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Abstract. The  Lojasiewicz exponent of the gradient of a convergent power series h(X,Y )
with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality
|gradh(x, y)| ≥ c|(x, y)|λ holds near 0 ∈ C2 for a certain c > 0. In the paper, we give an
estimate of the  Lojasiewicz exponent of gradh using information from the Newton diagram of h.
We obtain the exact value of the exponent for non-degenerate series.

1. Introduction. The main goal of this paper is to compute the  Lojasiewicz ex-
ponent of the plane curve singularity using the Newton Polygon. Our theorem is the
counterpart of the Kouchnirenko theorem [Kou] on the Milnor number in the case of
two variables. We were inspired by the articles of Lichtin [Li] and Fukui [Fu] who proved
some estimates for the  Lojasiewicz exponent. However, our considerations are based on
other ideas and enable us to calculate the  Lojasiewicz exponent for non-degenerate power
series. The organization of the paper is as follows. In Section 2 we present the main theo-
rem with illustrative examples. Then we collect in Section 3 basic notions connected with
the Newton diagrams. Our main reference is [BK]. A theorem concerning the  Lojasiewicz
exponent of a holomorphic mapping, determined by the pair of convergent power series, is
given in Section 4. The theorem is helpful in a proof of the main result given in Section 6.
The proof is preceded by the theorems which describe connections between the Newton
diagram of the series h and the diagrams of its derivatives ∂h

∂X , ∂h
∂Y (Section 5). These

results are of independent interest.
We denote by C{X,Y } the ring of convergent power series with complex coefficients in

variables X,Y . For every h ∈ C{X,Y } we use ordh, or respectively inh to denote order
or respectively initial form of the series h. If z = (x, y) ∈ C2, then |z| = max{|x|, |y|}.
We use conventions: inf ∅ = +∞ and sup ∅ = −∞.
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2. The main theorem. In this section the main result of the paper (Theorem 2.1)
is formulated. The proof of the main theorem is given in Section 6.

Any pair of convergent power series f, g ∈ C{X,Y } without constant term determines
the germ H = (f, g) : (C2, 0) −→ (C2, 0) of a holomorphic mapping. An important
local characteristic of H, developed by many authors [LJ-T], [KL], [P l1], [ChK1] is the
 Lojasiewicz exponent

l0(H) = inf
{
λ > 0 : max{|f(x, y)|, |g(x, y)|} ≥ const. ·max{|x|, |y|}λ near zero

}
.

It is well known that l0(H) < +∞ if and only if the system of equations f(X,Y ) =
g(X,Y ) = 0 has an isolated solution at 0 ∈ C2. Let h ∈ C{X,Y } be a series with a
singularity at 0 ∈ C2, i.e. such that

h(0, 0) =
∂h

∂X
(0, 0) =

∂h

∂Y
(0, 0) = 0.

We have l0(gradh) < +∞ if and only if the curve h = 0 has an isolated singular-
ity at 0 ∈ C2. Lu and Chang [LCh] (developing the results of Kuo [K], Kuiper [Kuip],
Bochnak and  Lojasiewicz [B L]) proved that adding to the function h monomials of or-
der greater than [l0(gradh)] + 1 does not change its topological type (1). The minimal
integer with this property is called the C0-sufficiency degree of h and is denoted by νh.
Teissier [Te] showed that νh = [l0(gradh)] + 1. Kucharz [Kuch1] found an example that
the equality of this type is not true in the real case. Lichtin [Li] studied connections of
C0-sufficiency degree with the Newton diagram of series h.

For any power series h(X,Y ) =
∑
hαβX

αY β , hαβ ∈ C, we put supph = {(α, β) :
hαβ 6= 0}. The Newton diagram ∆h of h is the convex hull of supph + R2

+. The bound
of the diagram ∆h is the union of two half-lines and a finite number of compact and
pairwise non-parallel segments. The Newton polygon Nh is the set of these segments. For
any segment S ∈ Nh we define the initial form in(h, S) as the sum of monomials hαβx

αyβ

over all (α, β) ∈ S. We say that h is non-degenerate on the segment S ∈ Nh if the system
of equations ∂

∂X in(h, S) = ∂
∂Y in(h, S) = 0 has no solutions in (C \ {0}) × (C \ {0}).

We say that h is non-degenerate in Kouchnirenko’s sense [Kou] if it is non-degenerate
on all the segments from Nh. For S ∈ Nh, we denote by α(S) the abscissa of the point,
where the line determined by S intersects the horizontal axis, and by β(S) the ordinate
of the point, where the line intersects the vertical axis. For almost all series with the same
Newton diagram Lichtin proved the following inequality

νh ≤
[

max
S∈Nh

{α(S), β(S)}
]

+ 1.

By “almost all” Lichtin meant a specific non-degeneracy condition stronger than the non-
degeneracy in Kouchnirenko’s sense. The result of Lichtin was improved by Fukui [Fu].
Fukui considered the case of n variables. In the two-dimensional case, the result of Fukui
can be written in the form

l0(gradh) ≤ max
S∈Nh

{α(S), β(S)} − 1

which gives

νh ≤
[

max
S∈Nh

{α(S), β(S)}
]
.

(1) [x] denotes the integer part of a real x.
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Fukui considered series with an isolated singularity at zero which are non-degenerate in
Kouchnirenko’s sense. Theorem 2.1, given below, is the essential improvement of the two
results quoted above.
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Any series h ∈ C{X,Y } will be referred to as nearly convenient if it is non-zero and
the both distances between the diagram ∆h and the axes are less than or equal to one.
It is easy to show that any series h with an isolated singularity is nearly convenient.
The reduced Newton polygon N ∗h is obtained from the Newton polygon Nh by omitting
the extreme segments in some situations. The segment nearest to the vertical axis is
omitted when its lower end has the form (1, q). The segment nearest to the horizontal
axis is omitted when its upper end has the form (p, 1). The segments omitted from Nh
are called exceptional.

Theorem 2.1. For any nearly convenient series h ∈ C{X,Y } with a singularity
at 0 ∈ C2 and with nonempty reduced Newton polygon N ∗h we have

l0(gradh) ≥ max
S∈N∗

h

{α(S), β(S)} − 1.

Moreover, if the series is non-degenerate in Kouchnirenko’s sense, then the equality holds.

