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1. Introduction

1.1. Affine distributions. All objects are assumed to be smooth (of class C∞). An

affine distribution on Rn of rank m (or corank n − m) is a family A = {Ap}p∈Rn of

m-dimensional affine subspaces Ap ⊂ TpRn. If Ap is a subspace, i.e., Ap contains the zero

tangent vector, then p is called an equilibrium point of A. Two germs A and Ã of corank

one affine distributions, at points p and p̃ respectively, are equivalent if there exists a

local diffeomorphism Φ sending p to p̃ such that Φ∗(Ax) = ÃΦ(x) for each x close to p.

1.2. Simple germs. Our purpose is to list simple (of zero modality) germs of affine

distributions. The definition of simplicity is the same as in any local classification problem

(see [AVG, 85]). Namely, a germ A at a point p is called simple if there exist a finite

number l such that A is l-determined (which means that A is equivalent to any germ

Ã at p such that jlpÃ = jlpA) and a finite tuple of germs at the origin such that any

germ at p with the l-jet sufficiently close to jlpA is equivalent to one of the germs of

this tuple. To define jlpA one can describe A by m+ 1 vector fields v0, . . . , vm such that

Ax = v0(x) + span(v1(x), . . . , vm(x)) for each x close to p. Then jlpA is equal (resp. close)

Research of the first author supported by the fund for promotion of research at the Technion.
The second author is on leave from the Institute of Mathematics, Polish Academy of Sciences,

his research was partially supported by KBN grant 2P03A 004 09.
1991 Mathematics Subject Classification: Primary 58A30; Secondary 93B10.
Received by the editors: March 28, 1997; in the revised form: July 29, 1997.
The paper is in final form and no version of it will be published elsewhere.

[259]



260 M. ZHITOMIRSKII AND W. RESPONDEK

to jlpÃ if the germs A and Ã can be described by tuples of vector fields with equal (resp.

close) l-jets at p.

1.3. Why of corank one? In this paper we study corank one affine distributions only

since simple dimensional arguments show that if m ≤ n − 2 then there are no simple

germs, see [T, 89] and [J, 90].

1.4. Affine distributions and control systems. Any result of this paper can be reformu-

lated in terms of control theory: the problem of local classification of affine distributions

coincides with the problem of feedback classification of control affine systems, see [J, 90].

A control affine system has the form ẋ = v0(x) + u1v1(x) + · · · + umvm(x), where vi’s

are vector fields (v0 is called a drift vector field) and ui’s are controls. The above given

description of affine distributions via tuples of vector fields allows to pass from control

affine systems to affine distributions and vice versa provided that v1, . . . , vm are pointwise

independent. In this case two control affine systems are called feedback equivalent if they

define equivalent (i.e., the same up to a choice of coordinates) affine distributions.

1.5. Germs at a nonequilibrium point : reduction to a classical problem. The starting

point for classification of corank one affine distributions is the following simple observation

which was made in [Zh, 92], App. C: the problem of local classification of corank one affine

distributions (and the problem of local feedback classification of control affine systems

on Rn with n−1 controls) is exactly the classical problem of classification of nonvanishing

differential 1-forms provided one studies germs at a nonequilibrium point.

To explain this observation it suffices to note that if p is a nonequilibrium point of a

corank one affine distribution A then near p there exists a unique differential 1-form ω

such that

Ax = {ξ ∈ TxRn : ω(x)(ξ) = 1}.

N o t a t i o n. This relation between ω and A will be denoted by A = (ω, 1).

1.6. Simple germs at a nonequilibrium point. It was proved in [Zh, 92], Sect. 12 that

any simple germ of a differential 1-form on R2k+1 (resp. R2k) is equivalent to one and

only one of three models (fixed germs at the origin): the Darboux model D (resp. D′)

and two Martinet models M± (resp. M ′±) (1), where

D = dz + x1dy1 + · · ·+ xkdyk,

M± = ±zdz + (1 + x1)dy1 + x2dy2 + · · ·+ xkdyk,

D′ = (1 + x1)dy1 + x2dy2 + · · ·+ xkdyk,

M ′± = (1± x2
1)dy1 + x2dy2 + · · ·+ xkdyk.

