4. When the parameters a, b, c, α, β and γ vanish, the above two states

coincide, as they should, with the projections ρL,S onto the eigenstates (3.2) |KL,S〉 of

the Weisskopf-Wigner Hamiltonian (2.3). The subscripts (L, S) refer to the very different

life-times of the physical states KL,S.

The link between the preceding abstract theoretical setting with concrete experiments

is given by the fact that what experimentalists actually measure are certain typical ob-

servables for the K0 − K0 system. Indeed, any physical property of the neutral kaons
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can be extracted from the density matrix ρ(t) by taking its trace with suitable hermitian

operators.

Useful observables are associated with the fact that, with certain probabilities, neutral

kaons decay into other elementary particles as pions π±, π0, or pions, leptons (electrons

or muons) and neutrinos (semileptonic decays K 7→ πℓν).

The amplitudes for the decay of a K0 state into π+π− and π0π0 final states are

usually parametrized as follows, in terms of the s-wave phase-shifts δi and the complex

coefficients Ai, Bi, i = 1, 2 ([27]):

(3.16)
A(K0 → π+π−) = (A0 +B0) e

iδ0 +
1√
2
(A2 +B2) e

iδ2 ,

A(K0 → π0π0) = (A0 +B0) e
iδ0 −

√
2 (A2 +B2) e

iδ2

where the indices 0, 2 refers to the total isospin I. The amplitudes for the K0 decays are

obtained from these with the substitutions: Ai → A∗
i and Bi → −B∗

i . The imaginary

parts of Ai signals direct CP -violation, while a non zero value for Bi will also break CPT

invariance.

The operators that describe the decays K 7→ π+π− and K 7→ π0π0 can be written as:

(3.17)

O+− = |X+−|2
[

1 Y+−

Y ∗
+− |Y+−|2

]
,

O00 = |X00|2
[

1 Y00
Y ∗
00 |Y00|2

]
,

where the complex parameters X and Y can be expressed in terms of Ai, Bi and δi:

(3.18)
X+− =

√
2 [Re(A0) + iIm(B0)] e

iδ0 + [Re(A2) + iIm(B2)] e
iδ2 ,

X00 =
√
2 [Re(A0) + iIm(B0)] e

iδ0 − 2[Re(A2) + iIm(B2)] e
iδ2 ,

(3.19) Y+− = ε− ǫL + ε′, Y00 = ε− ǫL − 2ε′,

where

(3.20) ε =

[
ǫL + ǫS

2
+ i

Im(A0)

Re(A0)

]
+

[
ǫL − ǫS

2
+

Re(B0)

Re(A0)

]
,

(3.21) ε′ =
iei(δ2−δ0)

√
2

Re(A2)

Re(A0)

[Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]
+ i

[Re(B0)

Re(A0)
− Re(B2)

Re(A0)

]
.

By noticing that:

(3.22) Tr(O+− ρL) ≡ |〈π+π−| T |KL〉|2

one easily obtains the corresponding decay rates for the physical states KL and KS ([23]):

(3.23)

∣∣A(KL → π+π−)
∣∣2 ≡ Tr(O+− ρL) = |X+−|2 |NL|2 |ǫL + Y+−|2,

∣∣A(KS → π+π−)
∣∣2 ≡ Tr(O+− ρS) = |X+−|2 |NS|2 |1 + ǫS Y+−|2.

From this result, one recovers, to leading order in CP and CPT violation and ∆I = 1/2

enhancement, the familiar expressions ([27]):

(3.24)

∣∣∣∣
A(KL → π+π−)

A(KS → π+π−)

∣∣∣∣
2

≃ |ε+ ε′|2,
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(3.25)

∣∣∣∣
A(KL → 2π0)

A(KS → 2π0)

∣∣∣∣
2

≃ |ε− 2ε′|2.

Similar results hold for the matrices Oπ+π−π0 , O3π0 , Oℓ− and Oℓ+ that describe the

decays into π+π−π0, 3π0, π+ℓ−ν̄ and π−ℓ+ν.

With the help of these matrices, one can now compute the time-dependence of various

useful observables of the neutral kaon system. For example, in the case of charged pions,

the decay rate for pure K0 initial state is:

R+−(t) =
Tr[ρK0(t)O+−]

Tr[ρK0(0)O+−]
(3.26)

= e−γSt +RL
+− e

−γLt + 2 e−Γt |η+−| cos(∆mt− φ+−),

where RL
+− is the two-pion decay rate for the KL state:

(3.27) RL
+− =

∣∣∣∣ǫL +
2C∗

∆Γ−

+ Y+−

∣∣∣∣
2

+
γ

∆Γ
− 8

∣∣∣∣
C

∆Γ+

∣∣∣∣
2

− 4Re
(
ǫLC

∆Γ

)

while the interference term is determined by the combination

(3.28) ǫL − 2C∗

∆Γ−

+ Y+− ≡ η+− = |η+−| eiφ+− .

