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1. Introduction. In the article we give the explicit bound for the growth at infinity
of a polynomial with a compact set of zeros. Our aim is to prove the following theorem:

THEOREM 1. Let F € R[X1,...,X,] be a polynomial of degree d > 2 such that the
set F=1(0) is compact. Then there exist constants ¢, R > 0 such that

n

|F(z)| > ¢|a|? (4D for all |x| > R.

Recall that we have a similar estimation in the complex case. Consider a polynomial
map H : C" — C" of degree d such that H=1(0) is finite. Then, by Kolldr’s theorem,
|H(z)| > const.|z|?%" for |z| > 1 (see [Ko]). Our theorem is a real counterpart of this
inequality.

2. Two lemmas. The following lemmas will be used in the proof of the main theo-
rem.

LEMMA 1. Let G : R™ — R be a polynomial of positive degree d. Then there exists
a linear automorphism L : R™ — R™ such that the polynomial F = G o L satisfies the
following conditions:

(i) All partial derivatives of F are of degree d — 1.

(ii) The setsT; = {z € R" | 0F/0X1(z) = ... = OF/0X;_1(x) = OF/0X;41(x) =
... =0F/0X,(x) =0, 0F/0X;(z) # 0} (1 <i < n) are one-dimensional submanifolds
of R™ whenever they are not empty,

(i) For every x € I'; (1 <i < n) the differentials d,(0F/0X1), ..., dx(0F/0X;_1),
d,(0F/0X;41), ..., dz(OF/0X,) are linearly independent.
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Proof. Let GL(n) be the set of linear automorphisms of R™. We claim that

0GolL 0GolL
{L € GL(n) | deg X =...=deg X,

is a dense subset of GL(n). Let Gg4(X1,...,X,) be the leading form of the polyno-
mial G that is the homogeneous polynomial of degree d for which deg(G — G4) < d.
Consider a substitution G4 o L where L(X1,...,X,) = (3 U X, ..., >0 15 X;). We
have (Gg o L)(X1,..., Xn) = Ga(X" B X, S0 1 X,) = Ga(ld, . I)XE + ..
o+ Ga(17, . 1M X + other monomials. If Ga(lF, ..., 1L) #0, ..., Ga(I},...,I%) # 0,
then all partial derivatives of G o L are of degree d — 1. Since the set {L € GL(n) |
Ga(ld,. .., 1) #0,...,Gq(I7,...,1%) # 0} is a complement of a proper algebraic set, it
is open and dense in GL(n). This proves the claim.

For any z = (21,...,zy) from R™\ {0} we denote by [z] the corresponding point
[#1,...,2,] of the projective space RP"~!. Consider the map

[erad G] : R™\ (grad G)~*(0) — RP™ 1.

From the semialgebraic version of Sard’s lemma (see [BR], page 82) it follows that the
set of regular values of this map contains an open subset U C RP™ ! The set V =
{(',...;v") e R x ... x R" | det(v]) # 0, '] € U for i = 1,...,n} is an open subset
of R" x...xR™. Each n-tuple v = (v!,...,v") from this set yields a linear automorphism
A,:R™ —» R, Ay(z) = ((v},2),..., (v, z)). Hence the set {A, € GL(n) | v € V} is open
in GL(n). Since GL(n) 3 A — A~! € GL(n) is an open map, {A;* € GL(n) |v eV}
is also an open subset of GL(n). Thus, there exists v = (v!,...,v™) € V such that the
automorphism L = A1 satisfies (i).

Let us define the polynomial F' = Go L. Since G = Fo A, grad G = AT ograd Fo A,,
where AT is the adjoint of A,. From this equation it follows that for any w € R \ {0},
[w] is a regular value of [grad F] if and only if [AT (w)] is a regular value of [grad G]. Let
el =(1,...,0), ..., " = (0,...,1) form the standard basis of R"™. Since AL (e?) = v
for i = 1,...,n, we conclude that [e!], ..., [e"] are regular values of [grad F]. Applying
the implicit function theorem to the map [grad F| we see that each of the sets I'; =
[grad F]~1([e?]) (1 < i < n) is either a one-dimensional submanifold of R™ or is empty.
This proves (ii).

