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Abstract. Motivated by the central limit problem for algebraic probability spaces arising

from the Haagerup states on the free group with countably infinite generators, we introduce

a new notion of statistical independence in terms of inequalities rather than of usual algebraic

identities. In the case of the Haagerup states the role of the Gaussian law is played by the Ullman

distribution. The limit process is realized explicitly on the finite temperature Boltzmannian Fock

space. Furthermore, a functional central limit theorem associated with the Haagerup states is

proved and the limit white noise is investigated.

1. Introduction. Let F∞ be the free group on countably infinite generators {gj ; j ∈
N} and A the group ∗-algebra. For simplicity we adopt the following notation: for j ∈ N

1991 Mathematics Subject Classification: Primary 60A05; Secondary 60F17,81Q99.

Research supported by Grant-in-Aid for Scientific Research No. 09640178 and No. 09440057,

Ministry of Education, Japan
The paper is in final form and no version of it will be published elsewhere.

[9]



10 L. ACCARDI ET AL.

and ε = ±1 we put

α = (j, ε), α∗ = (j,−ε), gα = gεj .

A product x = gα1 · · · gαk
, k ≥ 1, is called a reduced word if αi 6= α∗

i+1 for 1 ≤ i < k. In

that case k is called the length of x and is denoted by |x|. The identity has length zero

by definition: |e| = 0. Following Figà–Talamanca and Picardello [14] (see also Chiswell

[12] and Lyndon [23]) a state ϕ on A is called a Haagerup state if

(i) ϕ(e) = 1 and |ϕ(gj)| ≤ 1 for all gj ;

(ii) ϕ(g−1
j ) = ϕ(gj);

(iii) ϕ(xy) = ϕ(x)ϕ(y) for any x, y ∈ F∞ with |xy| = |x|+ |y|.
Examples are given by the one-parameter family of states ϕγ , 0 ≤ γ ≤ 1, defined by

ϕγ(x) = γ|x|, x ∈ F∞. (1)

This is due to Haagerup [17]. With the notation 00 = 1 the case γ = 0 corresponds to

the tracial state ϕ0 on A characterized by:

ϕ0(x) =







1, if x = e,

0, if x ∈ F∞, x 6= e.

(2)

We consider the two sums

a+N =
1√
N

N
∑

j=1

gj, a−N =
1√
N

N
∑

j=1

g−1
j , (3)

and the limit of their mixed momenta:

lim
N→∞

ϕλ/
√
N (ãε1N · · · ãεkN ), k ≥ 1, ε1, · · · , εk ∈ {±}, (4)

where ãεN = aεN − ϕλ/
√
N (aεN ). In the previous paper [4] we proved the existence of the

limit and obtained an explicit realization of the GNS space of the limit by means of a

finite temperature analogue of the usual Boltzmannian Fock space. This finite temperature

analogue, which was first introduced by Fagnola [13], appears also in the stochastic limit

of quantum electrodynamics at finite temperature [1, 3] and, hence, possesses a similar

characteristic as the finite temperature (or universally invariant) Brownian motion. As

for the symmetrized random variable QN = a+N + a−N , Hashimoto [18] investigated the

limit limN→∞ ϕλ/
√
N (Q̃k

N ) for any k ≥ 1 and λ > 0, and proved that it coincides with

the k-th moment of

uλ(s)ds =
1

2π
χ[−2−λ,2−λ](s)

√

(2 + λ+ s)(2 − λ− s)

1− λs
ds

which belongs to the Ullman family of probability measures introduced in connection with

potential theory. Beyond potential theory the Ullman distributions also have emerged

naturally in quantum probability and in physics, see e.g., [1, 10, 19].

A different generalization of the notion of independence called (ϕ, ψ)-independence,

also with the motivation from the Haagerup functions on F∞, was proposed by Bożejko

and the corresponding central limit theorem was later proved by Bożejko and Speicher

[11], see also [10]. In particular, in the notations (1) and (2), the generators of F∞ are
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(ϕγ , ϕ0)-independent for any 0 ≤ γ ≤ 1. Using this fact, Bożejko [8] was able to give a

different proof of the combinatorial part of our result [4, Theorem 5.2] by a direct verifica-

tion of the conditions of [11, Theorem 2]. It is noticeable that our notion of independence

discussed in this paper bears an analytical nature on the basis of inequalities rather than

an algebraic identities as in the case of (ϕ, ψ)-independence, see Section 7. Nevertheless,

(ϕ, ψ)-independence is more general since it covers, in principle, limit states whose mixed

momenta are defined by partitions with subsets of cardinality higher than 1 or 2. How-

ever, the conditions for the validity of central limit theorems in [11] is given by a set of

countably many limits which do not give much insight on the mechanism underlying the

validity of this theorem.

A direct comparison of the two notions of independence is not obvious: our notion and

corresponding limit theorem are stated in the context of general algebras, while Theorem

2 in [11] is stated on free products a priori; our conditions allow only singeltons and pair

partions to survive while in principle (we do not know any concrete published example)

the conditions in [11] allow partitions with subsets of arbitrary cardinarity; on the other

hand the partitions in [11] have to satisfy a generalized non-crossing condition, while in

our case non-negligible pair partitions can be crossing.