In connection with Theorem 2.1 let us notice that if the series h is not nearly conve-
nient, then l0(gradh) = +∞. If h is nearly convenient with a singularity at 0 ∈ C2, but
N ∗h = ∅, then l0(gradh) = 1. The assumption of Kouchnirenko’s non-degeneracy is, in
fact, equivalent to the assumption that the series is non-degenerate on each segment of
the reduced Newton polygon N ∗h . The reason is that any series is always non-degenerate
on the exceptional segments. The idea of omission of the extreme segments of the Newton
Polygon was used by Kucharz [Kuch2] in a different context.

Let F ∗ be the segment of N ∗h nearest to the vertical axis and let L∗ be the last one
nearest to the horizontal axis. To compute the number on the right-hand side of the
formula given in the theorem it is useful to notice that

max
S∈N∗

h

{α(S), β(S)} = max{α(L∗), β(F ∗)}.

Example. Let us consider the series h = XY 6 +X2Y 4 +X7Y +X11. The series h is
non-degenerate, nearly convenient and the polygon N ∗h is nonempty (notice that the last
segment of Nh is exceptional). It is easy to compute that α(L∗) = 82

3 and β(F ∗) = 8.
From Theorem 2.1 we have l0(gradh) = max{8 2

3 , 8} − 1 = 7 2
3 and so νh = [72

3 ] + 1 = 8.
For the comparison, notice that from the Lichtin result we have νh̃ ≤ 12 for almost all
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series h̃ with the same Newton diagram, and from the Fukui result we have l0(gradh) ≤ 10
and νh ≤ 11.
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Example. Let us consider the series h = (X + Y )2(X − Y )2(2X + 4Y ) +X100. This
series does not satisfy the non-degeneracy criterion, because the initial form in(h, S),
corresponding to the unique segment S of the Newton polygon, contains multiple factors.
After linear variables transformation X1 = X + Y and Y1 = X − Y we obtain the non-
degenerate series h̃ = X2

1Y
2
1 (3X1−Y1)+(X1+Y1

2 )100 with the same value of the  Lojasiewicz
exponent of the gradient. It is easy to notice that the vertices of the Newton diagram are
the points: (0, 100), (2, 3), (3, 2), (100, 0). None of the segments of the Newton polygon
is exceptional. We have α(L∗) = β(F ∗) = 100. Thus from Theorem 2.1 it follows that
l0(gradh) = l0(grad h̃) = 99. In this case the Fukui result gives l0(grad h̃) ≤ 99.

3. Newton diagrams and Puiseux series. In this section we collect elementary
facts concerning Newton diagram and Puiseux series which will be useful in the proofs.
Let S be a segment of the Newton polygon of any series. Obviously, the line determined
by S has a negative slope. By the declivity of S we mean the negative of the reciprocal of
this slope. It is clear that any segment of the Newton polygon of any series has a positive
declivity. Denote by S1 and S2 the projections of S on the horizontal and vertical axes,

respectively, and by |S1|, |S2| their lengths. The declivity of S is equal to |S1|
|S2| . The

set of all segments of the Newton polygon of any series can be ordered according to
the increasing declivity. Notice, that the “first” segment (of the minimal declivity) of
any Newton polygon is nearest to the vertical axis, and the “last” one (of the maximal
declivity) is nearest to the horizontal axis. The line passing through (α, β) ∈ R2, parallel

to S, intersects the horizontal axis at the point with the abscissa α+ |S1|
|S2|β, and the vertical

axis — at the point with the ordinate α |S2|
|S1| +β. If (α, β) ∈ S, then α+ |S1|

|S2|β = α(S) and

α |S2|
|S1| + β = β(S), where α(S) and β(S) were defined in the previous section.

Let h be a non-zero series. If S is any segment of the Newton polygon of a series (not
necessary from Nh), then we put

α(S,∆h) = inf
{
α+
|S1|
|S2|

β : (α, β) ∈ supph
}
.(1)
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and

β(S,∆h) = inf
{
α
|S2|
|S1|

+ β : (α, β) ∈ supph
}
.(2)

We have |S1|β(S,∆h) = |S2|α(S,∆h). Obviously, α(S,∆h) = α(S) and β(S,∆h) = β(S)
for any S ∈ Nh.

The numbers defined above have a simple geometrical meaning. The number α(S,∆h)
is equal to the abscissa of the point where the line supporting the diagram ∆h, parallel
to the segment S, is crossed by the horizontal axis. Analogously, β(S,∆h) is equal to the
ordinate of the point where the same line is crossed by the vertical axis.
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A series h will be referred to as X-convenient if ordh(X, 0) < +∞. It means that
the Newton diagram ∆h touches the horizontal axis, and the point (ordh(X, 0), 0) is the
vertex of the diagram. If a series is not X-convenient (h(X, 0) = 0⇔ ordh(X, 0) = +∞),
then its diagram does not touch the horizontal axis. We can analogously define the Y -con-
veniency of a series. A series, which is X- and Y -convenient simultaneously, is called con-
venient . The conveniency of a series h is equivalent to the condition h(X, 0)h(0, Y ) 6= 0.
Any nearly convenient series may be expressed in one of the four forms h̃, Xh̃, Y h̃, XY h̃,
where h̃ is a convenient series. The following property gives a motivation for introducing
the notion of nearly-conveniency.

Property 3.1. If a series h ∈ C{X,Y } has an isolated singularity at 0 ∈ C2, then
it is nearly convenient.

P r o o f. If h is not nearly convenient, then it can be written in one of the two forms
h = X2h̃ or h = Y 2h̃, so the series has a multiple factor and therefore it cannot possess
an isolated singularity.

Obviously, the opposite implication is not true. For example the series h = (X − Y )2

is nearly convenient (even convenient) but it does not possess an isolated singularity.
However, as a simple consequence of Theorem 2.1 we have

Property 3.2. If any nearly convenient series h ∈ C{X,Y } has a singularity at
zero and is non-degenerate in Kouchnirenko’s sense, then the singularity is isolated.