Similar formulas hold for the decay of aK0 into neutral pions: one just needs to substitute

the index +− with 00.

Other interesting observables, directly measured in experiments, are the asymmetries

associated with the decay into the final state f of an initial K0 as compared to the

corresponding decay into f̄ of an initial K0. All these asymmetries have the general form

(3.29) A(t) =
Tr[ρK̄0(t)Of̄ ]− [ρK0(t)Of ]

Tr[ρK̄0(t)Of̄ ] + [ρK0(t)Of ]
.

In the case of the π+π−π0 final state one finds

(3.30)
A+−0(t) = 2Re

(
ǫS − 2C

∆Γ−

)

− 2 e−∆Γt/2[Re(η+−0) cos(∆mt)− Im(η+−0) sin(∆mt)],

where

(3.31) η+−0 ≡ ǫS − 2C

∆Γ−

+ Y+−0.

A useful observable involving semileptonic decays is the so called CP -violating charge

asymmetry:

(3.32) δ(t) =
Tr[ρ(t) (Oℓ+ −Oℓ−)]

Tr[ρ(t) (Oℓ+ +Oℓ−)]
.

For a state which is initially a pure K0, it can be explicitly written as:

(3.33) δ(t) =
δS e

−γSt + δL e
−γLt + 2 e−Γt cos(∆mt)

e−γSt + e−γLt
,
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where

(3.34) δS = 2Re
(
ǫS +

2C

∆Γ−

)
, δL = 2Re

(
ǫL +

2C∗

∆Γ−

)

are the charge asymmetries for the KS and KL states.

R ema r k 5. Notice that the standard quantum mechanical results, namely those

deduced according to the time-evolution generated by the Weisskopf-Wigner Hamilto-

nian (2.3), can be recovered by putting the non-standard parameters (3.8) all equal to

zero.

The phenomenological quantities η+−, η+−0, δL, δS are directly accessible to the

experiment. Using the most recent data, one can obtain estimates for some of the non-

standard parameters:

(3.35)

a = (2.3± 2.9)× 10−17 GeV,

c = (1.0± 1.4)× 10−17 GeV,

α = (2.1± 2.9)× 10−17 GeV,

β = (−1.0± 1.5)× 10−17 GeV,

γ = (0.1± 30.2)× 10−20 GeV.

Unfortunately the precision of the present experimental data on the neutral kaon

system is not high enough to allow a meaningful test of the inequalities (2.22-23) and

hence of the hypothesis of complete positivity. However, the next-generation experiments

should provide more complete and precise data. In this respect, particularly promising

are the planned experiments on correlated neutral kaons at φ-factories.

4. Entangled kaons. The meson φ is a spin 1 elementary particle which can decay

into two neutral (spinless) kaons flying apart in opposite directions. The only way to do

that without violating conservation laws is via a spatially antisymmetric state; in the

φ-particle rest frame:

(4.1) |ψA〉 =
1√
2
(|K1,−p〉 ⊗ |K2, p〉 − |K2,−p〉 ⊗ |K1, p〉).

The corresponding density operator ρA can be represented by the 4× 4 matrix

(4.2) ρA =
1

2
[P1 ⊗ P2 + P2 ⊗ P1 − P3 ⊗ P4 − P4 ⊗ P3],

in terms of the single kaon projectors:

(4.3) P1 ≡ |K1〉〈K1| =
(
1 0
0 0

)
, P2 ≡ |K2〉〈K2| =

(
0 0
0 1

)

and of the off-diagonal operators

(4.4) P3 ≡ |K1〉〈K2| =
(
0 1
0 0

)
, P4 ≡ |K2〉〈K1| =

(
0 0
1 0

)
.

Rema r k 6. In the standard quantum mechanical picture the time-evolution of

the two correlated neutral kaons produced in φ-decays is just the tensor product of

the single-kaon time-evolutions generated by the effective Weisskopf-Wigner Hamilto-
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nian (2.3). Even in presence of an environment, the most natural extension is to assume

that, once produced in a φ decay, the two kaons evolve independently in time each with

the (single-kaon) completely positive map γt generated by (2.6).

According to the previous Remark, the density matrix that describes a situation in

which the first kaon has evolved up to proper time τ1 and the second up to proper time

τ2 is given by:

ρA(τ1, τ2) ≡(γτ1 ⊗ γτ2)[ρA](4.5)

=
1

2
[P1(τ1)⊗ P2(τ2) + P2(τ1)⊗ P1(τ2)

− P3(τ1)⊗ P4(τ2)− P4(τ1)⊗ P3(τ2)].

