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MAREK BOŻEJKO and JANUSZ WYSOCZAŃSKI
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Abstract. A family of transformations on the set of all probability measures on the real line

is introduced, which makes it possible to define new examples of convolutions. The associated

central limit theorems are studied, and examples of the limit measures, related to the classical,

free and boolean convolutions, are shown.

1. Introduction. By studying series of examples of known limit theorems we came

up with an idea of new convolutions of measures. We found a family Ut, t ≥ 0, of

continuous transformations, acting on probability measures on the real line, which allowed

us to define the convolutions and study associated central limit theorems. The most

instructive way of describing the transformations is given by observing their action on

the Cauchy transform of a measure, given in the form of a continued fraction by a theorem

of Stieltjes. The crucial ideological role in our construction is played by relations between

moments and cumulants of a given measure; though the construction itself does not

require that the measure has finite moments.

2. General form of the non-commutative central limit theorem and exam-

ples of limit measures. In [BSp1] the following general form of the non-commutative

central limit theorem was obtained:

Theorem 1. Let B be a unital ∗-algebra with a state ϕ and let bi = b∗i , i = 1, 2, 3, ...

be a sequence of self-adjoint elements in B, satisfying the following assumptions :

1. for all positive integers n and all sequences i(1), i(2), . . . , i(n) of indices ,

ϕ(bi(1)bi(2) . . . bi(n)) = 0

whenever there exists an index i(k), 1 ≤ k ≤ n, which is distinct from all other indices ;
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2. the expression ϕ(bi(1)bi(2) . . . bi(n)) is invariant under all permutations of the in-

dices : for every permutation π of the set N of positive integers

ϕ(bi(1)bi(2) . . . bi(n)) = ϕ(bπ(i(1))bπ(i(2)) . . . bπ(i(n))).

Moreover , for each n ∈ N let Sn = 1√
n
· (b1 + b2 + . . . bn); then for each power k there

exists the limit

lim
n→∞

ϕ(Sk
n) =

{

0, if k is odd ,
∑

π∈P2(1,2,...k)
t(π), if k is even,

(1)

where P2(1, 2, . . . , 2r) is the set of all pair partitions of the set {1, 2, . . . , 2r}, and the func-

tion t is given by the value t(π) = ϕ(bi(1)bi(2) . . . bi(2r)) common for all these sequences

i(1), i(2), . . . i(2r), which satisfy the condition: i(s) = i(m) if and only if s and m belong

to the same block of the partition π.

For special choices of functions t one can obtain, in the limit, moments of various

known measures. This inspired the question of what measures may appear as the limit

in a non-commutative central limit theorem. A contribution to this problem is contained

in the next sections.

Examples 1.

1. For t(π) ≡ 1 the limit is the gaussian measure 1√
2π

e
−x

2

2 dx, as the limit moments

are mµ(2n) = 1 · 3 · . . . · (2n− 1) = (2n− 1)!!.

2. For t(π) = (−1)i(π) one gets the fermionic case with the limit measure 1
2 (δ1+ δ−1);

here i(π) is the number of inversions of a partition π.

3. For

t(π) =

{

1, if π has no inversions,

0, if π has inversions,

one gets the free case, i.e. the semi-circular Wigner measure 1
2πχ[−2,2](x)

√
4− x2dx with

(even) moments being the Catalan numbers 1
n+1

(

2n
n

)

.

4. For tq(π) = qi(π), where −1 ≤ q ≤ 1, the resulting q-gaussian measure has the

Jacobi θ1 function as its density, see [BSp2].

5. In the case of tr(π) = rn−b(π) where b(π) is the number of blocks of π and 0 ≤ r ≤ 1

the limit measures were obtained in [BSp1]. For r = 1
N the measure µr is the free product

of N copies of a dilation of the gaussian measure.

6. For negative r with −1 ≤ r ≤ 0, by a slight modification of the previous case,

namely by putting tr(π) = (−r)n−b(π) · (−1)i(π) one can also compute the limit measure

using the results of [BSp1], Theorem 7. The even moments of the limit measure µr are

given by the formula

mµr
(2n) =

∑

π∈NC2(2n)

(1 + r)inn(π) (2)

where inn(π) is the number of inner blocks in a partition π. In particular for r = − 1
N

the limit measure µr is the N-fold free convolution of a dilation of the two-point measure

µ−1 = 1
2 (δ−1 + δ1).