Therefore the following statement holds:

Theorem 1 ([Zh, 92], App. C). All simple germs of corank one affine distributions at

a nonequilibrium point are exhausted , up to equivalence, by the models (D, 1) and (M±, 1)

(1) This result was announced in [Zh, 85] (with the proof for the 2-dimensional case).
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if n = 2k + 1 and by the models (D′, 1) and (M ′±, 1) if n = 2k. (2)

Using results of the works [M, 70] and [Zh, 92], Sect. 11, one can easily determine

whether a germ (ω, 1) is simple or not. Namely, given a germ A = (ω, 1) at a point

p ∈ R2k+1 (resp. R2k) we take a nondegenerate volume form Ω and define the function

F = (ω ∧ (dω)k)/Ω (resp. F = (dω)k/Ω). Then A is equivalent to the Darboux model if

and only if F (p) 6= 0 and to one of the Martinet models if and only if F (p) = 0 and the

n-form Ω1 = dF ∧ (dω)k (resp. Ω1 = dF ∧ ω ∧ (dω)k−1) does not vanish at p. For any n

the sign + (resp. −) in the Martinet models corresponds to the case where the n-forms

Ω(p) and Ω1(p) define the same (resp. different) orientations.

1.7. Germs at an equilibrium point. Given a corank one distribution A and any point p

(equilibrium or not) there exist a nonvanishing differential 1-form ω and a function f such

that for each x close to p we have

Ax = {ξ ∈ TxRn : ω(x)(ξ) = f(x)}.

N o t a t i o n. We will write this relation in the form A = (ω, f).

Note that (ω, f) and (ω̃, f̃) is the same affine distribution if and only if there exists

a function T such that T (p) 6= 0 and ω̃ = Tω, f̃ = Tf . The point p is an equilibrium

point of A if and only if f(p) = 0. Therefore classification of germs of corank one affine

distributions at an equilibrium point p is the local classification of pairs (ω, f), ω(p) 6= 0,

f(p) = 0, with respect to the following equivalence: (ω, f) is equivalent to (ω̃, f̃) if there are

a local diffeomorphism Φ and a nonvanishing function T such that Φ∗ω = T ω̃, f ◦Φ = T f̃ .

1.8. 2-dimensional and 3-dimensional cases. A classification of simple germs of corank

one affine distributions on Rn, n = 2, 3, at an equilibrium point is contained in [JR, 90]

for the 2-dimensional case and in [RZh, 95] for the 3-dimensional case (in both papers

— in terms of control theory). Using the notation in Section 1.7 we can reformulate this

classification as follows: any simple germ of a corank one distribution on R2 (resp. R3)

at an equilibrium point is equivalent to the germ at the origin of the affine distribution

(dx, y) (resp. to the germ at the origin of one of the three affine distributions (dz+xdy, y),

(dz + x2dy, y), (dz − x2dy, y)).

2. New results. The new result of this paper is a complete classification of simple

germs at an equilibrium point of corank one affine distributions on Rn, n ≥ 4.

2.1. Classification of simple germs. In the following theorem (which is valid for n ≥ 3)

one meets the Darboux and Martinet models D and M± in the odd-dimensional case (see

Section 1.6), and the differential 1-form

Q = dy1 + x2dy2 + · · ·+ xkdyk

on R2k. Note that by one of Darboux theorems the field of kernels of Q is equivalent to

generic germ of corank one distribution on R2k. We use the notation of Section 1.7.

(2) In the 2-dimensional case (k = 1) this result is contained, in terms of control theory, in
the work [JR, 90], where Darboux and Martinet models and results of the work [Zh, 85] are not
used.
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Theorem 2. Any simple germ at an equilibrium point of a corank one affine distri-

bution on R2k+1, k ≥ 1 (resp. R2k, k ≥ 2), is equivalent to the germ at the origin of one

and only one of the three distributions (D,x1), (M±, x1) (resp. two distributions (Q, x1),

(Q, x2 + x2
1)).

2.2. Singularity classes. Now we give a way to determine whether a given germ

A = (ω, f) at an equilibrium point p is simple or not and, if it is, to which of the mod-

els it is equivalent. There is no loss of generality to assume that p is the origin. Fix a

nondegenerate volume form Ω. Given a germ A = (ω, f) we define the function

F = (ω ∧ (dω)k)/Ω,

if n = 2k + 1, and the function

G = (ω ∧ (dω)k−1 ∧ df)/Ω,

if n = 2k. We introduce the following sets of germs:

the set Orb(D,x1) consisting of germs of affine distributions (ω, f) at 0 ∈ R2k+1 such

that f(0) = 0, F (0) 6= 0, (ω ∧ df)(0) 6= 0;

the set Orb(M+, x1) (resp. Orb(M−, x1)) consisting of germs of affine distributions