We prove the third part of the lemma for I',,. To simplify the notation we write
O;F for OF/0X;. Because [e"] is a regular value of [grad F], 0 € R""! is a regular
value of the map ¢ : R*\ (9,F)~*(0) — R, ¢ = (0, F/O,F,...,0,_1F/0,F) that
is, the map [grad F] written in the coordinates {[zi,...,z,] € RP"™ | 2, # 0} >

—d—1}

[@1,...,20] = (X1/Tn, ..., Tpn_1/T,) € R"L. Therefore, for every x € T, the differen-
tials dg (O F/OnF), ..., dy(0n—1F /0, F) are linearly independent. On the other hand,
forz €T, and i =1,...,n—1 we have d,(0;F/0,F) = (1/0,F)d,(0; F), therefore the
differentials d, (1 F), ..., du(0,—1F) are also linearly independent. The proof for T,
i # n is similar. =

Further, we denote by |z| the supremum norm |z| = max{|z1],...,|z,|} for z =
(z1,...,2y,). We will also use the following convention: Using notation |z| > 1 we mean

that the corresponding condition is satisfied for |x| > R, where R is sufficiently large.

LEMMA 2. Let F € R[X3,...,X,] be a polynomial with a compact set of zeros and
let K={xeR"|VyeR" |yl =|z|=|F(y)|>|F(x)|}. If AC K is an unbounded
semialgebraic set, then the following conditions are equivalent:
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(i) [F(z)| = cle|*  for |z|>1,
(ii) |F(z)] > cz|* for|z| > 1, z € A.

Proof. The implication (i) = (ii) is obvious. Assume that (ii) is true. Since
{|z| |z € A} is an unbounded semialgebraic subset of R, there exists a constant R > 0
such that (R,00) C {|z||=z € A}. By (ii) we can choose R sufficiently large so that
|F(x)| > c|lz|* for |z| > R, z € A. Let y € R™ be an arbitrary point with |y| > R.
Then there exists © € A such that |z| = |y|. By (ii) and the definition of K we get
|F(y)| > |F(x)] > c|z|* = c|y|* which ends the proof. m

3. Proof of Theorem 1. The proof proceeds by induction on the number of vari-
ables. For polynomials in one variable the theorem is obvious. Assume that the theorem
holds for polynomials in n — 1 variables. We shall check that it is true for polynomials in
n variables.

We shall perform some reductions:

If the theorem is true for a polynomial F, then it holds also for F' o L, where
L:R"™— R" is a linear automorphism. Therefore, we can assume that F' satisfies the
conditions (i), (ii) and (iii) of Lemma 1.

The set F~1(0) is bounded. Hence F(x) # 0 for all |z| > R, where R is sufficiently
large. Since for n > 2 the set {x € R"||z| > R} is connected, a sign of F restricted
to {z € R"||z| > R} does not change. Without loss of generality we can assume that
F(z) > 0 for |z| > R.

Let

K={zcR"|vyeR" |yl =lz|=[F(y)| = |[F(z)[}.
First, we prove the theorem under the additional assumption that K N (grad F)~1(0) is
unbounded. Let A be an unbounded connected component of this set. Since grad F'(x) = 0
for z € A, we conclude that F|4 = ¢ with some ¢ > 0 (see [BR], Theorem 2.5.1). By
Lemma 2 we get |F(z)| > c|z|° for |z| > 1 which ends the proof in this case.

Hence we may assume throughout the rest of the proof that K N (grad F)~1(0) is
bounded.

Let us define

Ai={z e R" | |z| < |z;| for ke {l,....n}\ {i}},
Bj={zeR"|z; =aj, |zg| < |z;| fork=1,...,n},
Cij={zeR" | z; = —xj, |ag| <|z;| fork=1,...,n}

Since R™ = JA; UUB;; UUC,j, at least one of the sets K NJA;, K NJB,,;,
K NJC;,; is unbounded. Let us consider three cases:

Case 1: KN|J B; ; is unbounded. Then at least one of the sets KNB; ; (1 <i<j<n)
is unbounded. Without loss of generality we can assume that this is the set K N B,_1 5.

Consider the polynomial F'(Xy,..., X, 1) = F(X1,..., Xn_1, X,—1) of degree d < d.
By the inductive assumption we have |F(&)| > c|#[*(@=D""" for € R"!, |&] > 1.

If we take any € By_1n, ¢ = (Z1,...,Zn—1,Tn—_1) and if we set T = (z1,...,Tpn_1),
then |Z| = |z and F(Z) = F(x). Hence |F(z)| > ¢|z|9~@=D""" for [z| > 1, 2 € Bp_1.n.
By Lemma 2 and by the inequality d—(d—1)""1 > d—(d—1)" we get |F(z)| > c|z|*~(@=1D"
for |z| > 1.