Another series of examples come from the group case. The general scheme in these

cases is the following. Given a (discrete) group G and an infinite set S of its generators
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consider a random walk associated with the Cayley’s graph of the pair (G,S). In other

words, define

Sn =
1√
2n

n
∑

j=1

(λ(sj) + λ(s−1
j ))

where λ(s) is the left translation operator by s, and let ϕ(Y ) =< Y δe, δe > be the

standard state on the algebra of all bounded operators on ℓ2(G). We study the limit

limn→∞ ϕ(Sk
n), which is of the form established above, with bj = 1√

2
(λ(sj) + λ(s−1

j )),

provided the assumptions (1) and (2) are satisfied.

Examples 2.

1. Let G = F∞ be a free group on infinitely many generators S = {sj : j = 1, 2, 3, . . .};
then one gets

t(π) =

{

1, if π has no inversions,

0, if π has inversions,

and Sn tends ∗-weakly to the Wigner semi-circular distribution.

2. If G is a free abelian (Coxeter) group with the set of generators S = {sj : j =

1, 2, 3, . . .} which satisfy the relations sjsk = sksj and sk = s−1
k ; then t(π) ≡ 1 and Sn

tends to the gaussian measure.

3. Let G be a free nilpotent group of class 2 or more; then

t(π) =

{

1, if π has no inversions,

0, otherwise,

and Sn = 1√
2n

∑n
j=1(λ(sj) + λ(s−1

j )) tends to the Wigner semi-circular distribution.

3. t-transformation and t-convolution. For a given probability measure µ with

compact support on the real line R, its Cauchy transform Gµ is defined for z ∈ C+ =

{z ∈ C : ℑz > 0}, by:

Gµ(z) =

+∞\
−∞

dµ(x)

z − x

and, by a theorem of Stieltjes (see [AkG]), can be expressed as a continued fraction:

Gµ(z) =
1

z − a1 −
b1

z − a2 −
b2

. . .

(3)

where the numbers a1, a2, . . . disappear if the measure is symmetric, and they, together

with the numbers b1, b2, b3, . . . come from a recurrence formula for the polynomials or-

thogonal with respect to the measure µ.

The Cauchy transform of a measure µ can be also expressed by the moments

mµ(k) =

+∞\
−∞

xkdµ(x)
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of the measure as the series

Gµ(z) =

∞
∑

k=0

mµ(k)z
−k−1

The Voiculescu’s R-transform rµ of the measure is then defined by the equality

(Gµ)
−1(z) = z−1 + rµ(z)

which involves the inverse of the Cauchy transform. The R-transform is nothing else but

the generating function of the sequence of free cumulants (rµ(k))
∞
k=0 of the measure.

The free (additive) convolution of a pair of measures µ1 and µ2 is defined, following

Voiculescu, to be the measure µ for which rµ(k) = rµ1(k) + rµ2(k). The relation between

the sequence of moments (mµ(k)) and the sequence of free cumulants (rµ(k)), found by

Speicher (see [Sp]), is the following:

mµ(n) =
∑

s1,...,sk
s1+...+sk=n−k

rµ(k) ·mµ(s1) · . . . ·mµ(sk) (4)

R ema r k. Our notation of n-th moment mµ(n) of a measure µ and of n-th cumulant

rµ(n) of a measure µ slightly differs from that used elsewhere, which is mn(µ) for n-th

moment and rn(µ) form n-th cumulant.

Now we define the t-transform. Let t be a positive real number and let µ be a compactly

supported measure on the real line. Then the function Gµt
(z) defined for z ∈ C+ by the

formula:
1

Gµt
(z)

=
t

Gµ(z)
+ (1− t)z (5)

turns out to be the Cauchy transform of a probability measure denoted by µt. This is a

consequence of the following theorem, that can be found, for example, in ([Ma]):

Theorem 2 (Nevanlinna). A function F (z) is the reciprocal of the Cauchy transform

of a probability measure on the real line if and only if there exists a positive measure ρ

and a real number a such that for ℑz > 0

F (z) = a+ z +

+∞\
−∞

1 + xz

x− z
dρ(x).

Corollary 3. For a pair of probability measures ρ and ν on the real line, and a real

number 0 ≤ t ≤ 1 there exists a probability measure µ such that

1

Gµt
(z)

=
t

Gν(z)
+

(1− t)

Gρ(z)

where z ∈ C+.

This follows directly from the Nevanlinna’s theorem. For our special choice of the

measure ρ = δ0, we get a little more:
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Corollary 4. For a given probability measure µ on the real line and a non-negative

number t ≥ 0, there exists a (unique) probability measure µt such that

1

Gµt
(z)

=
t

Gµ(z)
+ (1− t)z

where z ∈ C+.

