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1. Coxeter groups. In this note we give an application of the following result on
the symmetric group Sy,:
THEOREM 1. For fixed n € N let us consider the permutation group S, and denote by
m € Sy (i =1,...,n—1) the transposition between ¢ and i+ 1. Furthermore, let operators
T, € B(H) (i=1,..n—1) on some Hilbert space H be given, with the properties:
(3) TX=T; foralli=1,...,n—1;
(i) |5 <1 foralli=1,..,n—1;
(iii) The T; satisfy the braid relations:
T Ty =TTyl foralli=1,..,n—2,
T,T; =T;T; for alli,j=1,...,n—1 with |i — j| > 2.
Now let us define a function
p: S, — B(H)
by quasi-multiplicative extension of
p(e) =1, p(m;) =T,
i.e. for a reduced word S, > 0 = w1y ... Ty we put (o) = Tyy ... Tywy. Then ¢ is a
completely positive map, i.e. for alll € N, f; € CSp,x; € H (i =1,...,1) we have
l

< Z @(f;fi)xz‘,wj> > 0.

ij=1
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By our previous result from [BSpl]|, Theorem 1 is equivalent to the following;:

THEOREM 2. Under the assumptions of Theorem 1 the operator

P P = S ol -
oceS,

=1+T)(A+T+1T)...0+Th 1 +Tp1Tho+ -+ Tp1...T1)

satisfies
n

P > H ek(g) >0
k=2

where
k
a(g) =1 - [Ja-dHa+¢H)
=1

Moreover, by Gauss formula
+oo
— _ 2
A-Ha+d) " =1-g" 3 (~1)"

l=—00

18

cel(q) > clg) =(1—q)"

N
Il
—

In the proof we need the following lemmas:

LEMMA 3. If T; € B(H) satisfy the braid relations of Theorem 1, then for 1 < r <
k <n—1, we have

(Tp1Tos ... Ti)(To1 Tz .. Tp) = Ty (T1 Tz ... To) (Tt ... Ts1)-

Proof. The proof of the Lemma follows by induction on k:
Let k = n — 2. Then by the braid relations we get

(Tn—l T71,—2)(Tn—1Tn—2 Tn—3 cee TT) =
S —

=T 1T 1Ty 2Ty 1Ty 3... T =
—_————

= nfl(TnflTn72Tn73 cee Tr)TnfL
The next step looks as follows:
(TnflTn72Tn73)(TnflTn72Tn73 cee Tr) =
= (Tn—lTn—Z)(Tn—l Th 3Th 2T 3. .. TT) =
—_————
= (Tnfl Tn72)(TnflTn72 ThsTnoTn_y4... TT) =
—_————

=T 1Tn-1Th—2Tn-1Tn—3Tn—o(Th— T,) =
=Tn1Tn-1Tn—2Ty—3(Th-1T— 2)(T 1) =
=Th1(Tn1Th-2Tn—3... TT)(Tn_lTn_Q). "
Next we need the following important lemma:
LEMMA 4. Let T; € B(H) and
Rip(Th, ..., Tp-1) =R =1+Tp1 + Tjo1Th—2+ ... + Tieo1 T2 .. . 11,
where k =2,3,...,n. Then