In view of the results obtained in the present paper, together with several related

works [5, 6, 7, 15, 20, 24] and others, we may conjecture that, underlying any central limit

theorem arising in the harmonic analysis on discrete groups or, more generally, on discrete

graphs, there should be an appropriate notion of independence or of weak dependence

and the corresponding fully quantum central limit theorem, in this connection see also

[9, 16, 21, 25]. This conjecture is supported by several examples and a more detailed

study shall appear elsewhere.

Acknowledgements. The authors are grateful to Professor M. Bożejko for inter-

esting discussion on the connection between his notion of ψ-independence and the one

introduced in this paper.

2. Singleton condition. In order to prove a central limit theorem with the method

of moments it is necessary to observe that only a few singletons give a non-zero con-

tribution to the limit. The role of the singleton condition was first pointed out by von

Waldenfels [28], [29]. The content of this section is rather standard and is included for

completeness.

Definition 1. Let A be a ∗-algebra, C a C∗-algebra with norm | · |, and E : A → C
a real linear map. A finite or countably infinite set of sequences

(b(1)n )∞n=1, (b(2)n )∞n=1, · · · , (b(j)n )∞n=1, · · ·
of elements in A with mean E(b

(j)
n ) = 0 is said to satisfy the singleton condition with

respect to E if for any choice of k ≥ 1, j1, · · · , jk ∈ N, and n1, · · · , nk ∈ N

E
(

b(j1)n1
· · · b(jk)nk

)

= 0 (5)

holds whenever there exists an index ns which is different from all other ones, i.e., such

that ns 6= nt for s 6= t.
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In the above definition the condition E(b
(j)
n ) = 0 is, in fact, a consequence of (5).

The singleton condition is equivalent to the usual independence in the classical case and

follows from free independence [27]. We may generalize the (E,ψ)-independence [10] by

replacing the condition E(b
(j)
n ) = 0 with ψ(b

(j)
n ) = 0.

Definition 2. We say that sequences (b
(1)
n ), (b

(2)
n ), · · · of elements of A satisfy the

condition of boundedness of the mixed momenta if for each k ∈ N there exists a positive

constant νk ≥ 0 such that
∣

∣

∣
E
(

b(j1)n1
· · · b(jk)nk

)

∣

∣

∣
≤ νk (6)

for any choice of n1, · · · , nk and j1, · · · , jk.

Given a sequence b = (bn)
∞
n=0 ⊂ A, we put

SN (b) =

N
∑

n=1

bn. (7)

Lemma 1. Let (b
(1)
n ), (b

(2)
n ), · · · be sequences of elements of A satisfying the condition

of boundedness of the mixed momenta. Then, for any α > 0 it holds that

lim
N→∞

E

(

SN(b(1))

Nα
· SN (b(2))

Nα
· · · SN (b(k))

Nα

)

= lim
N→∞

N−αk
∑

αk≤p≤k

∑

π:{1,···,k}→{1,···,p}
surjective

∑

σ:{1,···,p}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(k)
σ◦π(k)

)

, (8)

in the sense that one limit exists if and only if the other does and the limits coincide.

(The limit is understood in the sense of norm convergence in C.)

P r o o f. Expanding the product explicitly by means of (7), we obtain

E

(

SN (b(1))

Nα
· SN (b(2))

Nα
· · · SN (b(k))

Nα

)

= N−αk
N
∑

j1,···,jk=1

E
(

b
(1)
j1

· · · b(k)jk

)

. (9)

Note that the sum may be taken over all mappings j : {1, · · · , k} → {1, · · · , N}. We shall

split the sum according to the cardinality of the range of j. Suppose that j has a range of p

elements, 1 ≤ p ≤ k. Then there exist a unique surjective map π : {1, · · · , k} → {1, · · · , p}
and a unique order-preserving map σ : {1, · · · , p} → {1, · · · , N} such that j = σ ◦π. Then
(9) becomes

N−αk
∑

1≤p≤k

∑

π:{1,···,k}→{1,···,p}
surjective

∑

σ:{1,···,p}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(k)
σ◦π(k)

)

. (10)

For the assertion (8) it is sufficient to show that, whenever p < αk, one has

lim
N→∞

N−αk
∑

π:{1,···,k}→{1,···,p}
surjective

∑

σ:{1,···,p}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(k)
σ◦π(k)

)

= 0. (11)
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It follows immediately from (6) that
∣

∣

∣

∣

∣

∣

∣

∑

π:{1,···,k}→{1,···,p}
surjective

∑

σ:{1,···,p}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(k)
σ◦π(k)

)

∣

∣

∣

∣

∣

∣

∣

≤ νk

∣

∣

∣

∣

{

π : {1, · · · , k} → {1, · · · , p}
surjective

}
∣

∣

∣

∣

∣

∣

∣

∣

{

σ : {1, · · · , p} → {1, · · · , N}
order-preserving

}
∣

∣

∣

∣

. (12)

Note that

lim
N→∞

N−p

∣

∣

∣

∣

{

σ : {1, · · · , p} → {1, · · · , N}
order-preserving

}
∣

∣

∣

∣

= lim
N→∞

N−p

(

N

p

)

=
1

p!
. (13)

Then (11) follows immediately from (12) and (13).