P r o o f. It follows from the Nevanlinna’s theorem that

t

Gµ(z)
+ (1− t)z = tF (z) + (1 − t)z = ta+ z +

+∞\
−∞

1 + xz

x− z
d(tρ)(x)

is the reciprocal of the Cauchy transform of the probability measure denoted by µt.

Definition 1. The measure µt is called the t-transform of a measure µ and the

transformation Ut : µ 7→ µt is called the t-transformation.

The following properties of t-transformation are direct consequences of the definition:

Proposition 5. For a probability measure µ and real numbers t, s ≥ 0, the following

properties are satisfied :

1. (Ut)t≥0 is a multiplicative semigroup: Us(Ut(µ)) = Ust(µ);

2. dilations of a measure commute with Ut: Dλ(Ut(µ)) = Ut(Dλ(µ));

3. Ut(µ) → µ in the ⋆-weak topology, if t → 1;

4. Ut and U 1
t

are inverses of each other ;

5. Ut(δa) = δta for any real number a;

6. The t-transformation is continuous in the ∗-weak topology of measures : if µn → µ

then Utµn → Utµ.

Therefore, the mapping Ut is a multiplicative ∗-weakly continuous transformation,

which commutes with dilations of measures. The t-transform of a measure is the inverse

of the 1/t-transform of the measure.

It is instructive to identify the action of t-transformation on the Cauchy transforma-

tion of a measure, given in the form of a continued fraction:

Gµt
(z) =

1

z − t · a1 −
t · b1

z − a2 −
b2

z − a3 −
b3

. . .

(6)

so the action looks quite simple: only the ”first” level (i.e. a1, b1) is multiplied by t.

The t-convolution ⊕t is defined in the following way. Given two probability measures

µ and ν on the real line, a non-negative number t, and a convolution ⊕ (for which the

classical convolution, free Voiculescu convolutions, boolean free convolution, and other

convolutions may serve) one defines:

µ⊕t ν = (µt ⊕ νt)1/t = U 1
t

(Ut(µ)⊕ Ut(ν)) (7)
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The t-convolution provides a large new class of convolutions, which can be studied

from the point of view of non-commutative central limit theorem. In the case of the

classical multiplicative convolution (i.e. on the multiplicative group of positive numbers)

of two point-mass measures δa and δb, with a, b positive, their t-(classical) convolution

is not δab but δabt. On the other hand the t-(free) boolean convolution commutes with

t-transform, which seems to be an exceptional case.

In [BLS] the concept of c-free (i.e. conditionally free) convolution was developed, in

which c-free cumulants played crucial role. Let us recall that if rν(z) is the free cumulant

(generating) function of a measure ν, then it is related to the Cauchy transform of ν by

the formula:
1

Gν(z)
= z − rν(Gν(z)). (8)

Let us also recall that the c-free convolution is defined for pairs of measures (and

more general, for pairs of states on unital *-algebras), say (µ1, ν1) and (µ2, ν2), where for

the second terms one applies just the free convolution. The c-free cumulant (generating)

function T(µ,ν)(z) =
∑∞

n=0 T(µ,ν)(n)z
n, which depends on the given pair of measures

(µ, ν), is related to the Cauchy transform of the first measure µ by the formula:

1

Gµ(z)
= z −T(µ,ν)(Gν(z)). (9)

As the first formula is equivalent to the formula relating moments with free cumu-

lants, the second one is equivalent to the following relation between moments and c-free

cumulants:

mµ(n) =
∑

s1,...,sk
s1+...+sk=n−k

T(µ,ν)(k) ·mν(s1) · . . . ·mν(sk−1)mµ(sk). (10)

We shall consider a special case of the above construction, namely when ν = µt. In

this case the two formulas above combined with the definition of the t-transform give the

relation:

rµt
(n) = t · T(µ,ν)(n). (11)

Therefore one gets the following special case of the formula for c-free cumulants:

mµ(n) =
∑

π∈NC(n)

∏

B∈π
B−inner

rµt
(|B|) ·

∏

B∈π
B−outer

T(µ,ν)(|B|) =
∑

π∈NC(n)

Rt(π) · tinn(π)

where |B| is the number of elements in a block B, and

Rt(π) = Rt
(µ,ν)(π) =

∏

B∈π

T(µ,ν)(|B|).

This formula is an extension to all q ≥ −1 of the formula obtained for −1 ≤ q ≤ 0

in [BSp1] in the proof of Theorem 7, with t = 1 + q, since in our case t can be any

non-negative number (cf. Example 1.6).