COMPLETELY POSITIVE MAPS AND ULTRACONTRACTIVITY 89

() Ry(1—Typ_1Tp—o...Th) =
=1 -T2 Thz.. . TV)A+Tho1 +Tpo1Thoz + oo+ o1 Tz ... To) =
=(1 -T2 Tho...T)Re 1(To,Ts,..., Th1),
() R.(1—Th1Th—o.. )1 —-Ty 1Tho2...T2)...(1 =Tp_1) =
=(1—T2 Ty o.. T -T2 Ty o...To)...(1 =T2 T 2)(1+Tp_1).
Proof. Let us start with the case k = 3. Since R3 = 1 + T + Ty1}, we have
R3(1 —ToTy) = 1+ Ty —T3Ty — oW T T =
=14+T - Ty — TiTWTs =
=1 -T3)(1+Ty).
Now we consider the case k = 4. By natural calculations using Lemma 3 we get
Ry(1 = T3ToTy) = (1 + T3 + T3Ts) — (T3ToTh) (1 + Ty + T3T) =
=(1- T§T2T1)(l + T3 + T315).
Therefore, using the case k = 3, we have
Ri(1 = TsToTy)(1 — T3Ty) = (1 — T2ToTh)(1 — T2T5) (1 + Td).
Repeating this process we get the proof of the Lemma. m
This implies the next lemma.

LEMMA 5. If

P =N or(o)=P" V(1 +Tp1+...4+Thr...Th) =
o€Sn

= P" YR, = RyR;3... R,
and |T;|| < ¢ < 1, then

n—1 n
IR <@—g IO+ [Ja-dM (o)
k=1 k=3
Proof. By Lemma 4 we have
n—2 1
RnZH(l—Tg_lTn_g...Tk 14+ Th 1) H LT
k=1 l=n—1

But, since ||T;|| < ¢ < 1, therefore
(1= Tor o Tinoyy—i) I < (1=
and we infer the estimation of Lemma 5. =
Now we can state Theorem 2 in a stronger version.
THEOREM 6. If || T;|| < g < 1 and the assumptions of Theorem 1 are satisfied, then
(i PO > w(g) (P @ 1),
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where
wigP=0-) " [Ja -1+
k=1
(i) P < %(P“H) ®1).
—q

Proof. The proof follows from the following considerations:
(a) We know from the results of [BSpl] that

P >,

Since, by Lemma 5, R, < L for some ¢ > 0, therefore

vk e 1
IR R < .

and this implies
But, because

and P = P("* we obtain
[P(n)]2 — P(n_l)RnRZP(n_l) > CQ[P(n—l)]2
and hence
P™ > ¢(P" Y @ 1), where ¢ = w(q).
(b) The statement (ii) of Theorem 2 follows from the two facts:
p = pr-Hp.
and
Ry=14+Ty 1 +Ty1Tho+...+Tp1...Ti.
Therefore ||R,| < 1%(1 and again as before we have
1
PM > _— _(pD 1),
(P e
So, the proof of Theorem 6 is complete. m

This theorem is also valid for all finite and affine Coxeter groups (for more details
see [BSp4]). Theorem 1 comes from investigations in harmonic analysis on groups (see
[B1], [BSz]) and on perturbed cannonical commutation relations. In the paper with R.
Speicher ([BSp1]) we considered the following relations

cic; — qejep = 651
for a real ¢ with |g| < 1, and we needed essentially the fact that the function
p: 8, — C, i

is a positive definite function for all n, where || denotes the number of inversions of 7.
For other proofs of that result see [BKS, BSpl, BSp2, BSp4, BSz, Spe, Z].
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R. Speicher in [Spe] considered more general commutations relations
dzd;k — qijd;-di = (52‘]‘1
for
—1<¢j=0q; <1,
and he founded the existence of a Fock representation by central limit arguments. Our
construction of the g;; relations depends on some operator T which is a self-adjoint
contraction on a Hilbert space H and satisfies the braid or Yang-Baxter relations of the
following form:
TI2Th =TTy,
where T) =T ®1and 75 =1 R T on H ® H ® H are the natural amplifications of T to
HIHRH.
From Theorem 1 we get more general construction of deformed commutation relations
of the Wick form:
did; — Y tidid, = i1
7,8

(see also Jorgensen et al. [JSW] and [BSp4] for similar considerations).

