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1. Introduction. A singular foliation of codimension one is locally given by an in-
tegrable 1-form. In the non-singular points the (regular) Frobenius’ Theorem provides
the description of the pieces of leaves for the foliation. By repeated blowings up of the
ambient space, the singularities of the foliation may be transformed into simple ones,
that are persistent under new blowings up.

Here we will explain the precise statement of the reduction of singularities for codi-
mension one foliations and the known results. Also we will explain how these results and
ideas apply to solve two problems: the existence of integral hypersurface and the de-
scription of the frontier of a pfaffian hypersurface. The first one is stated in the complex
case; the second one is a problem over the real numbers in the spirit of the theory of
subanalytic sets.

2. Singular foliations of codimension one. An ambient space N is a non-singular
analytic manifold either over the real numbers R or over the complex numbers C. A sin-
gular foliation F of codimension one over N is locally given by a 1-form

w= i ai(z)dz;
i=0

which is integrable (that is w A dw = 0) and such that the coefficients a; have no common
factor. More precisely, we interpret the foliation F as the differential equation w = 0 and
thus we define it as the sub-Oy-module of the cotangent sheaf F C Qy locally generated
by the 1-form w. Up to multiply by a convenient factor, a foliation is locally uniquely
determined by any non-null integrable meromorphic 1-form.
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The singular locus Sing F of the foliation F is locally defined by
Sing F = {P € N; w(P) =0}.

It is a closed analytic subset of codimension at least two.
Consider a germ of hypersurface H at a point P in N, given by a local equation h = 0.
We say that H is an integral hypersurface of F if and only if

w A dh = hn

for a certain analytic 2-form 7. This means that the tangent space of H is the kernel of
the cotangent vector w(Q) in each point of H, outside the singularities (of H and F).
A germ of function f gives a first integral of F if

wAdf =0.

That is, each level f = const. is an integral hypersurface. Malgrange Singular Frobenius
[30] assures the existence of a first integral if the codimension of the singular locus Sing F
is at least three. In particular, we obtain in this way the pieces of the leaves for the non-
singular foliation induced over N — Sing F.

Recall that taking local coordinates (z1,...,%,), a germ f € Oy p of function at P
is represented by a convergent power series

F="fiaat

Consider a (reduced) formal series f = 3 f;, .
integral hypersurface if w A df = f7 for a certain (formal) 2-form 7. For example, the
Euler equation

xzf ...xin. We say that f = 0is a formal

sin

(y — z)dx — 2*dy = 0

has exactly one (convergent) integral curve given by = 0 and one (no convergent) formal
integral curve, given by y =3~ mlz™m T,

Let g : N’ — N be a morphism of ambient spaces. We define locally the transform
g 'F of F by g by considering the analytic integrable 1-form g*w. In general we have
to divide g*w by the local greatest common divisor of the coefficients in order to obtain
a generator of g~'F. Note also that we do not exclude the degenerate case g~ 'F = 0,
it corresponds to a morphism ¢ tangent to F. Anyway, this never occurs when g is a
blowing up, because it induces an isomorphism between dense open sets.

3. Reduction of singularities in dimension two. The aim of the reduction of
singularities of F is to get a foliation with simpler singularities after a finite sequence of
blowings up of the ambient space. A first remark is that we cannot expect to destroy all
the singularities of F by this procedure. For instance, if we blow up the origin of (C2,0),
the transform of the non-singular foliation dz = 0 is locally given by ydz + xdy = 0
and, repeating the blowings up, we always get singularities of the type py dx + gx dy = 0.
This kind of singularities correspond to the fact of getting normal crossings for the total
transform in the problem of reduction of singularities for the case of varieties.

Our first task is then to identify the kind of singularities that we will get as final sin-
gularities by means of the blowing up procedure. We shall call them simple singularities.

Write in dimension two

w = a(x,y)dz + b(z,y)dy.
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Then the foliation is also given locally by the vector field X = b(z,y)9/0z — a(x,y)d/y.
One can try to define the simple singularities by the fact that we have multiplicity one
(that is the minimum of the multiplicities of a(x,y) and b(z,y) is one). But first this is
not stable under blowing up and second this kind of foliations can correspond to singular
functions without normal crossings. For instance, take the cusp

w=d(y? —2°) = 2ydy — 5xdx.