4. Central limit theorems for t-convolutions. As a preparation to the formula-

tion of central limit theorems we start with the following
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Proposition 6. If a given convolution ⊕ is associative, then for any positive number

t the associated t-convolution is also associative.

P r o o f. By definition, for arbitrary measures µ, ν, ρ

(µ⊕t ν)⊕t ρ = U 1
t

(Ut(U 1
t

(Utµ⊕ Utν)) ⊕ Utρ) = U 1
t

((Utµ⊕ Utν)⊕ Utρ).

From these equalities the result easily follows.

Let Dλµ be the dilation of a measure µ by a number λ, defined as

Dλµ(A) = µ(λ−1A)

for an arbitrary measurable set A. In central limit theorems one studies the limit of a

sequence of measures of the form Dλµ⊗ . . .⊗Dλµ, which is the n-th ⊗-convolution power

of the dilation of a measure µ by an appropriate number λ. It is therefore essential to

know that the expression makes sense, i.e. that the convolution ⊗ is associative.

Our central limit theorem has the following form

Theorem 7. Let µ be an arbitrary probability measure on the real line, with mean

zero and with second moment equal to 1. Let also t be a non-negative number and ⊕ be

a given convolution. Then the sequence of measures D 1
√

n

µ ⊕t . . . ⊕t D 1
√

n

µ tends in the

∗-weak topology to a measure ν(t), which is a transformation of the central limit measure

ν for the convolution ⊕.

P r o o f. For a fixed n let λ = 1√
n
. Then the sequence of the n-fold t-convolution of

the measure µ is of the form

Dλµ⊕t . . .⊕t Dλµ = U 1
t

(UtDλµ⊕ . . .⊕ UtDλµ) = U 1
t

(Dλµt ⊕ . . .⊕Dλµt).

Since the measure µt = Utµ has the second moment t, the sequence Dλµt ⊕ . . . ⊕Dλµt

has the ∗-weak limit D√
t(ν), where ν is the central limit measure for the ⊕-convolution,

with mν(2) = 1. Since the Cauchy transform of ν is given by a continued fraction of the

form

Gν(z) =
1

z −
1

z −
b2

z −
b3

. . .
we obtain

GD√

t
(ν)(z) =

1

z −
t

z −
tb2

z −
tb3

. . .
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and therefore the application of the transformation U 1
t

to the measure D√
t(ν) gives the

measure ν(t), which has the following Cauchy transform:

Gν(t)(z) = GU 1
t

(D√

t
(ν))(z) =

1

z −
1

z −
tb2

z −
tb3

. . .

. (12)

Hence the sequence under consideration has the ∗-weak limit U 1
t

(D√
t(ν)) = ν(t), by the

continuity of the t-transformation, since mµt
(1) = mµ(1) = 0 and mµt

(2) = t · mµ(2)

= t.

R ema r k. The above continued fractions combined may serve as a definition of the

transformation ν 7→ ν(t). Since the coefficients bk are non-negative, t also has to be

non-negative in this setting.

Examples 3. Our three basic examples are the following.

1. If ⊕ is the classical convolution of measures, then the limit measure is the transfor-

mation ν → ν(t) of the gaussian measure dν(x) = 1√
2π

e−
x
2

2 dx. As the gaussian measure

has the Cauchy transform

Gν(z) =
1

z −
1

z −
2

z −
3

. . .
the limit measure has the Cauchy transform

Gν(t)(z) =
1

z −
1

z −
2t

z −
3t

. . .

. (13)

2. If ⊕ is the free convolution, then the limit is the transformation ν → ν(t) of

the Wigner semi-circular distribution dν(x) = 1
2πχ[−2,2](x)

√
4− x2dx. As the Wigner

measure has the Cauchy transform

Gν(z) =
1

z −
1

z −
1

. . .
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the limit measure in this case has the Cauchy transform

Gν(t)(z) =
1

z −
1

z −
t

z −
t

. . .

. (14)

3. If ⊕ is the boolean convolution, then we have a little more. In this case the trans-

formation Ut commutes with the convolution, so the limit measure 1
2 (δ1 + δ−1) remains

unchanged. The Cauchy transform of this measure is

Gµ(z) =
1

z −
1

z

. (15)
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[BLS] M. Bożejko, M. Leinert and R. Speicher, Convolution and limit theorems for

conditionally free random variables, Pacific J. Math. 175, No. 2 (1996), 357–388.
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