A ring (algebra) of the Puiseux series is the set C{X}∗ =
⋃
k≥1 C{X 1

k } with the nat-

urally defined algebraic operations. For any non-zero Puiseux series a(X) = aθX
θ +

aθ′X
θ′ + . . . (θ < θ′ < . . . are positive rationals, aθ, aθ′ , . . . ∈ C \ {0}) we define

ord a(X) = θ and in a(X) = aθX
θ. We put ord 0 = +∞ and in 0 = 0. Let h(X,Y ) ∈
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C{X,Y }. The solution of the equation h(X,Y ) = 0 in C{X}∗ is the Puiseux se-
ries a(X) such that a(0) = 0 and h(X, a(X)) = 0. The smallest integer m such that
∂mh
∂Ym (X, a(X)) 6= 0 in C{X}∗ is called the multiplicity of the solution a(X) and will be
denoted by κ(a).

We have the following classical result concerning connections between the solutions
of the equation h(X,Y ) = 0 and the Newton polygon Nh.

Theorem 3.3 (Newton-Puiseux, see [BK], [P l2]). Let h(X,Y ) ∈ C{X,Y } be a non-
zero series. Then, for any non-zero solution a(X) ∈ C{X}∗ of the equation h(X,Y ) = 0

there exists a segment S ∈ Nh, corresponding to the solution, such that ord a(X) = |S1|
|S2|

and in(h, S)(X, in a(X)) = 0 in C{X}∗. Moreover, for any segment S ∈ Nh there exist
exactly |S2| solutions (counted with multiplicities) corresponding to S.

4. The  Lojasiewicz exponent of a pair of series. In this section we consider a
pair of non-zero series H = (f, g), f(0, 0) = g(0, 0) = 0. This pair will be identified with
the germ of holomorphic mapping (C2, 0) → (C2, 0). Our purpose is to give the best
possible estimation of the value of exponent l0(f, g) using information from the diagrams
∆f and ∆g. Under the assumption of non-degeneracy the exact value of the exponent
will be obtained. The result is used in the proof of the main Theorem 2.1 in Section 6.
We use a standard definition of non-degeneracy of the pair H = (f, g).

Definition 4.1. We say that a pair (f, g) is non-degenerate if for any segment S ∈ Nf
and any segment T ∈ Ng one of the following conditions is satisfied

(a) the segments S and T are not parallel,

(b) the segments S and T are parallel and the system in(f, S) = in(g, T ) = 0 has no
solutions in (C \ {0})× (C \ {0}).

Notice that the non-degeneracy condition holds if one of the polygons Nf or Ng is
empty.

Denote ordH(X, 0) = min{ord f(X, 0), ord g(X, 0)}. The following theorem is the
main result of this section.

Theorem 4.2. For any pair H = (f, g) of non-zero series without constant term the
 Lojasiewicz exponent l0(H) is greater than or equal to the maximum of the six quantities

ordH(X, 0), sup
S∈Nf

α(S,∆g), sup
T∈Ng

α(T,∆f ),

ordH(0, Y ), sup
S∈Nf

β(S,∆g), sup
T∈Ng

β(T,∆f ).

If the pair is non-degenerate then the equality holds.

The theorem will be proved later in this section. Now, we make some observations con-
cerning calculation of the quantities appearing in the theorem. Next we give an example.
First of all, let us notice that if the polygon Nf or Ng is empty, then the corresponding
bound is equal to −∞. If the polygon is nonempty, then the corresponding bound is equal
to the maximum of a finite set of numbers. Directly from the definition of α(S,∆g) and

β(S,∆g) we obtain that if any segment S is followed by any segment S′
( |S1|
|S2| ≤

|S′1|
|S′2|
)
,
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then α(S,∆g) ≤ α(S′,∆g) and β(S,∆g) ≥ β(S′,∆g). Thus for a nonempty polygon Nf
we have

sup
S∈Nf

α(S,∆g) = α(Lf ,∆g) and sup
S∈Nf

β(S,∆g) = β(Ff ,∆g),

where Ff is the first and Lf is the last segment of the polygon Nf . Analogously, for a
nonempty polygon Ng, we have

sup
T∈Ng

α(T,∆f ) = α(Lg,∆f ) and sup
T∈Ng

β(T,∆f ) = β(Fg,∆f ).

Example. Let H = (f, g) be a pair of series, where f = Y 4 +XY 2 +X3Y +X5 and
g = XY 4 + X2Y 3 + X3Y 2 + X6Y + X9. Because no segment of Nf is parallel to any
segment of Ng, the pair (f, g) is non-degenerate. Moreover, ordH(X, 0) = min{5, 9} = 5,
α(Lf ,∆g) = 7, α(Lg,∆f ) = 5, and ordH(0, Y ) = min{4,+∞} = 4, β(Ff ,∆g) = 6,
β(Fg,∆f ) = 3. From Theorem 4.2, l0(H) = max{5, 7, 5, 4, 6, 3} = 7.
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Definition 4.3. Let H = (f, g) be a pair of the non-zero series without constant
term. The relative  Lojasiewicz exponent l0(H,X) of the pair H with respect to the vari-
able X is the infimum of the set of all λ > 0 such that

max{|f(x, y)|, |g(x, y)|} ≥ c|x|λ,
for (x, y) ∈ C2 in a neighbourhood of 0 ∈ C2 and for a positive constant c.

We define l0(H,Y ) in a similar way. The following lemma, which can easily be checked,
enables us to reduce considerations to the relative exponents.

Lemma 4.4. l0(H) = max{l0(H,X), l0(H,Y )}.

In the sequel, we prove properties of l0(H,X). Corresponding properties of l0(H,Y )
can be obtained by symmetry.

By an analytic arc we mean a pair of convergent series of one variable p(T ) =
(p1(T ), p2(T )), such that p1(0) = p2(0) = 0 and at least one of the pair components is
non-zero series. By this conditions, the order of the arc, defined by the formula ord p(T ) =
min{ord p1(T ), ord p2(T )}, is a positive integer. The following lemma can easily be proved.

Lemma 4.5. For any analytic arc p(T ) = (p1(T ), p2(T )) such that p1(T ) 6= 0
in C{T}, we have

l0(H,X) ≥ ordH(p(T ))

ord p1(T )
.
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Corollary. l0(H,X) ≥ ordH(X, 0).

P r o o f. We use the above lemma to H and p(T ) = (T, 0).

The following theorem is an improved version of a result from [P l2] (Proposition 3.2).