Lemma 2. Notations and assumptions being the same as in Lemma 1, assume that

the sequences (b
(j)
n ) satisfies the singleton condition with respect to E. Then

lim
N→∞

E

(

SN(b(1))

Nα
· SN (b(2))

Nα
· · · SN (b(k))

Nα

)

= 0 (14)

takes place if α > 1/2 or if α = 1/2 and k is odd. If α = 1/2 and k is even, say k = 2n,

the left hand side of (14) is equal to the limit

lim
N→∞

N−n
∑

π:{1,···,2n}→{1,···,n}
2−1 map

∑

σ:{1,···,n}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(2n)
σ◦π(2n)

)

. (15)

Moreover , the following Gaussian bound takes place:

lim sup
N→∞

∣

∣

∣

∣

E

(

SN(b(1))

N1/2
· SN (b(2))

N1/2
· · · SN (b(2n))

N1/2

)∣

∣

∣

∣

≤ (2n)!

2nn!
ν2n. (16)

P r o o f. We use the same notation as in the proof of Lemma 1. For each surjective

map π : {1, · · · , k} → {1, · · · , p} put Sj = π−1(j), 1 ≤ j ≤ p. If |Sj | = 1 for some j,
∑

σ:{1,···,p}→{1,···,N}
order−preserving

E
(

b
(1)
σ◦π(1) · · · b

(k)
σ◦π(k)

)

= 0

by the singleton condition. Suppose that |Sj | ≥ 2 for all j. Then

k =

p
∑

j=1

|Sj | ≥ 2p.

This condition is incompatible with p ≥ αk if α > 1/2 or if α = 1/2 and k is odd. Thus

(14) follows from (8).

Suppose that α = 1/2 and k = 2n. Then the limit of the left hand side of (8) exists

if and only if the limit of the right hand side of (8) exists and, in that case, it is reduced

to (15). Finally, (15) is dominated in norm by

lim
N→∞

N−nν2n

∣

∣

∣

∣

{

π : {1, · · · , n} → {1, · · · , 2n}
2-1 map

}
∣

∣

∣

∣

(

N

n

)

=
(2n)!

2nn!
ν2n,

as desired.
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3. Entangled ergodic theorems. Following [4] we illustrate here the natural role

of the non-crossing partitions in the proof of central limit theorems under some singleton

conditions and we show how this naturally leads to the idea of entangled ergodic theorems.

Definition 3. Let (S1, · · · , Sp) be a partition of {1, · · · , k} and put

sj = min{s ∈ Sj}, sj = max{s ∈ Sj}.
Then Sj is called non-crossing if for any h = 1, · · · , p,

(sj , sj) ∩ (sh, sh) 6= φ⇔ (sj , sj) ⊆ (sh, sh) or (sh, sh) ⊆ (sj , sj).

The set Sj is said to belong to the non-crossing component of a partition if, whenever

(sh, sh) ⊆ (sj , sj) it follows that Sh is non crossing. The partition (S1, · · · , Sp) is called

totally crossing if no two consecutive indices belong to the same set Sj .

Definition 4. Let A and E be as in Definition 1. For each j ∈ N let (b
(j)
n ) be

a sequence of elements of A. These sequences are said to satisfy the entangled ergodic

theorem with respect to E if for any n ∈ N and any totally crossing pair partition

{1, · · · , 2n} =

n
⋃

k=1

{ik, jk}, 1 = i1 < i2 < · · · < in, ik < jk,

the limit

lim
N→∞

1

Nn

N
∑

α1,···,αn=1

E(b(i1)α1
· · · b(j1)α1

· · · b(in)αn
· · · b(jn)αn

) (17)

exists in C.
R ema r k. The entanglement is due to the non-commutativity. If b

(i)
n commutes with

b
(j)
m for any m,n and i 6= j, (17) is reduced to the limit of usual ergodic averages:

lim
N→∞

E

{(

1

N

N
∑

α1=1

b(i1)α1
b(j1)α1

)

· · ·
(

1

N

N
∑

αn=1

b(in)αn
b(jn)αn

)}

Theorem 3. Under the assumptions of Lemma 1, suppose that the algebra C is the

complex numbers and that the mean covariance

lim
N→∞

1

N

N
∑

α=1

E(b(i)α b(j)α ) (18)

exists for any i, j. Then the central limit theorem holds if and only if the entangled ergodic

theorem holds.