2. Applications. Next we examine the deformed commutation relations from an
operator spaces’ point of view. If we assume that ||T|| = ¢ < 1 and if we take G; = d; +d,
then we prove that the operator space generated by the G; is completely isomorphic to
the canonical operator Hilbert space R N C, which means

1/2>

N N N
H E a; ® G;|| ~ max (H E a;a; E ala;
i=1 i=1 i=1

for all bounded operators aq, ...,an on some Hilbert space. This generalizes the Theorem

1/2

)

of Haagerup and Pisier [HP], who obtained that result for free creation and annihilation
operators, (see also [VDN] and [Buch]). As another application of our construction we
have obtained a large class of non-injective von Neumann algebras, when considering
the von Neumann algebra VN (Gj, ..., Gy) generated by Gy, ..., G . For more details see
[BSp4, BKS].

3. The ultracontractivity of the g-second quantization functor I';. Let T :
H — K be a contraction beetween real Hilbert spaces. Then the linear map defined on
elementary tensors by

FT)(he.. . 0f)=THhe..0Tf,

extends to a contraction from g-Fock spaces F, (H) to F,(K). Here F, () is the completion
of the full Fock space @, , H®" with respect to the new scalar product

(i@ . ®fn,1®...® gn>q = On,m Z qmv(g)<fcr(1)agl> s <fo’(n)7gn>'
oES,

The creation operators are defined as:
Cfo)h®...@f)=fo@h®...®f fieH
and ¢(f) = [e*(f)]".
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Let G(f) = e(f)+c*(f) for f € H. Let T'y(H) be the von Neumann algebra generated
by G(f), f € H, and
74(S) = (S, Q),, ST (H).
One can show that 7, is a trace on I'y(H).
If dimH = oo, then we showed that I';(#) is a factor.
If ey, ea, ..., ey is an orthonormal basis of H, then we put G; = G(e;), (i=1,...,N,
N =0,1,2,...). In this setting the following theorem holds:

THEOREM 7 ([BKS], Theorem 2.1.1). Let T' be as above, then there exists a unique
map Lg(T) : Tq(H) — Ty(K) such that T'y(T)(X)Q = Fy(T)(XQ) for every X € T'y(H).
The map T'y(T) is bounded, normal, unital, completely positive and trace preserving.

We note that I'; is a functor, namely if S : H — K and T': K — J are contractions,
then T'y(ST) =Ty (S)T'y(T).

If H is a real Hilbert space and T, = e~*I for t > 0, then the completely positive
maps P! =T, (T}), t > 0, on I'y(H), form a semigroup, called the g-Ornstein- Uhlenbeck
semigroup. The ¢g-Ornstein-Uhlenbeck semigroup extends to a semigroup of contractions
of the non-commutative L? spaces, which are symmetric on L? . Its infinitesimal generator
on L? is the number operator N9, i.e. P, = exp(—tNY), where N7 is the unbounded
self-adjoint operator defined as N2 = 0 and

qu1®®fn:nfl®®fnv flv"'vfn€H~

Ph. Biane [Bia] proved Nelson’s hypercontractivity of the ¢-Ornstein-Uhlenbeck semi-
group P, extending the results of Nelson and Gross. In that paper Ph. Biane also showed
ultracontractivity for ¢ = 0 using some results of the author (see [B2]). Now we prove
the ultracontractivity of that semigroup for all ¢ € [—1,1].

THEOREM 8. Let X be in the eigenspace of N9, with eigenvalue n. Then
(1) [ X[z~ < Cla)(n+ D X|Z;
(ii) Fort >0, P; maps L? into L = VN,(G1...Gy) and fort <1
[P | ey pe < cqt™%/2,
(#i) (Poincaré-Sobolev inequality). If Q,(X) = (XNIXQ, Q) is a non-commutative
complete Dirichlet form (on an appropriate domain) on L*(Ty(H),7,), in the sense of
[DL], then there exists a constant ¢, > 0 such that for all X in the domain of Q, we have

X175 < cq(I7g(X)1* + Qq(X)).-
For the details of the proof of this theorem see [B3] and [Bia].
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