Theorem 4.6. Let H = (f, g) be a pair of non-zero series f(X,Y ), g(X,Y )
in C{X,Y } without constant term. Let A be the set of all solutions of the equation
f(X,Y ) = 0 in C{X}∗ and let B be the set of all solutions of the equation g(X,Y ) = 0
in C{X}∗. The case of lack of solution is admitted. Then

l0(H,X) = max
{

ordH(X, 0), sup
a∈A

ord g(X, a(X)), sup
b∈B

ord f(X, b(X))
}
.

P r o o f. First, we prove that l0(H,X) ≥ ord g(X, a(X)) for any solution a(X) ∈ A
and l0(H,X) ≥ ord f(X, b(X)) for any solution b(X) ∈ B. By symmetry, it is sufficient
to prove the first inequality. Fixing the solution a(X) and choosing an integer d ≥ 1 such
that a(T d) ∈ C{T} we consider the arc p(T ) = (T d, a(T d)). It is easy to notice that
H(p(T )) = (0, g(T d, a(T d))), so ordH(p(T )) = ord g(T d, a(T d)) = d ord g(X, a(X)), and
then, by Lemma 4.5,

l0(H,X) ≥ ordH(p(T ))

ordT d
= ord g(X, a(X)).

Combining the above considerations with the corollary to Lemma 4.5 we end the proof
of the lower estimation. In order to get the upper estimation we use the following lemma
of the norm of a polynomial mapping ([P l2], Lemma 3.1).

Lemma 4.7. If w = (u, v) is a pair of non-zero polynomials u(Y ), v(Y ) ∈ C[Y ], then
for every y ∈ C

max{|u(y)|, |v(y)|} ≥ 2−n min
{
|w(0)|, inf

η∈u−1(0)
|v(η)|, inf

η∈v−1(0)
|u(η)|

}
,

where n = max{deg u,deg v}.

Let f(X,Y ) = f̃(X,Y )f̂(X,Y ) and g(X,Y ) = g̃(X,Y )ĝ(X,Y ) be the factorizations
of the series into products of the invertible series f̃(X,Y ), g̃(X,Y ) in the ring C{X,Y }
and the distinguished polynomials f̂(X,Y ), ĝ(X,Y ) ∈ C{X}[Y ] such that

f̂(X,Y ) = Xr
∏
a∈A

(Y − a(X))κ(a) and ĝ(X,Y ) = Xs
∏
b∈B

(Y − b(X))κ(b),

where r = min{α : (α, β) ∈ supp f} and s = min{α : (α, β) ∈ supp g}. The existence
of such factorizations comes from the Weierstrass preparation theorem and the Newton-
Puiseux Theorem 3.3 (we use convention

∏
∅ = 1). Let us choose an integer number d ≥ 1

such that all the series a(T d) for a ∈ A, and b(T d) for b ∈ B are in the ring C{T}. If
both equations have no non-zero solutions, then we put d = 1. We fix neighbourhoods
of zero U1, U2 ⊂ C in such a way that for every t ∈ U1 and for every y ∈ U2 all the
considered series are convergent and the estimates |f̃(td, y)| ≥ c, |g̃(td, y)| ≥ c hold for a
certain c > 0. Hence

|f(td, y)| ≥ c
∣∣∣tdr ∏

a∈A
(y − a(td))κ(a)

∣∣∣ and |g(td, y)| ≥ c
∣∣∣tds∏

b∈B

(y − b(td))κ(b)
∣∣∣

for t ∈ U1 and y ∈ U2. The formulae in modules, on the right-hand sides of the above
inequalities, are polynomials with respect to y. Let n be the maximum degree of these
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polynomials. Applying Lemma 4.7 to these polynomials we obtain

max{|f(td, y)|, |g(td, y)|} ≥

≥ c · 2−n min
{
|Ĥ(td, 0)|, inf

a∈A
|ĝ(td, a(td))|, inf

b∈B
|f̂(td, b(td))|

}
,

where Ĥ = (f̂ , ĝ). If at least one of the series Ĥ(T d, 0), ĝ(T d, a(T d)), f̂(T d, b(T d)) is the
zero series, then the pair H = (f, g) vanishes on an analytic arc, and then l0(H,X) = +∞.
Also at least one of the orders on the right-hand side of the formula in the theorem is
equal to +∞. So, the theorem is proved for this case. Now, we may assume that each of
the considered series is non-zero. Hence

max{|f(td, y)|, |g(td, y)|} ≥

≥ c′|t|max{ord Ĥ(Td,0), supa∈A ord ĝ(Td,a(Td)), supb∈B ord f̂(Td,b(Td))}

= c′|td|max{ord Ĥ(X,0), supa∈A ord ĝ(X,a(X)), supb∈B ord f̂(X,b(X))}

for t near 0 ∈ C and y ∈ U2. We use here an elementary property that

min{|p1(t)|, . . . , |ps(t)|} ≥ c|t|max{ord p1(T ),...,ord ps(T )}

for non-zero p1(T ), . . . , ps(T ) ∈ C{T} and t sufficiently close to 0 ∈ C. The observation

that ord Ĥ(X, 0) = ordH(X, 0), ord ĝ(X, a(X)) = ord g(X, a(X)) and ord f̂(X, b(X)) =
ord f(X, b(X)) ends the proof of the theorem.

The result below shows an important connection between the  Lojasiewicz exponent
l0(H,X) and the Newton diagrams ∆f and ∆g.

Theorem 4.8. For any pair H = (f, g) of non-zero series f(X,Y ), g(X,Y )
in C{X,Y } without constant term

l0(H,X) ≥ max
{

ordH(X, 0), sup
S∈Nf

α(S,∆g), sup
T∈Ng

α(T,∆f )
}
.

If the pair is non-degenerate, then the equality holds.

P r o o f. First, we show that if a(X) ∈ C{X}∗ is a solution of the equation f(X,Y ) = 0

corresponding to the segment S ∈ Nf (ord a(X) = |S1|
|S2| ), then ord g(X, a(X)) ≥ α(S,∆g),

and if additionally the pair H = (f, g) is non-degenerate, then ord g(X, a(X)) = α(S,∆g).
The Newton-Puiseux theorem gives

in(f, S)(X, in a(X)) = 0(3)

in C{X}∗. Let g(X,Y ) =
∑
gαβX

αY β . Then

ord g(X, a(X)) = ord

{ ∑
(α,β)∈supp g

gαβX
α(cX

|S1|
|S2| + . . .)β

}

≥ inf
{
α+
|S1|
|S2|

β : (α, β) ∈ supp g
}

= α(S,∆g).