Corollary 4. For a state E satisfying the singleton condition and the uniform

boundedness of the mixed momenta (6), the central limit theorem holds if any one of

the following conditions is satisfied :

(i) (q–commutation relations) for each i, j ∈ N, i 6= j, there exists a complex number

qij such that b
(i)
m b

(j)
n = qijb

(j)
n b

(i)
m for any m,n ∈ N;

(ii) (symmetry) E(b
(i1)
α1 · · · b(j1)α1 · · · b(in)αn · · · b(jn)αn ) in (17) is independent of α1, · · · , αn;

(iii) (pair partition freeness) E(b
(i1)
α1 · · · b(j1)α1 · · · b(in)αn · · · b(jn)αn ) = 0 for any totally crossing

pair partition.
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P r o o f. It is clear that any of the conditions (i), (ii), (iii) implies the existence of the

limit (17) hence, by Theorem 3 the central limit theorem holds.

Being based on several examples, we conjecture that the stationarity condition en-

suring the usual ergodic theorem is also sufficient for the entangled ergodic theorem in

general. Some indications of the proof are given in the case where one could prove a priori

that only the non-crossing pair partitions are relevant in the limit. A preliminary result

toward the proof of the entangled ergodic theorem in full generality, i.e. even without

restriction to pair partitions, has been obtained by Liebscher [22]. The validity of the en-

tangled ergodic theorem would imply that the usual stationarity condition is sufficient to

guarantee the validity of the central limit theorem under the only assumption of singleton

independence.

4. Properties of the Haagerup states. In the notations of Section 1, the two

sequences {(gn), (g−1
n )} satisfy the singleton condition with respect to the Haagerup state

ϕγ only when γ = 0. However, ϕγ satisfies a weak analogue of the singleton condition.

When the state ϕγ under consideration is fixed, we write for simplicity

g̃α = gα − γ.

Obviously ϕγ(g̃α) = 0.

Definition 5. (i) A product g̃α1 · · · g̃αm
is called separable at k, 1 ≤ k ≤ m, if

αp 6= α∗
q whenever 1 ≤ p ≤ k < q ≤ m.

(ii) g̃αk
is called a singleton in the product g̃α1 · · · g̃αm

if g̃αk
6= g̃∗αl

for any l 6= k.

(iii) Let g̃αk
be a singleton in the product g̃α1 · · · g̃αm

. It is called outer if g̃αp
6= g̃∗αq

for

any p < k < q.

(iv) A singleton g̃αk
is called inner if g̃αp

= g̃∗αq
for some p < k < q.

For example, in the product g̃1g̃2g̃
−1
1 g̃3g̃2, the second g̃2 is an inner singleton and the

forth g̃3 and the last g̃2 are outer singletons. Notice that g̃2 is not a “singleton” in the

sense that g̃2 appears twice, cf. Definition 1.

Lemma 5. If g̃α1 · · · g̃αm
is separable at k, then

ϕγ(g̃α1 · · · g̃αm
) = ϕγ(g̃α1 · · · g̃αk

)ϕγ(g̃αk+1 · · · g̃αm
)

Lemma 6. If g̃α1 · · · g̃αm
has an outer singleton, then

ϕ(g̃α1 · · · g̃αm
) = 0.

P r o o f. If g̃αk
is an outer singleton, applying Lemma 5 twice we find

ϕγ(g̃α1 · · · g̃αm
) = ϕγ(g̃α1 · · · g̃αk

)ϕγ(g̃αk+1
· · · g̃αm

)

= ϕγ(g̃α1 · · · g̃αk−1
)ϕγ(g̃αk

)ϕγ(g̃αk+1
· · · g̃αm

) = 0,

as desired.

The next result is a generalization of von Waldenfels’ argument [28, 29] to products

with inner singletons.
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Lemma 7. Assume that a product g̃α1 · · · g̃αm
has no singleton at all or has no outer

singletons. Let s be the number of inner singletons in the product and let

p = |{gj ; there exist 1 ≤ k, l ≤ m such that αk = (j,+), αl = (j,−)}|
Then

s ≤ m− 2 and p ≤ m− s

2
(19)

P r o o f. Since there is no outer singleton, there exist at least two factors g̃αk
and g̃αl

with α∗
k = αl. Hence m ≥ 2 and s ≤ m− 2. If g̃αl

is not a singleton, there exists at least

one element g̃αk
such as α∗

k = αl and then jk = jl (k 6= l). Therefore 2p+ s ≤ m.

Definition 6. Assume that a product g̃α1 · · · g̃αm
contains s ≥ 0 inner singletons and

no outer singletons. Let αj1 , · · · , αjs be the suffices which correspond the singletons and

denote the rest by β1, · · · , βm−s in order. We say that the product satisfies the condition

(NCI) if gβ1 · · · gβm−s
= e.

Lemma 8. If the product g̃α1 · · · g̃αm
consists only of non–crossing pair partitions and

of s inner singletons then

ϕγ(g̃α1 · · · g̃αm
) = (−γ)s + (−γ)s+1P (γ) (20)

where P is a polynomial. If the (NCI) condition is not satisfied then

ϕγ(g̃α1 · · · g̃αm
) = (−γ)s+1P (γ). (21)

From Lemma 8 one can deduces the central limit theorem for the Haagerup states.