Case 2: K N|JC; ; is unbounded. The proof is analogous.
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Case 3: K N|J A; is unbounded. Then at least one of the sets K N A4; (1 <i<mn)is
unbounded. Without loss of generality we can assume that this is K N A,,.

Take R > 0 large enough so that F(z) > 0 for |z| > R and let y = (y1,...,Yn)
be an arbitrary point in K N A,, with |y| > R. Consider a function f(z1,...,2n—1) =

F(z1,...,Zp—1,yn) defined for |z;| < |yn| (1 <4 < n). Taking into account two points,
y= W1, Yn-1,Yn) and & = (x1,...,Tn_1,Yn), where |z;| < |y| (1 < i < n), we see
that |x| = |y|, therefore F'(z) > F(y). Hence the point (y1,...,yn—1) is a local minimum
of f. Thus OF/0X,(y) =...=0F/0X,_1(y) =0.

Summarizing, we see that for all y € K N A,,, |y| > 1 we have 0F/0X1(y) = ... =
OF/0Xn-1(y) = 0, OF/0X,(y) # 0. Moreover, from Lemma 1 it follows that K N A,
is a one-dimensional semialgebraic manifold in a neighborhood of infinity. We want to
find a parametrization of a branch at infinity of this set. To that end we employ complex
algebraic geometry.

Define Hy = 0F/0X4, ..., Hy_1 = OF/0X,_1 and let C = {2z € C" | Hy(z) = ...

. = H,_1(2) = 0}. Decompose C' to the union of irreducible algebraic components
C =CyU...UC,. Treating R™ as a subset of C" we see that K N A, N C is unbounded.
Hence there exists a component C; such that K N A, N C; is unbounded. For simplicity
put I' = C;.

We will check that dimgI' = 1. By Lemma 1 there exists x € K N A, N T for
which the differentials d, Hy, ..., d; H,_1 are linearly independent. Therefore, dimc I" <
n—rank(I', z) < n—rank(d,Hy,...,dsHy—1) = 1 (see [BR], pages 122-135). Furthermore,
I is unbounded, so dimc ' = 1.(})

Next, we will check that deg’ < (d — 1)"~L. Let us recall an invariant § of algebraic
sets introduced in Lojasiewicz’s book ([Lo] pages 419-420): Let W = Wy U ... U Wy be
a decomposition of an algebraic set W to irreducible components. Then, by definition
S(W) =37, degW;. We will use the inequality §(W N'V) < §(W)35(V). Applying this
property to the set C' we see that degI’ < 6(C) = §({H; =0} Nn...N{H,—1 =0}) <
115 0({H; = 0}) < (d— 1)1,

Further, we will consider C™ as a affine part of the projective space CP"™. We will use
the natural identification between (z1,...,z,) € C" and [1,21,...,z,] € CP™. With the
use of this identification we can treat K, A, and I" as subsets of CP™.

Since K N A,, NI is an unbounded set and CP"™ is compact, there exists a point a in
the hyperplane at infinity {[zo,...,2,] € CP™ | o = 0} such that a € cl(K N A4, NT).

The homogeneous coordinates of @ can be chosen such that a = [0,aq,...,an-1,1].
Indeed, for all € A,, we have |z;| < |z,| for 1 <i < n. Since a € cl(Ay), |a;| < |ay| for
1 < i < n. Therefore, the last coordinate a,, does not vanish and by homogeneity we can
assume that a,, = 1.

Let T' be the projective closure of the curve I'. Since a € T, according to [Lo]
(pages 173-176) there exists a finite sequence of injective holomorphic parametrizations
v+ (D,0) = (T,a) (1 <i <), where D = {t € C | [t| < &}, such that the curve T is the
union 1 (D) U... U~ (D) in some neighborhood of a. These parametrizations are of the
form

2i(t) = [t 31 (1), i (8), 1]
Furthermore, we can assume that the real branches of I' are parametrized such that
(t%, 7i1(t), .., vim—1(t)) € R™ if and only if ¢ € R. This can be done by substituting

(1) If dimg T = 0, then T’ would consist of one point.
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vi(&it), where &; is an appropriate d;-th root of unity and by shrinking ¢ if necessary
(see [Mi] or [Du] for the details).