Blowing up the origin, we get a point where the transform of the foliation is given by
22y dy + (2y? — 2*)dz, which has multiplicity two. The differential of a singular function
having normal crossings gives in two variables a vector field whose linear part is non-
nilpotent (in fact it has two distinct eigenvalues with negative rational ratio). The fact
that the linear part of X is non-nilpotent is stable under blowing up (for the singular
points). This property corresponds to the singularities that we are going to call pre-simple
singularities. Anyway consider the foliation given by d(z?/y?) = 0, that is

w = pydr — qz dy.

It has infinitely many integral curves that are singular cusps. After blowing up we get
two singular points of the type (p — ¢)ydx — gz dy and pydz — (¢ — p)x dy. In finitely
many steps, we arrive to the radial foliation ydx — x dy = 0. Blowing up this one, the
singularity disappears and the exceptional divisor of the blowing up becomes transversal
to the transformed foliation (dicritical situation). The above phenomenon occurs only
because of the ratio of the eigenvalues is rational positive. Thus,

In dimension two a singularity of foliation is called to be simple if and only if the
linear part of the vector field X has two distinct eigenvalues \ # p % 0 such that
the quotient A/u is not a positive rational number.

Remark that one of the eigenvalues can be zero, is this case we say that we have a
saddle node, for example, the Euler equation. The simple singularities are stable under
blowing up and non-dicritical in the sense that the exceptional divisor after a blowing up
is always an integral curve. But they can completely disappear after blowing up because
of a reason of algebraic nature, take for instance the real center given by d(z? + y?) = 0.
The corresponding linear part has conjugate non-real eigenvalues and after blowing up
we get a foliation “locally parallel” to the exceptional divisor. If we are placed over a
non-dicritical normal crossings divisor (the irreducible components are integral curves)
containing x = 0 this situation never occurs, since we can write

w = x(a(m,y)i—:ﬂ + B(x, y)dy)

Then the two eigenvalues are necessarily in the base field (since n — 1 of them are so).
That is why we take the following definition

DEFINITION 1. We say that a singularity of the foliation F over an ambient space
of dimension two is simple adapted to a normal crossings divisor E if and only if it is
simple, there is at least one irreducible component of E passing through it and all the
irreducible components of E are non-dicritical for F (integral hypersurfaces).

Blowing up a simple singularity adapted to E produces exactly two simple singularities
adapted to the total transform of F; the strict transform of each irreducible component
of E passes through one of these singular points. If £ has two irreducible components
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(call this a coin) we see in this way that they are the only integral curves of the foliation:
otherwise the strict transform of a third integral curve will pass through a not coin after
finitely many blowings up, creating an impossible third singularity. Assume that F has
only one irreducible component x = 0. Blowing up indefinitely, we find a sequence of
infinitely near points corresponding to singularities which are not coins: they determine a
non-singular formal curve I' transversal to = 0. This curve I is a formal integral curve
and the same argument as above shows that E and I' are the only formal integral curves
of F. Moreover assume that we can write

w = x(df +(=A+ (b(x,y))dy)

where ¢(0,0) = 0 and A ¢ Q.. Then Briot and Bouquet theorem [3] states that the curve
I is in fact a convergent curve. In this case we say that the eigenspace (of the linear part
of the vector field X') transverse to the exceptional divisor is strong.

Let us look at the dicritical components that we can produce by blowing up. Let v
be the minimum of the orders at the point P of the coefficients a(x,y) and b(z,y) of w.
After one blowing up, the exceptional divisor is generically transversal (dicritical) to the
transform of the foliation if and only if

vp(w(zd/0z + y0/0y) = za(z,y) + yb(z,y)) > v+ 2.

Thus, creating dicritical components by blowing up is possible. Actually (but only in
dimension two) it corresponds to the fact that F has infinitely many integral curves
(project by the sequence of blowings up the integral transversal curves in the generic
points of the dicritical component). We want these dicritical components to have normal
crossings with the foliation after reduction of singularities. The precise definition is

DEFINITION 2. Let D be a normal crossings divisor over an ambient space N of
dimension two and fix a point P € N. We say that foliation F has normal crossings
with D at the point P if one of the following properties occurs:

1. The point P is a singular point of F and it is simple adapted to D. In particular,
all the irreducible components of D through P are non-dicritical for F.

2. The point P is non-singular for F and there are local coordinates (x,y) at P such
that F is given by do = 0 and D C (zy = 0).