For more detailed argument see [4].

Theorem 9. Let NCIm(s, ε) be the set of equivalence classes of products g̃α1 · · · g̃αm

with the index ε = (ε1, · · · , εm), which consist of p = (m− s)/2 non-crossing pairs and of

s inner singletons. Then,

lim
N→∞

ϕλ/
√
N (ãε1N · · · ãεmN ) =

m−2
∑

s=0

(−λ)s · |NCIm(s, ε)|. (22)

5. Limit process. By a general theory [2] there exist an algebraic probability space

{Aλ, ψλ} and two random variables aλ, a
+
λ such that

lim
N→∞

ϕλ/
√
N (ãε1N · · · ãεkN ) = ψλ(a

ε1
λ · · ·aεkλ ). (23)

For ν = L,R let

Γ(C)ν = C⊕
∞
⊕

n=1

C⊗n

(

=
∞
⊕

n=0

C

)

denote two copies of the full Fock spaces over C with free creations a+ν and free an-

nihilation aν . Let H =
⊕∞

m,n=0 Hm,n be the free product Γ(C)L ∗ Γ(C)R, that is, the

(m,n)-particle space Hm,n is the complex linear span of the set of vectors {a+ν1 · · · a+νkΦ}
which satisfy the following conditions:

|{j | νj = L}| = m, |{j | νj = R}| = n,
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and the scalar product is given by

〈

a+ν1 · · · a
+
νk
Φ, a+ν′

1
· · · a+ν′

l

Φ
〉

H
=







1, if (ν1, · · · , νk) = (ν′1, · · · , ν′l),

0, otherwise.

The actions of the creation operators

L+ := a+L ∗ 1 : Hm,n → Hm+1,n ; R+ := 1 ∗ a+R : Hm,n → Hm,n+1

are given respectively by

L+a+ν1 · · · a
+
νkΦ = a+La

+
ν1 · · ·a

+
νkΦ

R+a+ν1 · · · a
+
νkΦ = a+Ra

+
ν1 · · ·a

+
νkΦ

and the action of the annihilation

L = aL ∗ 1 : Hm,n → Hm−1,n ; R = 1 ∗ aR : Hm,n → Hm,n−1

is given by

La+ν1 · · · a
+
νk
Φ =























a+ν2 · · ·a+νkΦ, if ν1 = L and k ≥ 2,

Φ, if ν1 = L and k = 1,

0, otherwise,

Ra+ν1 · · · a
+
νk
Φ =























a+ν2 · · ·a+νkΦ, if ν1 = R and k ≥ 2,

Φ, if ν1 = R and k = 1,

0, otherwise.

Let P : H → H be the orthogonal projection onto H⊥
0,0. Put

A−
λ = L+ +R− λP, A+

λ = L+R+ − λP,

where λ ≥ 0 is a constant.

Theorem 10. The limit process (a+λ , a
−
λ , ψλ) is represented on H. That is , all its

correlations (23) are given by

ψλ(a
ε1
λ · · · aεmλ ) = 〈Φ, Aε1

λ · · ·Aεm
λ Φ〉H .

P r o o f. In Theorem 9 we have seen that the ψλ-correlators are completely deter-

mined by the cardinalities of the sets NCIm. We thus need only to establish a bijective

correspondence between NCIm-partitions associated with aε1λ · · · aεmλ and terms in the

expansion of

〈Φ, Aε1
λ · · ·Aεm

λ Φ〉 =
∑

B
ε1
ν1

,···,Bεm
νm

〈Φ, Bε1
ν1 · · ·B

εm
νmΦ〉,

where B−
R = L+, B−

L = R, B+
R = R+, B+

L = L and B−
0 = B+

0 = −λP . In a product

Bε1
ν1 · · ·Bεm

νm , we call (B
εp
νp , B

εq
νq ) (p < q) a pair if B

εp
νp = L and B

εq
νq = L+ or B

εp
νp = R

and B
εq
νq = R+. If B

εp
νp = −λP we call it a singleton. From the definition of H, A+

λ , Aλ we
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see easily that 〈Φ, Bε1
ν1 · · ·Bεm

νmΦ〉 6= 0 if and only if Bε1
ν1 · · ·Bεm

νm forms a non-crossing pair

partition with s inner singletons (0 ≤ s ≤ m− 2). In this case,

〈Φ, Bε1
ν1 · · ·B

εm
νmΦ〉 = (−λ)s.

Therefore we obtain the desired bijective correspondence.

6. Functional central limit theorem for the Haagerup state. In general, a

central limit theorem is extended in a canonical manner to a functional central limit

theorem (or invariance principle) from which the corresponding process is derived, see

e.g., [26]. Given a sequence {bi} of random variables, for the functional central limit

theorem we consider

1√
N

⌊Nt⌋
∑

i=1

bi =
1√
N

∞\
0

⌊Nt⌋
∑

i=1

χ(i−1,i)(s)bids,

which is in the limit N → ∞ equivalent to

1√
N

∞\
0

χ[0,Nt](s)

∞
∑

i=1

χ(i−1,i)(s)bids =
1√
N

∞
∑

i=1

bi

i\
i−1

χ[0,Nt](s)ds

=
1√
N

∞
∑

i=1

bi

i\
i−1

χ[0,t]

( s

N

)

ds.