Let Z ⊂ supp g be the set of all (α, β) ∈ supp g for which the linear form (α, β) 7→
α + |S1|

|S2|β attains its minimum α(S,∆g) on supph. The above considerations show that

ord g(X, a(X)) > α(S,∆g) if and only if∑
(α,β)∈Z

gαβX
α(in a(X))β = 0.(4)
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This situation is possible only if the set Z has at least two elements (in order to obtain a

reduction of the terms). In this case there exists the segment T ∈ Ng such that |S1|
|S2| = |T1|

|T2|
and Z = T ∩ supp g. Hence ∑

(α,β)∈Z

gαβX
αY β = in(g, T ).

By (4) we have in(g, T )(X, in a(X)) = 0 in C{X}∗, which in addition to (3) means
that the system in(f, S) = in(g, T ) = 0 has a solution in (C \ {0}) × (C \ {0}). Con-
sequently, the pair H = (f, g) is degenerate. So, we obtain ord g(X, a(X)) = α(S,∆g)
for non-degenerate pairs. Analogously, we prove that for any solution b(X) ∈ C{X}∗

of the equation g(X,Y ) = 0, corresponding to the segment T ∈ Ng (ord b(X) = |T1|
|T2| ),

ord g(X, b(X)) ≥ α(T,∆g), with equality for non-degenerate pairs.
Zero solutions of the equations f(X,Y ) = 0 and g(X,Y ) = 0 may also exist. If

a(X) = 0 is a solution of f(X,Y ) = 0, then ord g(X, a(X)) = ord g(X, 0) = ordH(X, 0),
and similarly, if b(X) = 0 is a solution of g(X,Y ) = 0, then ord f(X, b(X)) =
ord f(X, 0) = ordH(X, 0). From Theorem 4.6 we obtain

l0(H,X) = max
{

ordH(X, 0), sup
a∈A

ord g(X, a(X)), sup
b∈B

ord f(X, b(X))
}

≥ max
{

ordH(X, 0), sup
S∈Nf

α(S,∆g), sup
T∈Ng

α(T,∆f ),
}
,

with the equality for non-degenerate pairs.

From the theorem proved above, by symmetry, we have

Theorem 4.9. For any pair H = (f, g) of non-zero series without constant term
f(X,Y ), g(X,Y ) ∈ C{X,Y }

l0(H,Y ) ≥ max
{

ordH(0, Y ), sup
S∈Nf

β(S,∆g), sup
T∈Ng

β(T,∆f )
}
.

If the pair is non-degenerate, then the equality holds.

Now, Theorem 4.2 is a direct consequence of Lemma 4.4 and Theorems 4.8 and 4.9.

5. The Newton diagram of series and diagrams of derivatives. In this section,
our purpose is to compare the Newton polygons of the series h, ∂h

∂X and ∂h
∂Y . We start

from the comparison of the Newton polygons Nh and N ∂h
∂Y

.

It is useful to consider the vertices of the Newton diagram. The vertices can be ordered
in such a way that the sequence of their abscissae is strongly increasing and the sequence
of their ordinates is strongly decreasing. We say that a vertex of the ∆ ∂h

∂Y
is standard if

it equals (µ, ν − 1) for a vertex (µ, ν) of ∆h. We have an elementary fact that any vertex
of ∆ ∂h

∂Y
which is followed by a standard one is also standard. A segment T of N ∂h

∂Y
is

standard if its both ends are the standard vertices of ∆ ∂h
∂Y

. Then, T = S − (0, 1)(2) for

some S ∈ Nh and obviously

in
( ∂h
∂Y

, T
)

=
∂

∂Y
in(h, S).

(2) Symbol S − (0, 1) means the image of S in the translation (α, β) 7→ (α, β − 1).
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It is easy to notice that if (µ, ν) is a vertex of ∆h such that ν > 0, then (µ, ν − 1) is the
standard vertex of ∆ ∂h

∂Y
. We have

Property 5.1. If (µ, ν) is the vertex of the diagram ∆h with the minimal positive
ordinate, then (µ, ν − 1) is the last standard vertex of ∆ ∂h

∂Y
.

P r o o f. If (µ̂, ν̂) were the standard vertex of ∆ ∂h
∂Y

which lies below (µ, ν − 1), then

(µ̂, ν̂ + 1) would be the vertex of ∆h with positive ordinate which lies below (µ, ν). This
is in the contradiction to the definition of the vertex (µ, ν).

As an obvious consequence of the above property we have the following

Corollary 5.2. If (µ, ν) is the vertex of the diagram ∆h with the minimal positive
ordinate, then a segment T ∈ N ∂h

∂Y
is a standard segment if and only if T lies over the

vertex (µ, ν − 1) of the diagram ∆ ∂h
∂Y

.
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Example. Let h = Y 11+XY 8+X2Y 6+X4Y 4+X6Y 3+X9Y 2+X8. The polygon Nh
contains three segments A, B, C which join the vertices (0, 11), (1, 8), (2, 6), (8, 0). The
polygon N ∂h

∂Y
of the derivative ∂h

∂Y = 11Y 10 +8XY 7 +6X2Y 5 +4X4Y 3 +3X6Y 2 +2X9Y

contains five segments A′, B′, C1, C2, C3 which join the vertices (0, 10), (1, 7), (2, 5),
(4, 3), (6, 2), (9, 1). The vertex (2, 5) of the diagram ∆ ∂h

∂Y
separates the standard segments

A′, B′ from the non-standard C1, C2, C3. This vertex is the image in the translation
(µ, ν) 7→ (µ, ν − 1) of the vertex (2, 6) of the diagram ∆h with the minimal positive
ordinate. Let us notice that the non-standard segment C1 is parallel to the last segment C
of the polygon Nh.
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Example. Let h = Y 9 +XY 6 +X2Y 4 +X4Y 2 +X6Y +X9. The polygon Nh consists
of five segments A, B, C, D, E which join the vertices (0, 9), (1, 6), (2, 4), (4, 2), (6, 1),
(9, 0). The polygon N ∂h

∂Y
of the derivative ∂h

∂Y = 9Y 8 + 6XY 5 + 4X2Y 3 + 2X4Y + X6

consists of four segments A′, B′, C ′, D′ which join the vertices (0, 8), (1, 5), (2, 3), (4, 1),
(6, 0). All the segments of the polygon N ∂h

∂Y
are standard. There is no segment of the

polygon N ∂h
∂Y

which corresponds to the exceptional segment E of the polygon Nh. The

vertex (6, 0) of the diagram ∆ ∂h
∂Y

separates the standard segments from the non-standard

ones (there is a lack of the second group). This vertex is the image in the translation
(µ, ν) 7→ (µ, ν − 1) of the vertex (6, 1) of the diagram ∆h, with the minimal positive
ordinate.