Now, we can state the result of reduction of singularities in dimension two that is
essentially due to Seidenberg [35].

THEOREM 3 (Reduction of singularities in dimension two). Consider a singular folia-
tion F over an ambient space N of dimension two and fix a point P € N. There is a
finite sequence of blowings up of points over the point P

NN, 82N, BN = N
Such that the transform F' of F in N’ has normal crossings with the total exceptional

divisor D' at each point of D'. In particular, any singularity of F' over D’ is a simple
singularity for F' adapted to D’.

4. Pre-simple singularities. The proofs of the propositions in this section are in [9]
in the three-dimensional non-dicritical case and in [8] in the general case, in any ambient
dimension.
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In order to define simple singularities (and first pre-simple ones) in higher dimension,
we need the idea of dimensional type. Given a point P of the ambient space N, the
dimensional type 7(F, P) of the foliation F at the point P is the codimension in Tp N of
the vector space

D(w)(P) = {X(P); w(X) = 0}

where X’ denotes a germ of vector field at P. Put ¢t = 7(F, P). Then, up to selecting good
coordinates and a generator w of F, we can write w only in the first ¢ coordinates

t
w= Zai(ml, ey X )dT.
i=0

Let E be a normal crossings divisor of IV such that all the irreducible components of E are
non-dicritical (integral hypersurfaces). Denote by e = e(E, P) the number of irreducible
components of E through P. It is evident that e < ¢. In particular we can take coordinates
(x1,...,2p,) at P and a subset A C {1,...,t} such that

E = ( H Ty = 0)
€A
and then w is written down in the following way

w:(Hxi)[Zbi(xl,...,xt)CZi—&— Z bi(xl,...,xt)dxi]

icA i€A i€{l,..t}—A

where the coefficients b; are germs of functions without common factor. This presentation
of w is very convenient for the control of the singularities in the problem of reduction.
Also it will serve to us to define simple singularities.

The adapted order v(F, E; P) is defined to be the minimum of the orders at P of the
coeflicients b;; it is obviously an upper semicontinuous invariant. The adapted multiplicity
w(F, E; P) is by definition the order at P of the ideal generated by

{bitica U{z;bitiga je(1,...n}-
Note that v(F,E; P) < u(F,E; P) <v(F,E;P)+1.

DEFINITION 4. We say that a point P € Sing F is a pre-simple singularity for F
adapted to F if and only if one of the following properties holds:

1. v(F,E;P)=0;

2. v(F,E;P) = u(F,E; P) =1 and there is a coefficient b; with ¢ € A such that the
linear part of b; does not depend only on {z;; i € A}.

Denote by Sing™(F, E) the set of singular points P € Sing F that are not pre-simple
singularities for F adapted to E.

ProposITION 5 (Horizontal stability of pre-simple singularities). The non-pre-simple
singularities Sing™ (F, E) form a closed analytic set of the ambient space N.

In order to assure the vertical stability (persistency under permissible blowings up) we
need the following results that also gives a partial geometric description of the pre-simple
singularities.
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PROPOSITION 6.

a) Consider a pre-simple singularity P € Sing F —Sing™(F, E). Then the dimensional
type satisfies

t=71(F,P)=v(F,0;P)+1
e=¢e(E,P)—1<t<e.

b) Assume that v(F, E; P) = u(F, E; P) =1 (note that then t = e — 1). Take coordi-
nates (x1,...,%,) such that E = (Hl;i x; = 0), write a generator w of F as above and
denote by B; the linear part of the coefficient b;. Then

1. There is ezactly one formal hypersurface H different from the irreducible compo-
nents of E such that H is an integral hypersurface for F and EUH has normal crossings.

Moreover, let x; = ¢(x1,...,x1-1) be an equation for H and write for any index k
oo
(b(xl? s amtfl) = Z ¢gk)(1’1> s Th—1, Lht1s - - - axtfl)xz
s=1

then the ¢§’“) are convergent series in t — 2 variables with a common domain of conver-
gence.

2. The linear parts B;, i € A, are not resonant in the sense that there is no
function ® : A Z such that ), , ®(i)B; = 0.