Thus, we consider more generally

1√
N

∞
∑

i=1

bi

i\
i−1

f
( s

N

)

ds,

where f is a suitable test function.

Going back to our case, we put

S
(ε)
N (f) =

∞
∑

i=1

g̃εi

i\
i−1

f

(

t

N

)

dt, ε = ±1,

where f is an R-valued continuous function with compact support. Then we calculate

the mixed momenta:

ϕγ

(

S
(ǫ1)
N (f1)√
N

· · · S
(ǫm)
N (fm)√

N

)

=

=
1

(
√
N)m

∞
∑

i1,···,im=1

ϕγ(g̃
ǫ1
i1
· · · g̃ǫmim )

i1\
i1−1

f1

(

t1
N

)

dt1 · · ·
im\

im−1

fm

(

tm
N

)

dtm, (24)

where εj = ±1 and fj is a continuous function with compact support, j = 1, 2, · · · ,m.

In view of the uniform bound ‖fj‖L1 ≤ C we apply the arguments in Section 4 (only

non-crossing pair partitions with inner singletons contribute to the limit). Then, in the

limit (24) is equivalent to

1

(
√
N)m

m−2
∑

s=0

(−γ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

∑

iω(1),···,iω(s)
distinct

iω(1)\
iω(1)−1

fω(1)

(

t

N

)

dt · · ·
iω(s)\

iω(s)−1

fω(s)

(

t

N

)

dt
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×
∑

iα(j) 6∈{ω(1),···,ω(s)}

distinct

p
∏

j=1

iα(j)\
iα(j)−1

iα(j)\
iα(j)−1

fα(j)

(

tα(j)

N

)

fβ(j)

(

tβ(j)

N

)

dtα(j)dtβ(j)

+O

(

1√
N

)

, (25)

where p = (m− s)/2 and

NCIm(s, ǫ) =















(α, β, ω) = (α(1), · · · , α(p), β(1), · · · , β(p), ω(1), · · · , ω(s));
{α(1), · · · , α(p), β(1), · · · , β(p), ω(1), · · · , ω(s)} = {1, · · · ,m},
α(j) < β(j), α(j) < α(j + 1), ω(j) < ω(j + 1), εα(j) = −εβ(j),
for each l there exists j such thatα(j) < ω(l) < β(j)















.

In (25), the indices iα(j)’s and iω(j)’s are different each other. But again by the uniform

boundedness of fj ’s, one obtains, for instance,

∑

iω(1) 6∈{iα(1),···,iα(p),iω(2),···,iω(s)}

iω(1)\
iω(1)−1

fω(1)

(

t

N

)

dt

=

∞\
0

fω(1)

(

t

N

)

dt+O

(

1

N

)

= N

∞\
0

fω(1)(s)ds+O

(

1

N

)

and

∑

iα(1) 6∈{iα(2),···,iα(p),iω(1),···,iω(s)}

iα(1)\
iα(1)−1

iα(1)\
iα(1)−1

fα(1)

(

t1
N

)

fβ(1)

(

t2
N

)

dt1dt2 =

=

∞
∑

i=1

i\
i−1

i\
i−1

fα(1)

(

t1
N

)

fβ(1)

(

t2
N

)

dt1dt2 +O

(

1

N2

)

= N2
∞
∑

i=1

i/N\
(i−1)/N

i/N\
(i−1)/N

fα(1)(s1)fβ(1)(s2)ds1ds2 +O

(

1

N2

)

.

Recall that γ = O(1/
√
N). Then (25) becomes

1

(
√
N)m

m−2
∑

s=0

(−γ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

N

∞\
0

fω(1)(s)ds · · ·N
∞\
0

fω(s)(s)ds

×
∞
∑

iα(1),···,iα(p)=1

p
∏

j=1

N2

iα(j)/N\
(iα(j)−1)/N

iα(j)/N\
(iα(j)−1)/N

fα(j)(sα(j))fβ(j)(sβ(j))dsα(j)dsβ(j)

+O

(

1√
N

)

. (26)

Lemma 11. Let f1, f2 be continuous functions with compact supports. Then,

lim
N→∞

N
∞
∑

i=1

i/N\
(i−1)/N

i/N\
(i−1)/N

f1(s1)f2(s2)ds1ds2 =

∞\
0

f1(s)f2(s)ds.
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The proof is easy. By this lemma the limit of (26) as N → ∞ becomes

lim
N→∞

1

(
√
N)m

m−2
∑

s=0

(−γ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

N

∞\
0

fω(1)(s)ds · · ·N
∞\
0

fω(s)(s)ds

×N
∞\
0

fα(1)(s)fβ(1)(s)ds · · ·N
∞\
0

fα(p)(s)fβ(p)(s)ds

=

m−2
∑

s=0

(−λ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

s
∏

i=1

∞\
0

fω(i)(s)ds

p
∏

j=1

∞\
0

fα(j)(s)fβ(j)(s)ds.