The typical observables that can be studied in such quantum interferometer are double

decay rates, i.e. the probabilities that a kaon decays into a final state f1 at proper time

τ1, while the other kaon decays into the final state f2 at proper time τ2 ([26]):

(4.6) G(f1, τ1; f2, τ2) ≡ Tr[(Of1 ⊗Of2)ρA(τ1, τ2)].

For example, in the case of the π+π− final states, at equal decay times τ1 = τ2 = τ :

G(π+π−, τ ;π+π−,τ) = |X+−|4 e−γSτ

{
e−γLτ (RL

+− − |η+−|2)

− e−γSτ

[
γ

∆Γ
+ 8

∣∣∣∣
C

∆Γ+

∣∣∣∣
2

− 4Re
(
ǫL C

∆Γ

)]

− e−Γτ 8Re
(
η+− C

∆Γ+
e−i∆mτ

)}
.

This time-behaviour is completely different from the one required by ordinary quantum

mechanics, which predicts:

(4.7) G(f, τ ; f, τ) ≡ 0.

Therefore, by studying double decay rates in a high-luminosity φ-factory it will be pos-

sible to determine the values of the non-standard parameres a, b, c, α, β, γ, and as a

consequence test the hypothesis of complete positivity of the (single) kaon time-evolution.

We conclude this contribution by pointing out another unique feature of the φ-

interferometry physics. In fact, it appears that the question outlined in the introduction,

whether complete positivity is just a reasonable technical, but physically not necessary,

request, can be brought down to actual experimental situations.

The abstractness and triviality of the coupling with an N -level system leading to the

notion of complete positivity becomes concretely physical when the other system is, as

discussed above, another kaon evolving in time exactly as the previous one.

Had we used a simply positive time-evolution as in [18, 19] (see Remark 4), inconsis-

tencies in the formalism would have emerged. In fact, one of the properties of the density

matrix ρA(τ) ≡ ρA(τ, τ) in (4.5) is that its mean value on any vector is positive for all

times. Without this basic requirement, the standard probability interpretation of ρA(τ)

as a state of the correlated kaons would be meaningless. Otherwise one would have to

cope with the presence of meaningless negative “probabilities”.
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In the case of the vector:

(4.8) |u〉 = 1√
2

[(
1

0

)
⊗
(
1

0

)
+

(
0

1

)
⊗
(
0

1

)]
,

the complete positivity of the single-kaon dynamics gives, to first order in the small

parameters:

(4.9)

U(τ) ≡ 〈u|ρA(τ)|u〉 =
{

γ

2∆Γ

(
e−2γLτ − e−2γSτ

)

− e−2Γτ

[
α− a

2∆m
sin

(
2∆mτ

)
+

b

∆m
(cos

(
2∆mτ

)
− 1)

]}
.

This result is indeed positive for all times, and vanish only at τ = 0, due to the antisym-

metry of ρA in (4.2).

This conclusion is not true in general. When τ → 0, one finds

(4.10) U(τ) ≃ (γ − α+ a)τ.

If the single kaon dynamics is completely positive, the positivity of (4.10) is guaranteed

by the inequalities (2.22), whereas the latter quantity might become negative if we are as

in [18, 19]: in fact, according to Remark 3, in this case a = 0, while α >> γ as suggested

by experimental data (for a more general treatment of this point see [21]).

A φ-factory, being a high performance quantum interferometer, can measure, at least

in principle, observables like (4.9) and therefore further clarify the request of complete

positivity for the dynamics of neutral kaons.

R ema r k 7. The standard quantum mechanical time-evolution of single kaons is

automatically completely positive. Thus, no inconsistencies may arise when using the

tensor product for the time-evolution of two kaons.

On the contrary, when dealing with kaons as open quantum systems, complete positiv-

ity comes as a necessary consequence if we assume that, like in the standard description,

also the time evolution of entangled kaons be factorized.

Such an assumption is not only natural: without it, it would be very hard to provide

a consistent independent characterization of single kaons. Indeed, if the multi-particle

dynamics is not of factorized form, when singling out the evolution of one single particle

by tracing away the unwanted degrees of freedom of all other particles, memory effects

would unavoidably survive. The latter would then make the single particle description

depend on the presence of other particles even if they do not directly influence each other.

From a more general point of view the preceding discussion raises the theoretical

question how to consistently describe many-particle systems interacting with an external

environment. To our knowledge very little has been done so far on this difficult topic.
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