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Abstract. We prove that the semialgebraic, algebraic, and algebraic nonsingular points of
a definable set in o-minimal structure with analytic cell decomposition are definable. Moreover,
the operation of taking semialgebraic points is idempotent and the degree of complexity of
semialgebraic points is bounded.

Given any structure (or a Tarski system) on (R,+, · ) (see [2, p. 503] for the definition),
let A be a definable subset of Rn.

We will use the following notation:

∂A = A \A,
Cl(A) = {x ∈ Rn | the germ Ax is closed}(= the exterior of ∂A),

S(A) = {x ∈ Rn | the germ Ax is semialgebraic},
Alg(A) = {x ∈ Rn | the germ Ax is algebraic},

Nonsingk(A) = {x ∈ Rn | Ax is algebraic, nonsingular(1) of dimension k},
Nash(A) = {x ∈ Rn | dimAx = dim Zar clAx}.

Proposition 1.

S(A) = S(A) ∩ S(∂A)

Alg(A) = Alg(A) ∩ Cl(A)

Nonsingk(A) = Nonsingk(A) ∩ Cl(A)

Moreover , Cl(A) is a definable set.

P r o o f. The first equality follows from the theory of semialgebraic sets (see [1, p. 24]).
The next two are obvious as well as the definability of Cl(A) is.

1991 Mathematics Subject Classification: Primary 14P10; Secondary 03C50, 32B20.
Received by the editors: January 29, 1998.
The paper is in final form and no version of it will be published elsewhere.
(1) See [1, pp. 59–61] for the definition.

[189]



190 A. PIȨKOSZ

Definition 1. We will call a germ Aa trivial if it is equal to a germ of the empty set
or of the whole space.

If Aa is semialgebraic (a ∈ S(A)) then we define the degree of complexity of this germ
(or point) as follows. Given a description of the type

Aa =

k⋃
i=1

Ci =

k⋃
i=1

li⋂
j=1

Di,j ,

where Di,j = {sgn fi,j = Ti,j}a, Ti,j ∈ T = {+, 0,−} and fi,j are polynomials, the
complexity of the description is defined as the sum of degrees of all nonzero polynomials
appearing in this description (we count them with multiplicity).

The degree of complexity of the point a (or germ Aa) is the least complexity of all
possible descriptions. We denote it by degaA.

R e m a r k s. A semialgebraic germ is trivial iff its degree of complexity is zero. If a
germ is semialgebraic and nontrivial, then we can avoid polynomials of degree zero in its
description.

Proposition 2. The set of semialgebraic points of A of the degree of complexity
bounded by a given number M ∈ N is definable.

P r o o f. For M = 0, the set Rn \ bdA is definable. For M ≥ 1, apply the following
equality

{x ∈ S(A) | degxA ≤M} = {x ∈ Rn |
∃ fi,j ∈ PM (Rn) ∃Ti,j ∈ {+, 0,−} (i, j = 1, . . . ,M)

∑M
i,j=1 deg fi,j ≤M,

∃ ε > 0 ∀ y ∈ Rn (|x− y| < ε)⇒ (y ∈ A⇔
∧M
i,j=1 sgn fi,j(y) = Ti,j)},

where PM denotes the vector space (of finite dimension) of all polynomials of degree not
exceeding M .

R e m a r k. One can get similar facts for points of definability in other structures if a
given structure is the collection of all definable sets in some finite language.

In general, the semialgebraic points of a definable set are not of bounded degree of
complexity (e.g. in the structure of all subsets, which is not o-minimal). It is so if the
structure satisfies the following condition which is equivalent to the existence of analytic
cell decompositions of definable sets (see the remark after 4.8 in [2] for one implication; the
other has been noticed by W. Paw lucki and is easy to check) and implies o-minimality.
(The author does not know an example of an o-minimal structure which does not admit
analytic cell decompositions.)

Definition 2. We say that a structure S on (R,+, ·) admits analytic stratifications
if for every finite sequence of sets A1, . . . , Ak ⊂ Rn definable in (being members of) S
there exists a finite analytic stratification of Rn into strata definable in S and compatible
with all Ai (i = 1, . . . , k).