Consequently,

Theorem 12. For j = 1, 2, · · · ,m let fj : R → R be a continuous function with

compact support. Then one has

lim
N→∞

ϕλ/
√
N

(

S
(ǫ1)
N (f1)√
N

· · · S
(ǫm)
N (fm)√

N

)

=

m−2
∑

s=0

(−λ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

s
∏

i=1

∞\
0

fω(i)(s)ds

p
∏

j=1

∞\
0

fα(j)(s)fβ(j)(s)ds.

The above is a functional central limit theorem. We now put S
(ǫ)
N,t(f) = S

(ǫ)
N (χ[0,t]f).

By modifying the above argument, we obtain

Theorem 13. For continuous functions fj , j = 1, 2, · · · ,m, with compact supports ,

we have

lim
N→∞

ϕλ/
√
N

(

S
(ǫ1)
N,t1

(f1)√
N

· · ·
S
(ǫm)
N,tm

(fm)
√
N

)

=

m−2
∑

s=0

(−λ)s
∑

(α,β,ω)∈NCIm(s,ǫ)

s
∏

i=1

〈1, fω(i)〉tω(i)

(m−s)/2
∏

j=1

〈fα(j), fβ(j)〉min{tα(j),tβ(j)}

where

〈f, g〉t =
t\
0

f(s)g(s)ds.

Now we have the Fock representation of this process. Let H be the Fock space intro-

duced in Section 6, and K = L2(C). Using the notations in Section 5, put

A−
λ,t(f) = L+ ⊗ χ[0,t]f +R⊗ χ[0,t]f − λ〈1, f〉tP,

A+
λ,t(f) = L⊗ χ[0,t]f +R+ ⊗ χ[0,t]f − λ〈1, f〉tP.

Then by Theorem 10 and Theorem 13, we have

Theorem 14. The limit process (a+t , a
−
t , ψλ) is represented on H ⊗ K, and its all

correlators are given by

ψλ(a
ε1
t1 (f1) · · · a

εm
tm (fm)) =

〈

Φ, Aε1
λ,t1

(f1) · · ·Aεm
λ,tm

(fm)Φ
〉

H⊗K
.
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7. Singleton independence. We are led to the following

Definition 7. LetA be a ∗-algebra and let S = {gj, g∗j ; j ∈ N} be a countable subset
of A. Assume we are given a family of states ϕγ , γ ≥ 0, on A such that ϕγ(gα) = γ for

any gα, where α = (j, ε) and gα = gεj . Then the sequence {gj} is called to be singleton

independent with respect to ϕγ if

|ϕγ(gα1 · · · gαk
)| ≤ γck|ϕ(gα1 · · · ĝαs

· · · gαk
)|, (27)

whenever αs is a singleton for (α1, · · · , αk).

The case of γ = 0 is related to the usual singleton condition. Condition (27) and

boundedness (6) imply that

|ϕγ(gα1 · · · gαm
)| ≤ Cmγ

s (28)

whenever gα1 · · · gαk
has s singletons.

Conditions (27), (28) are easily verified for the Haagerup states. Other examples are

found in the unitary representations of the free groups [14]. By specializing a parameter

of spherical functions associated with representations of the principal series, we obtain a

family of positive definite functions:

ψN (x) =

(

1 + |x|N − 1

N

)

(2N − 1)−|x|/2, x ∈ FN ,

where FN is the free group on N generators. This state satisfies the singleton indepen-

dence. In fact, one sees that

ψN =

(

1 +
N − 1

N
γ
∂

∂γ

)

ϕγ ,

where ϕγ is a Haagerup state with γ = 1/
√
2N − 1. Suppose that g = gα1 · · · gαk

has

s singletons. Then ϕγ(g) = γt with some t ≥ s and ψN (g) = γsP (γ) where P is a

polynomial. Since ψN (gj) = a =
√
2N − 1/N ≥ γ, the singleton independence |ψN (g)| ≤

Cka
s holds.

As before, we put

S
(ε)
N =

N
∑

j=1

g̃εj , ε = ±1,

and, for fixed k ∈ N and ε1, · · · , εk ∈ {±1} we consider the product

S
(ε1)
N · · ·S(εk)

N =

N
∑

j1,···,jk=1

g̃ε1j1 · · · g̃
εk
jk

=
∑

j1,···,jk
g̃α1 · · · g̃αk

.

Put Ik = {(1, ε1), · · · , (k, εk)} and consider α as a function α : Ik → {1, · · · , N}. For given
α put p = |α(Ik)|. We denote by α(Ik) = {α1, · · · , αp} its range (with αi 6= αj) and put

Sj = α−1(αj), j = 1, · · · , p,

Pk,p = {(S1, · · · , Sp) ; partition of Ik of cardinality p},

[S1, · · · , Sp] = {α ; α|Sj
= α(Sj) = const. and α(Si) 6= α(Sj) if i 6= j}.