(ω, f) at 0 ∈ R2k+1 such that f(0) = 0, F (0) = 0, the n-form Ω1 = ω∧ (dω)k−1 ∧dF ∧df
does not vanish at 0 and the n-forms Ω(0) and Ω1(0) define the same (resp. different)

orientations;

the set Orb(Q, x1) consisting of germs of affine distributions (ω, f) at 0 ∈ R2k such

that f(0) = 0 and G(0) 6= 0;

the set Orb(Q, x2 + x2
1) consisting of germs of affine distributions (ω, f) at 0 ∈ R2k

such that f(0) = 0, G(0) = 0, (ω ∧ (dω)k−1 ∧ dG)(0) 6= 0 and (ω ∧ df)(0) 6= 0.

One can easily check that these sets do not depend on the volume form Ω and they

are well-defined disjoint sets of germs of corank one distributions: any of the above given

sets is distinguished by a condition which is invariant with respect to the change of a pair

(ω, f) by a pair (Tω, Tf), where T is a nonvanishing function.

Theorem 3. Denote by α any of 5 models in Theorem 2. A germ (ω, f) of a corank

one affine distribution at equilibrium point 0 ∈ Rn is equivalent to the model α if and

only if it belongs to the above described set Orb(α).

In other words, Orb(α) is the orbit of the model α. Taking into account results of

Section 1.6, we obtain that the set of all simple germs at the origin of corank one affine

distributions on R2k+1 (resp. R2k, k ≥ 2) consists of one open orbit, three codimension

one orbits and two (resp. one) codimension two orbits. The set of non-simple germs has

codimension two.

3. Proofs.

3.1. Homotopy method. Beginning from this section all objects are assumed to be

germs at the origin. To prove Theorem 3 we use the homotopy method. In the following

proposition all families depend smoothly on a parameter t ∈ [0, 1]. By LXω we denote the

Lie derivative of a differential 1-form ω along a vector field X: LXω = Xcdω + d(Xcω).
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Proposition 1. Consider a differential 1-form ω, functions f and δ, and let ft =

f + tδ. Assume that there exist a family of vector fields Xt, Xt(0) = 0, and a family of

functions ht, such that LXtω = htω and Xt(ft) = htft − δ for each t ∈ [0, 1]. Then the

affine distribution (ω, f) is equivalent to the affine distribution (ω, f + δ).

P r o o f. Define a family of local diffeomorphisms φt by the equation dφt/dt = Xt(φt),

φ0 = id, and a family of nonvanishing functions Tt by the equation dTt/dt = (ht ◦ φt)Tt,
T0 ≡ 1. Then

d

dt
(φ∗tω) = φ∗t (LXt

ω) = (ht ◦ φt)φ∗tω,
d

dt
(ft(φt)) = (Xt(ft) + δ) ◦ φt = (htft) ◦ φt.

It follows that φ∗tω = Ttω and ft◦φt = Ttf0. In particular, as t = 1 we obtain φ∗1ω = T1ω,

(f + δ) ◦ φ1 = T1f .

3.2. Proof of Theorem 3. For each model α in Theorem 2 it is easy to check that

α ∈ Orb(α). Thus it is enough to prove that if (ω, f) ∈ Orb(α) then (ω, f) is equivalent

to α.

a) Let (ω, f) ∈ Orb(D,x1). Then ω is a contact form and we can assume that ω = D.

The condition (D ∧ df)(0) 6= 0 implies that there is no loss of generality to assume

(∂f/∂x1)(0) 6= 0 and, moreover, (∂f/∂x1)(0) > 0 (we change, if necessary, the signs of

the coordinates x1 and y1). Now we will reduce f to x1 using Proposition 1. Let δ = f−x1,

ft = x1 + tδ. The set of solutions (X,h) of the equation LXD = hD, X(0) = 0 is well

known, see [Ar, 78]:

h =
∂u

∂z
, X =

∑
Ai

∂

∂xi
+

∑
Bi

∂

∂yi
+ C

∂

∂z
,

Ai = xih−
∂u

∂yi
, Bi =

∂u

∂xi
, C = u− x1

∂

∂x1
− . . .− xk

∂

∂xk
,

where u is an arbitrary function in n variables such that (∂u/∂xi)(0) = (∂u/∂yi)(0) = 0.