(Recall that an analytic stratification is a locally finite decomposition into connected
analytic submanifolds, called strata, satisfying the border condition: for strata S, T if
S ∩ ∂T 6= ∅ then S ⊂ ∂T and dimS < dimT .)
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Lemma 1 (see [3, p. 77]). Let X ⊂ Rn.
1) If X is semialgebraic, then there is an algebraic set Y containing X such that

dimY = dimX.
2) If Y is an algebraic set , X ⊂ Y , then X is semialgebraic iff both (Y ∩X) \X and

X \ intY X are semialgebraic.
Similar facts hold for germs.

Theorem 1. If the structure admits analytic stratifications then S(A), Alg(A), and
Nonsingk(A) for any k = 0, . . . , n are definable.

P r o o f. By Proposition 1 we can assume that A is closed. Now, we use induction on
the dimension of A. For dimA = −∞, 0 the theorem is trivial. Let dimA > 0.

Let us take a finite analytic stratification for A as in Definition 2. Take one stratum
S contained in A and x ∈ S.

We have Ax = Sx ∪
⋃m
i=1 Si,x where S, S1, . . . , Sm are these strata of A which have S

in their closures.
Assume that x ∈ S ∩ S(A) 6= ∅. Take the smallest algebraic set B that contains

S, S1, . . . , Sm. It follows that dimB = dimAx and Bx is the smallest algebraic germ
containingAx. For each y ∈ S we haveAy = Sy∪

⋃m
i=1 Si,y ⊂ By. ThusAy is semialgebraic

iff (bdB(A ∩B))y is so. On the other hand, we know that dim bdB(A ∩B) < dimB (see
[2, 4.7]), thus dim bdB(A∩B) < dimA. Now, it is enough to use the induction hypothesis
to establish definability of S(A) ∩ S and, consequently, S(A).

If x ∈ S ∩ Alg(A) 6= ∅ then S ∩ Alg(A) = {y ∈ S | Ay = By} = S \ bdB(A ∩ B) is
definable. Hence, Alg(A) is definable.

If x ∈ S∩Nonsingk(A) 6= ∅, we have Ax = Bx, B is irreducible, and x ∈ RegB, where
RegB is the set of nonsingular points(2) of B. Then S ∩ Nonsingk(A) = S ∩ RegB ∩
ext(B \A) is definable and so is Nonsingk(A).

Theorem 2. If the structure admits analytic stratifications, then the degree of com-
plexity of semialgebraic points on A is bounded.

Lemma 2. Boolean operations on sets and taking a connected component of a set
preserve boundedness of the degree of complexity of semialgebraic germs, the degrees of
complexity of the new germs depending only on the degrees of complexity of the initial
germs.

P r o o f. It is easily checked that degx(A∪B) ≤ degxA+degxB and, by expressing an
intersection of unions as a union of intersections, that degx(Rn\A) ≤ 1

2 (2 degxA)degx A+1.
Now, using induction on n, we will prove the following statement:
For any natural M,n, there exist natural numbers k(M,n), l(M,n) depending only

on M and n such that for any semialgebraic set D in Rn of degree of complexity ≤ M ,
the number of connected components of D is ≤ k(M,n) and each of the connected
components is of degree of complexity ≤ l(M,n).

For n = 0 or M = 0 the statement is trivial. If n > 0 then denote by C a connected
component of a semialgebraic set D of degree of complexity not exceeding M . We follow
the proof of Tarski-Seidenberg theorem. D is described by not more than M polynomials
of degree not exceeding M . We divide Rn−1 into bounded number of sets on which all

(2) Notation from [1].
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polynomials have constant degree relative to the vertical axis. (From now on all polyno-
mials are considered as families of polynomials on the vertical axis.) On each such set we
take the product of all nonzero polynomials. This product is “prepared” by multiplication
by all its nonzero derivatives. We divide our sets in Rn−1 into smaller pieces on which
the prepared polynomial has constant number of roots using generalized discriminants
(which have bounded degree).

By the induction assumption, our pieces have bounded number of connected compo-
nents each of them having bounded degree of complexity. The part of Rn over a connected
component of a piece consists of not more than 2M + 1 slices. The set C is a union of
some of such slices. There can be only a bounded number of such C’s. Every such C is a
union of bounded number of slices having degree of complexity bounded. The estimating
numbers depend only on n and M . This ends the proof of the statement.