The theorem given below provides a description of the polygon N ∂h
∂Y

.

Theorem 5.3. If h(X,Y ) is a nearly convenient series with a singularity at zero,
then there exists a vertex (µ, ν) of the diagram ∆h with the minimal positive ordinate.
Moreover, we have

(a) If ν = 1, then the polygon N ∂h
∂Y

contains only the standard segments.

(b) If ν > 1, then there exists a segment L ∈ Nh that joins the vertex (µ, ν) with a
vertex on the horizontal axis, and for any T ∈ N ∂h

∂Y
exactly one of the following conditions

is satisfied :

(i) T is a standard segment,

(ii) |L1|
|L2| <

|T1|
|T2| ,

(iii) T is parallel to L and

in
( ∂h
∂Y

, T
)

=
∂

∂Y
in(h, L).(5)

P r o o f. By the assumption of nearly-conveniency h is non-zero. Then, it has at least
one vertex. Assume, to obtain a contradiction, that a vertex of a positive ordinate does
not exist. In such a situation the unique vertex of ∆h lies on the horizontal axis, that
means h = Xαh̃ and h̃(0, 0) 6= 0. Since h has a singularity at 0 ∈ C2 we have α ≥ 2,
which is in the contradiction to nearly-conveniency of h.

Let (µ, ν) be the vertex of ∆h with the minimal positive ordinate. From Corollary 5.2
all the segments of N ∂h

∂Y
which lie over the vertex (µ, ν − 1) are standard. If ν = 1, then

there is no segment of N ∂h
∂Y

which lies below this vertex. This ends the proof of (a).
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Now, assume that ν > 1. By nearly-conveniency, it is impossible for (µ, ν) to be
the last vertex of ∆h. Let (µ̂, ν̂) be the following vertex. We have ν̂ = 0, because in
the opposite situation the vertex (µ, ν) would not be the vertex of the minimal positive
ordinate. Let L be the segment of Nh that joins the vertices (µ, ν) and (µ̂, ν̂) = (µ̂, 0).
Obviously, it is the last segment of Nh. Let T ∈ N ∂h

∂Y
. If T lies over the vertex (µ, ν − 1),

then it is standard, and condition (i) of part (b) is satisfied. If T lies below the vertex
(µ, ν − 1), then, obviously, there exists the segment T̃ ∈ N ∂h

∂Y
(followed by T ) such that

(µ, ν − 1) is its upper end.

The segment T̃ + (0, 1) joins the vertex (µ, ν) of ∆h with a point from supph. It is
easy to derive in this case that the declivity of T̃ is greater than or equal to the declivity
of L. Hence

|L1|
|L2|

≤ |T̃1|
|T̃2|
≤ |T1|
|T2|

.

If |L1|
|L2| <

|T1|
|T2| , then the condition (ii) of (b) is satisfied. In the case |L1|

|L2| = |T1|
|T2| we have

|L1|
|L2|

=
|T̃1|
|T̃2|

=
|T1|
|T2|

.

That means T = T̃ (two parallel segments of the same polygon coincide) and the segments
L and T are parallel. Now, we have T + (0, 1) ⊂ L and

in(h, L) =
∑

(α,β)∈T+(0,1)

hαβX
αY β + hµ̂,0X

µ̂.

Differentiating the formula with respect to the variable Y we obtain (5), which completes
the proof of Theorem 5.3.

A simple consequence of the theorem just proved is

Corollary 5.4. If h(X,Y ) is a nearly convenient series with a singularity at zero,
then for any T ∈ N ∂h

∂Y
exactly one of two conditions is satisfied :

(a) T is parallel to a segment S ∈ Nh and then

in
( ∂h
∂Y

, T
)

=
∂

∂Y
in(h, S).(6)

(b) For every S ∈ Nh |S1|
|S2| <

|T1|
|T2| .

P r o o f. Let T ∈ N ∂h
∂Y

. If T is parallel to a segment of Nh, then it is standard or the

condition described in the part (b)-(iii) of Theorem 5.3 is satisfied. Then (6) holds. If T
is not parallel to any segment of Nh, then the situation described in the part (b)-(ii) of
Theorem 5.3 is only possible. Since the segment L (which joins the vertex (µ, ν) with the

vertex on the horizontal axis) is the last segment of Nh, we have |S1|
|S2| ≤

|L1|
|L2| <

|T1|
|T2| for

every S ∈ Nh.

The following Theorem 5.5 and Corollary 5.6 concern the description of the poly-
gon N ∂h

∂X
. They can be obtained from Theorem 5.3 and Corollary 5.4, respectively, by

changing the role of the variables X and Y .

Analogously, as in the case of the Newton polygon of ∂h
∂Y , we define a standard segment

R of N ∂h
∂Y

to be of the form S − (1, 0) for any S ∈ Nh.
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Theorem 5.5. If h(X,Y ) is a nearly convenient series with a singularity at zero,
then there exists the vertex (µ, ν) of the diagram ∆h with the minimal positive abscissa.
Moreover, we have

(a) If µ = 1, then the polygon N ∂h
∂X

contains only the standard segments.

(b) If µ > 1, then there exists a segment F ∈ Nh that joins a vertex on the axis
with the vertex (µ, ν), and for any R ∈ N ∂h

∂X
exactly one of the following conditions is

satisfied :

(i) R is a standard segment,

(ii) |R1|
|R2| <

|F1|
|F2| ,

(iii) R is parallel to the segment F and then

in
( ∂h
∂X

,R
)

=
∂

∂X
in(h, F ).

Corollary 5.6. If h(X,Y) is a nearly convenient series with a singularity at zero,
then for any R ∈ N ∂h

∂X
exactly one of two conditions is satisfied

(a) R is parallel to a segment S ∈ Nh and then

in
( ∂h
∂X

,R
)

=
∂

∂X
in(h, S).