The equation Xt(ft) = htft − δ with Xt and ht of the above form for each t reduces to

the equation

Zt(ut) + atut + δ = 0,

where Zt is a family of vector fields and at is a family of functions. This equation has a

solution ut with vanishing at 0 derivatives (for all t) since δ(0) = 0 and Zt(0) 6= 0 for all

t ∈ [0, 1]. The latter follows from the relations

Zt(y1) = − ∂ft
∂x1

,
∂f

∂x1
(0) > 0

which imply Zt(y1)(0) < 0, t ∈ [0, 1].

b) Let (ω, f) ∈ Orb(M+, x1)∪Orb(M−, x1). Then (ω∧(dω)k−1∧dF )(0) 6= 0, therefore

the field of kernels of ω is equivalent to the field of kernels of the 1-form M+, see [M, 70].

This means that there is no loss of generality to assume that ω = M+. The condition

(M+, f) ∈ Orb(M+, x1) (resp. (M+, f) ∈ Orb(M−, x1)) is equivalent to the condition

(∂f/∂x1)(0) > 0 (resp. (∂f/∂x1)(0) < 0). Note that the affine distributions (M+,−x1)

and (M−, x1) are equivalent (the form (−M+) can be obtained from M− by the change

of signs of the coordinates y1, . . . , yk). Therefore to prove that (M+, f) is equivalent to
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(M+, x1) (resp. to (M−, x1)) we have to reduce f to x1 (resp. to −x1). In what follows

we consider only the case (M+, f) ∈ Orb(M+, x1). In the case (M+, f) ∈ Orb(M−, x1)

the arguments are similar.

Let δ = f − x1, ft = x1 + tδ. By Proposition 1 in order to reduce f to x1 it suffices

to prove the solvability of the system LXtM+ = htM+, Xt(ft) = htft − δ with respect

to a family (Xt, ht) such that Xt(0) = 0. The equation LXt
M+ = htM+, Xt(0) = 0 can

be easily solved (see [RZh, 95]). The set of all solutions (Xt, ht) contains solutions of the

form

ht = 2vt + z
∂vt
∂z

, Xt =
∑

Ai,t
∂

∂xi
+

∑
Bi,t

∂

∂yi
+ Ct

∂

∂z
,

A1,t = −z2 ∂vt
∂y1

+ (1 + x1)ht, Ai,t = −z2 ∂vt
∂yi

+ xiht (i = 2, . . . , k),

Bi,t = z2 ∂vt
∂xi

, C = zvt − (1 + x1)z
∂v

∂x1
− x2z

∂vt
∂x2
− · · · − xkz

∂vt
∂xk

,

where vt is an arbitrary family of function in n variables such that vt(0) = 0. The equation

Xt(ft) = htft − δ with such Xt and ht can be written as a system for ht and vt of the

form

Wtht + z
∂ft
∂z

vt + zRt(vt) + δ = 0, ht = 2vt + z
∂vt
∂z

,

where Rt is a family of vector fields such that Rt(z) ≡ 0 and Wt is a family of functions

such that Wt(0) = (∂ft/∂x1)(0). Now we use our condition (∂f/∂x1)(0) > 0. It follows

that (∂ft/∂x1)(0) > 0, t ∈ [0, 1], and eliminating ht from the first equation we reduce

the system to an equation for vt of the form

(2 + gt)vt + z
∂vt
∂z

+ zEt(vt) = δt,

where Et is a family of vector fields such that Et(z) ≡ 0, gt and δt are families of

functions, gt(0) = δt(0) = 0. The solvability of this equation follows from its solvability

in formal series with respect to z and hyperbolicity of the vector field z(∂/∂z) + zEt on

the hypersurface {z = 0} (see [Zh, 92], Ch. 2 and [RZh, 95]). It remains to note that

vt(0) = 0 since δt(0) = 0.

c) Let (ω, f) ∈ Orb(Q, x1)∪Orb(Q, x2+x2
1). Then ω∧(dω)k−1(0) 6= 0 and by Darboux

theorem the field of kernels of ω is equivalent to the field of kernels of the 1-form Q.

Therefore there is no loss of generality to assume that ω = Q. If (Q, f) ∈ Orb(Q, x1)

then (Q ∧ (dQ)k−1 ∧ df)(0) 6= 0, or, equivalently, (∂f/∂x1)(0) 6= 0. The latter condition

implies that (Q, f) is equivalent to (Q, x1).

Assume now that (Q, f) ∈ Orb(Q, x2 + x2
1). Then the function f has the following

properties:
∂f

∂x1
(0) = 0,

∂2f

∂x2
1

(0) 6= 0, (Q ∧ df)(0) 6= 0.