Let H = H(Xo,...,X,) be the homogenization of the polynomial dF/9X,,. Recall
that it means that H is a homogeneous polynomial of degree deg H = degdF/0X,
such that H(1,X1,...,X,) = 0F/0X,(X1,...,X,). We can calculate the intersection
multiplicity of the curve T’ and the hypersurface {H = 0} at a using the formula

l
(I, {H =0}) = ZOFdO(H °© %)
i=1
(see [Sh], pages 190-194). By Bézout’s theorem (I, {H = 0}) < (degT)(deg H) <
(d—1)". Hence ordg(Hoy;) < (d—1)"fori=1,...,L

One has a € cl(K N A, NT). Hence there exists ¢ (1 < ¢ < 1) such that a € cl(K N
A, N7;(D)). Since ; is a proper map, 0 € cl(y (K N A,)). Furthermore, we see by the
definition of v; that y~1(K N A,,) is a semianalytic subset of R. Therefore there exists
€ > 0 such that v;((0,¢)) C K N A, or v;((—¢,0)) C KN A, (see [BM] for the definition
and basic properties of semianalytic sets). In the rest of the proof we assume the former
case (the proof for the case v;((—¢,0)) C K N A, is similar). We will again treat K, A4,
and I' as subsets of C”.

Set the following meromorphic map
p:{teClO<|t|<eldt— (ya(®)/th, ... Yin_1(t)/t% 1/t%) € C™.

Notice that ¢({t € C | 0 < |t| < €}) C I" and that ¢((0, €)) is an unbounded semialgebraic
subset of K N A,,.
We estimate the order of F o ¢ at zero. Either ordg(F o ¢) = 0 or by the equation

, ([ OF , OF , [ OF ,
(FO¢)_(8X10¢ ¢1++ 8Xno¢ ¢n_ 8Xno¢ ¢n
we have ordg(F o ¢) = ordg(0F/0X,, o ¢) — d;.
On the other hand we have
oF v v .
87(¢(t)) = H(la ’yi,l(t)/td17 s v’yi,nfl(t)/tdiv 1/tdt)
= tmdides ity (1), i1 (), 1) = e H T (4,(1)).

Since deg H = d—1 and ordg(H o7;) < (d—1)", we conclude that ordg(0F /90X, 0¢) <
(d—1)™—d;(d—1). By this inequality and the preceding equalities we have ord(Fo¢) <
(d—1)" —d;d or ordg(F o ¢) = 0.

Remark. If f,.g: {tc C|0<|t|<e} = C, f # 0, g # 0 are meromorphic func-
tions, then there exist constants c,e; > 0 such that [f(t)] > c|g(t)|o*de f/ordog for all
teC,0< |t <e.

The proof of this fact is simple and is left to the reader. By the remark and by the
fact that ¢((0,€)) C A,, implies |p(t)| = |pn(¢)| for t € (0,€), we obtain an inequality

[F((0)] = clg(t)|ortotFed)/ erdolon) for ¢ € (0,e1)
with some positive constants ¢, €;. By Lemma 2 we have

|F(z)| > cla|ordotFed)/ordo(@n)  for |z| > 1.
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Moreover, the exponent ordg(Fo¢)/ ordg(¢,) > ((d—1)"—d;d)/(—d;) = d—(d—1)"/d; >
d— (d—1)™ or is equal zero and thus

|F(z)| > clz|* D" for |z|>1. =

4. Concluding remarks. In the course of the proof we have found a parametrization
¢ of the set K at infinity such that |F(z)| > c|x|o*do(Fo@)/ ordo(én)for|2| > 1. By a slight
modification of the proof one can show that the number ordg(F o ¢)/ordg(¢y,) is the
Lojasiewicz exponent at infinity for the polynomial F', i.e. the largest exponent a for
which the estimate |F'(x)| > const.|z|* is true for |z| > 1.

We have checked that ordg(F o ¢) < (d —1)™ — d ordo(¢y) or ordg(F o ¢) = 0. One
can also prove the inequality (d — 1)"~! < ordg(¢,) < 0. As a result, there is only a
finite number of fractions which can be the Lojasiewicz exponents for polynomials of
fixed number of variables n and of fixed degree d.

So far I have not found a polynomial F' for which the Lojasiewicz exponent Lo, (F) =
d — (d — 1)". For example for the polynomial F(Xi,...,X,) = (XoX"' — 1)% +
(X3—XT) 2+, (X=X )2+ X2 of degree d = 2m we have Lo (F) = d—(1/2"1)d".
This suggests that Theorem 1 could be essentially sharpened.

I want to express my thanks to Stanistaw Spodzieja for pointing out a mistake in the
first version of this paper.
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