Now, facts about semialgebraic sets apply to semialgebraic germs.

P r o o f o f T h e o r e m 2. We can assume that A is closed and use the induction
on dimA. For dimA = −∞, 0 the theorem is trivial. Assume that dimA > 0. Let
us consider the situation from the proof of Theorem 1. If x ∈ S ∩ S(A) then Ax =
(bdB(A ∩B))x ∪ (intB(A ∩B))x. As we can take a substratification compatible with B,
the germ (intB(A∩B))x is a union of a finite (and bounded) number of germs of connected
components of B \bdB(A∩B). By the induction assumption applied to bdB(A∩B) and
by Lemma 2, the degree of complexity of Ax is bounded.

Definition 3. Let E ⊂ Rn and x ∈ Rn. Then we define

∂1xE = (Z(E, x) ∩ E) \ E,
∂2xE = E \ intZ(E,x)(Z(E, x) ∩ E),

where Z(E, x) is the (algebraic) Zariski closure of the germ Ex (the smallest algebraic
set whose germ contains Ex).

If E is a union of some finite analytic stratification of Rn then ∂1xE, ∂
2
xE do not depend

on x but only on the stratum to which x belongs. Thus the family {∂1xE, ∂2xE | x ∈ Rn}
is finite.

For any finite sequence α = (α1, α2, . . . , αm), m ∈ N, αi = 1, 2, we define ∂αxE
inductively:

if α is the empty sequence (we write α = 0) then ∂0xE = E,
if α is the sequence α = (α1, α2, . . . , αm), m ∈ N \ {0}, we set ∂αxE = ∂αm

x (∂α
′

x E),
where α′ = (α1, α2, . . . , αm−1). We define |α| = m, the length of the sequence.

Definition 4. Let E be a union of strata of some analytic stratification S of Rn.
We say that a stratum S ∈ S is maximal for E if S ∩ T 6= ∅ implies T = S or E ∩ T = ∅
for every T ∈ S.

We define Nash?(E) = {x ∈ Rn | ∀k = 1, . . . , n, x ∈ Nash(Ek)} where Ek is the
equidimensional component of dimension k of the set E.

Theorem 3. If the structure admits analytic stratifications then S(S(A)) = S(A).

Lemma 3. Let A ⊂ Rn and x ∈ Rn. The following conditions are equivalent :
a) x ∈ S(A),
b) x ∈

⋂
|α|≤n Nash(∂αxA),
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c) x ∈
⋂
|α|≤n Nash?(∂αxA).

If S is an analytic stratification compatible with all ∂αxA, |α| ≤ n then each of the
above conditions is equivalent to

d) x 6∈ MA,x,
where MA,x is the union of all strata maximal for some ∂αxA which are non-Nash mani-
folds.

P r o o f. Notice that x ∈ S(A) iff x ∈ Nash(A), x ∈ S(∂1xA), and x ∈ S(∂2xA). Using
the inclusions S(A) ⊂ Nash?(A) ⊂ Nash(A), we obtain

S(A) =
⋂
|α|≤n

S(∂αxA) ⊂
⋂
|α|≤n

Nash?(∂αxA) ⊂
⋂
|α|≤n

Nash(∂αxA) ⊂ S(A)

which proves that a), b), and c) are equivalent.
If the additional assumption is satisfied then x ∈ extMA,x is equivalent to

∀ |α| ≤ n ∀S maximal stratum of ∂αxA (x ∈ S)⇒ (S is a Nash manifold)

which means that x ∈
⋂
|α|≤n Nash?(∂αxA). Thus c) is equivalent to d).

P r o o f o f T h e o r e m 3. We can take a stratification S satisfying the assumption of
d) in Lemma 3. Hence, the set of nonsemialgebraic points, described in d) of this lemma,
is stable under iteration by its form.

Corollary. The set N(A) = Rn \ S(A) of nonsemialgebraic points of A is closed ,
nowhere dense, definable and its dimension is never 0 or n. All its points are non-
semialgebraic.
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