It follows that (Q, f) is equivalent to (Q,±x2
1 + ν), where ν is a function of the variables

y1, x2, y2, . . . , xk, yk such that (Q ∧ dν)(0) 6= 0. By a) the affine distribution (Q, ν) on

R2k−1(y1, x2, y2, . . . , xk, yk) is equivalent to (Q, x2). Then (Q,±x2
1 + ν) is equivalent to

(Q, x2 ± x2
1T ), where T is a nonvanishing function. Changing the coordinate x1 we can
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reduce T to 1. It remains to note that (Q, x2− x2
1) is equivalent to (Q, x2 + x2

1) since the

change of the signs of the coordinates y1, x2, . . . , xk brings Q to −Q.

3.3. Proof of Theorem 2. Throughout the proof we use Theorem 3 and the description

of the orbits in Sections 1.6 and 2.2. At first we consider the odd-dimensional case,

n = 2k + 1. Denote by S1 the union of the orbits of the models (D, 1) and (M±, 1) and

by S the union of the orbits of the models (D, 1), (M±, 1), (D,x1) and (M±, x1). Given

a 1-form ω we associate to it a function F = ω ∧ (dω)k/Ω, where Ω is a nondegenerate

volume form. Introduce the following sets of germs of corank one affine distributions:

B1 = {(ω, f) : F (0) = 0, (f(dω)k ∧ dF + kω ∧ (dω)k−1 ∧ df ∧ dF )(0) = 0};
B2 = {(ω, f) : f(0) = 0, (ω ∧ df)(0) = 0}.

Lemma 1. Let f(0) 6= 0. Then (ω, f) ∈ S1 if and only if (ω, f) 6∈ B1.

To prove the lemma we write the affine distribution (ω, f) in the form (ω/f, 1) and

use the description of the models in Section 1.6.

Using the description of the models in Section 2.2 we obtain the following corollary:

(ω, f) ∈ S if and only if (ω, f) 6∈ B1 ∪ B2. It follows that the set of 2-jets of germs of S

is open and we obtain that any germ of S is simple. Another corollary of Lemma 1 (and

results of Section 1.6) is the absence of simple germs in the set B1 ∩ {(ω, f) : f(0) 6= 0}
and thus in the set B1.

To prove Theorem 2 in the odd-dimensional case it remains to show that there are no

simple germs in the set B2. It suffices to prove that a germ (ω, f) ∈ B2 such that df(0) 6= 0

is not simple. Let µ = µ(ω, f) be the pullback of ω to the hypersurface {f = 0}. Note that

µ(0) = 0 and that if (ω, f) is equivalent to (ω̃, f̃) then the Pfaffian equations generated by

µ(ω, f) and µ(ω̃, f̃) are equivalent. It follows that the problem of classification of generic

germs of the set B2 contains the problem of classification of generic Pfaffian equations

generated by 1-forms which vanish at 0. In the latter problem there are no simple germs,

see [L, 75] and [Zh, 92], Sect. 21, 29.

Now we consider the even-dimensional case, n = 2k ≥ 4. At first let us note that a

germ (ω, f) such that (ω∧(dω)k−1)(0) = 0 is not simple since in this case the germ of the

Pfaffian equation generated by ω is not simple, see [Zh, 92], Sect. 25. Therefore it suffices

to prove Theorem 2 within the set C consisting of germs of the form (Q, f). Denote by

C1 the subset of C consisting of germs (Q, f) such that (∂f/∂x1)(0) = (∂2f/∂x2
1)(0) = 0

and by C2 the subset of C consisting of germs (Q, f) such that f(0) = 0, (Q∧df)(0) = 0.

Using the description of orbits in Sections 1.6 and 2.2 it is easy to show that a germ (Q, f)

belongs to the union S′ of the orbits of the models (D′, 1), (M ′±, 1), (Q, x1), (Q, x2 + x2
1)

if and only if (Q, f) 6∈ (C1 ∪ C2). This observation and results of Section 1.6 imply that

(i) the set of 2-jets of germs of the set S′ is open, therefore any germ of S′ is simple;

(ii) there are no simple germs belonging to the set C1∩{(ω, f) : f(0) 6= 0}, therefore there

are no simple germs in the set C1. Arguing as in the odd-dimensional case we obtain that

there are no simple germs (Q, f) ∈ C2, therefore any simple germ belongs to S′.
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