(b) For every S ∈ Nh |R1|
|R2| <

|S1|
|S2| .

A direct consequence of the results presented above is the following

Theorem 5.7. Let h = h(X,Y ) ∈ C{X,Y } be a nearly convenient series with a
singularity at zero. If the series is non-degenerate in Kouchnirenko’s sense, then the pair
( ∂h∂X ,

∂h
∂Y ) is non-degenerate.

P r o o f. If one of the polygons N ∂h
∂X

or N ∂h
∂Y

is empty, then the non-degeneracy con-

dition of the pair is trivially satisfied. Therefore, we can assume that both polygons are
nonempty. Let R ∈ N ∂h

∂X
and T ∈ N ∂h

∂Y
. If the segments R and T are not parallel, then

they satisfy the non-degeneracy condition. Let us assume that they are parallel. In this

case we have to show that the system of equations in
(
∂h
∂X , R

)
= in

(
∂h
∂Y , T

)
= 0 has no

solutions in (C \ {0})× (C \ {0}). We assert, that there exists a segment of Nh parallel

to R and T . If it did not exist, then by Corollary 5.6 |R1|
|R2| <

|S1|
|S2| for every S ∈ Nh, and

by Corollary 5.4 |S1|
|S2| <

|T1|
|T2| for every S ∈ Nh. Then |R1|

|R2| <
|T1|
|T2| , which would be in the

contradiction to the parallelism of R and T . Hence, the segment S ∈ Nh parallel to R
and T exists. Corollaries 5.6 and 5.4 give

in
( ∂h
∂X

,R
)

=
∂

∂X
in(h, S) and in

( ∂h
∂Y

, T
)

=
∂

∂Y
in(h, S).

The non-degeneracy of the series h on the segment S means that the system ∂
∂X in(h, S) =

∂
∂Y in(h, S) = 0 has no solution in (C \ {0})× (C \ {0}). By the equalities proved above

the system in
(
∂h
∂X , R

)
= in

(
∂h
∂Y , T

)
= 0 has no solution in (C \ {0})× (C \ {0}) either.

This completes the proof of the theorem.
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6. Proof of the main theorem. Let h ∈ C{X,Y } be a nearly convenient series
with a singularity at zero and with the nonempty reduced Newton Polygon N ∗h . By these
assumptions the components of the pair gradh = ( ∂h∂X ,

∂h
∂Y ) are non-zero series without

constant term. Applying Theorem 4.2 to this pair we see that the exponent l0(gradh) is
greater than or equal to the maximum of the six quantities

ord gradh(X, 0), supR∈N ∂h
∂X

α(R,∆ ∂h
∂Y

), supT∈N ∂h
∂Y

α(T,∆ ∂h
∂X

),(7)

ord gradh(0, Y ), supR∈N ∂h
∂X

β(R,∆ ∂h
∂Y

), supT∈N ∂h
∂Y

β(T,∆ ∂h
∂X

).(8)

Theorems 4.2 and 5.7 imply that if the series h is non-degenerate in Kouchnirenko’s sense,
then the equality holds. Let us denote by MX the maximum of three quantities in (7)
and by MY the maximum of three quantities in (8). In order to finish the proof of the
main theorem it is sufficient to show that

max{MX ,MY } = max{α(L∗), β(F ∗)} − 1,(9)

where F ∗ is the first and L∗ is the last segment of N ∗h . The equality may be easily derived
from the following

Lemma 6.1. If any nearly convenient series h with a singularity at zero has the
nonempty reduced Newton polygon N ∗h , then

(a) α(L∗)− 1 ≤MX ≤ max{α(L∗)− 1, α(L∗)− |L
∗
1 |
|L∗2 |
},

(b) β(F ∗)− 1 ≤MY ≤ max{β(F ∗)− 1, β(F ∗)− |F
∗
2 |
|F∗1 |
}.

Before giving the proof of the lemma we show how it implies (9). The consequence
of (a) and (b) is the estimate M2 ≤ max{MX ,MY } ≤ M4, where M2 is the maximum
of the two numbers α(L∗) − 1, β(F ∗) − 1 and M4 is the maximum of the four numbers

α(L∗) − 1, α(L∗) − |L
∗
1 |
|L∗2 |

, β(F ∗) − 1, β(F ∗) − |F
∗
2 |
|F∗1 |

. It is enough to show that M2 ≥ M4.

Since the segment F ∗ is followed by the segment L∗, the declivity of F ∗ is less than or
equal to the declivity of L∗. Now, we consider three cases.

If
|F∗1 |
|F∗2 |
≤ 1 ≤ |L

∗
1 |
|L∗2 |

, then the inequality M2 ≥ M4 is obvious. If 1 ≤ |F
∗
1 |
|F∗2 |
≤ |L

∗
1 |
|L∗2 |

, then

M4 = max
{
α(L∗)−1, β(F ∗)− |F

∗
2 |
|F∗1 |

}
. We show that this maximum is equal to α(L∗)−1.

Using the equality β(F∗)
α(F∗) =

|F∗2 |
|F∗1 |

and the obvious inequality α(F ∗) ≤ α(L∗) we obtain

β(F ∗)− |F
∗
2 |
|F ∗1 |

= α(F ∗)
|F ∗2 |
|F ∗1 |

− |F
∗
2 |
|F ∗1 |

= [α(F ∗)− 1]
|F ∗2 |
|F ∗1 |

≤ α(L∗)− 1,

thus M2 ≥M4. The case
|F∗1 |
|F∗2 |
≤ |L

∗
1 |
|L∗2 |
≤ 1 can be verified analogously.

P r o o f o f L e m m a 6.1. By symmetry, it is enough to prove part (a) of the lemma.
First, we verify that for any S ∈ Nh

α(S,∆ ∂h
∂X

) = α(S)− 1 and α(S,∆ ∂h
∂Y

) = α(S)− |S1|
|S2|

.(10)

Let us consider a linear form φ(α, β) = α+ |S1|
|S2|β on the real plane. An obvious inclusion

supp ∂h
∂X ⊂ supph− (1, 0) helps us to prove the first formula in (10). We have

α(S,∆ ∂h
∂X

) = inf φ(supp
∂h

∂X
) ≥ inf φ(supph)+φ(−1, 0) = α(S,∆h)+φ(−1, 0) = α(S)−1.
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To obtain the opposite inequality, notice that the segment S has at least one end (µ, ν)
of the positive abscissa. Hence (µ− 1, ν) ∈ supp ∂h

∂X and therefore

α(S,∆ ∂h
∂X

) ≤ (µ− 1) +
|S1|
|S2|

ν = α(S)− 1,

which ends the proof of the first formula in (10). The proof of the second formula is
similar.