22 L. ACCARDI ET AL.

With these notations our goal is to study the large N asymptotics of the rescaled expec-

tation values

ϕλ/
√
N

(

S
(ε1)
N√
N

· · · S
(εk)
N√
N

)

= N−k/2
k
∑

p=1

∑

(S1,···,Sp)∈Pk,p

∑

α∈[S1,···,Sp]

ϕλ/
√
N (g̃α1 · · · g̃αk

).

(29)

Lemma 15. Given s = 0, 1, · · · , k, denote
Ps
k,p = {(S1, · · · , Sp) which have exactly s singletons},

where a singleton of (S1, · · · , Sp) stands for Si with |Si| = 1. Then it holds that p ≤
(k + s)/2. Moreover , if p < (k + s)/2 then

lim
N→∞

N−k/2
∑

(S1,···,Sp)∈Ps
k,p

∑

α∈[S1,···,Sp]

ϕλ/
√
N (g̃α1 · · · g̃αk

) = 0.

P r o o f. For (S1, · · · , Sp) ∈ Ps
k,p we have

k =

p
∑

j=1

|Sj | =
∑

{j∈{1,···,p},|Sj|≥2}
|Sj |+ s ≥ 2(p− s) + s = 2p− s.

Then, in view of the boundedness of the mixed momenta (6), we see that the sum is

dominated by a constant times of

N−(k+s)/2|Ps
k,p|

λs

p!
Np → 0.

We see from Lemma 15 that the non-trivial contribution to the limit of (29) comes

from those partitions (S1, · · · , Sp) ∈ Ps
k,p satisfying p = (k + s)/2, that is, k = 2p− s.

Lemma 16. Assume that k = 2p− s holds. Then for any (S1, · · · , Sp) ∈ Ps
k,p, it holds

that |Sj | = 1 or |Sj | = 2 for all j.

P r o o f. Suppose otherwise, say, |S1| ≥ 3. Then we have

k = 3 +
∑

j≥2,|Sj |≥2

|Sj |+ s ≥ 3 + 2(p− s− 1) + s

= 3 + 2p− 2s− 2 + s = 2p− s+ 1,

which is incompatible with k = 2p− s.

Suppose that a partition (S1, · · · , Sp) of {1, · · · , k} has s singletons and |Sj | = 1 or

2 for j = 1, · · · , p. We denote by (S̃1, · · · , S̃p−s) the set of all Sj’s with |Sj | = 2 and

say that (S̃1, · · · , S̃p−s) is the pair partition associated to (S1, · · · , Sp). The pair partition

associated to a 2–1 map β : {1, · · · , 2p} → {1, · · · , p} will be called negligible if

|ϕγ(gβ1 · · · gβ2p)| ≤ cγ. (30)

Lemma 17. Suppose that ϕγ satisfies condition (30). Fix s = 0, · · · , k and let P̃k,1,2,s

denote the set of all partitions (S1, · · · , Sp) with s singletons such that |Sj | = 1 or 2 and

such that the associated pair partition is negligible. Then

lim
N→∞

N−k/2
∑

(S1,···,Sp)∈P̃k,1,2,s

∑

α∈[S1,···,Sp]

ϕλ/
√
N (g̃α1 · · · g̃αk

) = 0. (31)
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P r o o f. Iterating (27), we see that the sum (31) is majorized by

CN−(k+s)/2
∑

(S1,···,Sp)∈P̃k,1,2,s

∑

α∈[S1,···,Sp]

|ϕλ/
√
N(g̃β1 · · · g̃βk−s

)|, (32)

where (β1, · · · , βk−s) is obtained from (α1, · · · , αk) by removing the singletons. Since the

pair partition associated to (S1, · · · , Sp) is negligible, and (30) implies

|ϕγ(g̃β1 · · · g̃βk−s
)| ≤ c · λ√

N

and the sum (32) is majorized by a constant times

cN−(k+s)/2|P̃k,1,2,s| ·
λ√
N

·Np. (33)

Since p = (k + s)/2 by Lemma 15, (33) is dominated by c/
√
N → 0.

Summing up, we come to

Theorem 18. Keeping the notations in Definition 7, suppose that the states ϕγ satisfy

conditions (27) and (30) for γ ∈ [0, γ̄], γ̄ > 0. Then it holds that

lim
N→∞

ϕλ/
√
N

(

S
(ε1)
N√
N

· · · S
(εk)
N√
N

)

= lim
N→∞

N−k/2
∑

1≤s≤k

∑

α

′
ϕλ/

√
N (g̃α1 · · · g̃αk

), (34)

where
∑′

α means that α runs over the non-negligible pair partitions with s singletons.

Rema r k. The existence of the limit (34) is guaranteed by conditions of the same

type as in Corollary 4. Condition (27) is easily verified for the Haagerup states. In that

case the negligible partitions are nothing but the crossing ones. Other examples will be

considered elsewhere.
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