Let (µ, ν) be the vertex of the diagram ∆h with the minimal positive ordinate. Let us
consider the case ν = 1. Now, the vertex (µ, ν) = (µ, 1) is the lower end of the segment L∗

(if a segment of Nh that joins the vertex (µ, ν) with the horizontal axis exists, then it is

exceptional). Since (µ, 1) ∈ L∗ we have α(L∗) = µ+
|L∗1 |
|L∗2 |

. In the case under consideration

the series h may be written in the form

h(X,Y ) = a0(X) + Y a1(X) + Y 2h̃(X,Y ),

where ord a1(X) = µ. By the equality ∂h
∂Y (X, 0) = a1(X) we have ord ∂h

∂Y (X, 0) = µ.
Hence, we obtain

ord gradh(X, 0) ≤ ord
∂h

∂Y
(X, 0) = µ = α(L∗)− |L

∗
1|
|L∗2|

.(11)

From (µ, 1) ∈ supph follows that (µ, 0) ∈ supp ∂h
∂Y . Therefore, for any R ∈ N ∂h

∂X
we have

α(R,∆ ∂h
∂Y

) ≤ µ+ |R1|
|R2| · 0 = µ, hence

sup
R∈N ∂h

∂X

α(R,∆ ∂h
∂Y

) ≤ µ = α(L∗)− |L
∗
1|
|L∗2|

.(12)

The segment L = L∗− (0, 1) is the standard segment of the polygon N ∂h
∂Y

, parallel to L∗.

Obviously, L is the last segment of N ∂h
∂Y

. Thus for any T ∈ N ∂h
∂Y

we have α(T,∆ ∂h
∂X

) ≤
α(L,∆ ∂h

∂X
) and

sup
T∈N ∂h

∂Y

α(T,∆ ∂h
∂X

) = α(L,∆ ∂h
∂X

).

Since the segments L and L∗ are parallel we have α(L,∆ ∂h
∂X

) = α(L∗,∆ ∂h
∂X

). The second

formula of (10) gives α(L∗,∆ ∂h
∂X

) = α(L∗)− 1. Consequently

sup
T∈N ∂h

∂Y

α(T,∆ ∂h
∂X

) = α(L∗)− 1.

Joining the above equality with (11) and (12) we obtain part (a) of Lemma 6.1 for the
case ν = 1.

Now, assume that ν > 1. According to Theorem 5.3 there exists a segment L ∈ Nh
that joins the vertex (µ, ν) with the vertex (µ̂, 0) on the horizontal axis. Since h has
a singularity at zero we have µ̂ > 1. Therefore L is not exceptional and L = L∗. By

(µ̂, 0) ∈ L∗ we obtain α(L∗) = µ̂+
|L∗1 |
|L∗2 |
· 0 = µ̂. The series h may be written in the form

h(X,Y ) = a0(X) + Y h̃(X,Y ),

where ord a0 = µ̂. We have ord ∂h
∂X (X, 0) = ord a′0(X) = µ̂− 1 = α(L∗)− 1. Therefore

ord gradh(X, 0) ≤ ord
∂h

∂X
(X, 0) = α(L∗)− 1.(13)
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In a way analogous to earlier considerations, from the fact (µ̂−1, 0) ∈ supp ∂h
∂X , we obtain

sup
T∈N ∂h

∂Y

α(T,∆ ∂h
∂X

) ≤ µ̂− 1 = α(L∗)− 1.(14)

By Corollary 5.6 the declivity of any segment R ∈ N ∂h
∂X

is not greater than the maximal

declivity of the segments from Nh. Hence |R1|
|R2| ≤

|L∗1 |
|L∗2 |

for any R ∈ N ∂h
∂X

and therefore

sup
R∈N ∂h

∂X

α(R,∆ ∂h
∂Y

) ≤ α(L∗,∆ ∂h
∂Y

).

According to the second formula of (10) we have

sup
R∈N ∂h

∂X

α(R,∆ ∂h
∂Y

) ≤ α(L∗)− |L
∗
1|
|L∗2|

.

Joining the last inequality with the estimates (13) and (14) we obtain

MX ≤ max
{
α(L∗)− 1, α(L∗)− |L

∗
1|
|L∗2|

}
.

In order to finish the proof of Lemma 6.1 it is sufficient to prove that MX ≥ α(L∗)− 1.
We show that always at least one of the quantities from the definition of MX is greater
than or equal to α(L∗)− 1.

First, assume that the polygonN ∂h
∂Y

has non-standard segments. For any non-standard

segment T ∈ N ∂h
∂Y

, by Corollary 5.4 we have
|L∗1 |
|L∗2 |
≤ |T1|
|T2| . Hence

α(L∗)− 1 = α(L∗,∆ ∂h
∂X

) ≤ α(T,∆ ∂h
∂X

) ≤ sup
T∈N ∂h

∂Y

α(T,∆ ∂h
∂X

).

Now, assume that non-standard segments of N ∂h
∂Y

do not exist. By Theorem 5.3 non-

standard segments may only exist below the vertex (µ, ν − 1) of the diagram ∆ ∂h
∂Y

. The

lack of such segments means that the vertex (µ, ν − 1) is the last one. Then, there are no
points of supp ∂h

∂Y below the vertex (µ, ν − 1). Therefore

∂h

∂Y
= Y ν−1ĥ(X,Y ),

which, according to ν > 1, gives ∂h
∂Y (X, 0) = 0, and thus ord ∂h

∂Y (X, 0) = +∞. Finally, we
obtain the equality

ord gradh(X, 0) = min
{

ord
∂h

∂X
(X, 0), ord

∂h

∂Y
(X, 0)

}
=

= min{α(L∗)− 1,+∞} = α(L∗)− 1,

which completes the proof of Lemma 6.1 and also the proof of the main theorem.
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