For the construction of H, first we find step by step in a unique way a formal coordinate

change @, = x; — ¢(x1, ..., x4—1) such that &, divides the first coefficient of w. That is,
t—1
d d
wzft%“”st s +btd1't.
1 5—2 s

The fact that ¢ is only transversely formal is easily derived from this construction. Now,
the integrability condition w A dw = 0 implies that z; divides by, for s =2,...,t —1. The
non-resonance is now a consequence of the integrability condition and of the fact that by
has order at least one.

The general stability of the control invariants under permissible blowings up (de-
veloped in [7] for the non-dicritical case and in [8] for the general case) states that the
adapted order is always stable and the adapted multiplicity is stable if we are not radially
dicritical (a resonant case with ®(7) = 1 for all i € A). Hence we deduce the following
result of persistency for pre-simple singularities.

PROPOSITION 7 (Vertical stability of pre-simple singularities). Assume that we have
only pre-simple singularities, that is Sing™(F,E) = 0. Let Y C Sing F be a closed non-
singular subspace of the ambient space N having normal crossings with E and consider
the blowing up @ : N' — N of N with center Y. Denote by E' the set of non-dicritical
components of m Y (EUY) for the transform F' of F by w. Then

Sing*(F', E') = 0.
That is, all the singularities of F' are pre-simple singularities adapted to E’.
Remark 8. The definition of permissible center that we use in [7, 9, 8] is more specific
that the one suggested in the above proposition, but they coincide in the case we have

only pre-simple singularities. Actually, we use two definitions, both of them inspired in the
equimultiplicity property used as a base by Hironaka for his normal flatness condition [17].
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The weak condition, that we call permissible center is horizontally stable and is useful
for the control of the generic points; the strong condition, that we call appropriate center
is not horizontally stable and we use it for the control of the bad points. In the non-
dicritical case there is a horizontal semicontinuity of the appropriate center condition [7],
that simplifies very much the strategy for the reduction of singularities; this result is not
true in the general case and it is necessary to solve first the bad points with appropriate
centers and second the generic points with only permissible centers [8].

5. Getting pre-simple singularities. The first task in the reduction of the singu-
larities is to eliminate the set Sing”™(F, E') by means of permissible blowings up of the
ambient space. Then, consider the following statement:

STATEMENT 9 (Reduction to pre-simple singularities). Let F be a singular foliation
of codimension one over an ambient space N of dimension dim N = n. Assume that
N is a germ around a compact analytic subset C C N (call it the core); two important
ezamples are C = P and C' = N. Then there is a finite sequence of permissible blowings
up (of germs around C')

NEN N, BN =N

such that Sing™(F', E') = 0, where F' is the transform of F in N’ and E' is the divisor
composed of the non-dicritical components of the total exceptional divisor in N'.

This statement is still a conjecture if n > 4. If n = 2, its proof is contained in
Seidenberg’s paper [35]. The proof in the case n = 3 is done in [7] for the non-dicritical
case and in [8] without this assumption. We say that the foliation is non-dicritical if
for any sequence of permissible blowings up the last exceptional divisor is always non-
dicritical. In [5, 6] we give other characterizations of this property; we shall return to it in
the section about the existence of integral hypersurfaces. The reduction to the pre-simple
singularities concentrates the main difficulty in the problem of reduction of singularities
of foliations. Although the proof is out of the scope of this expository paper, let us say
at least what are the main ideas in the known case of dimension three.

First, let us remark that the reduction to the pre-simple singularities of a foliation
given by w = df is the same one as the reduction of the singularities of the analytic set
f = 0. 1In fact in [18, 1, 2] it is proved that after finitely many blowings up the total
transform of f is locally a monomial compatible with the exceptional divisor (without
dicritical components) and with at most one irreducible component outside of the divisor:
this corresponds to a pre-simple singularity. Conversely, if we have a pre-simple singularity
of the form w = df we are dealing locally with a monomial of the above type. Thus, the
difference between pre-simple and simple singularities, to be seen later, is outside of the
example w = df. Anyway, the reduction to the pre-simple singularities is quite more
complicated than the corresponding problem for a hypersurface, mainly in the dicritical
case. Two key difficulties appear, first there is no a clear substitute of the Hilbert-Samuel
function used by Hironaka and second we have to deal with resonance phenomena that do
not exist in the problem of varieties in characteristic zero (in fact we think in parallelisms
for the characteristic p cases; see [15, 16, 14, 38)).

We construct a set of invariants that will correspond, in a non-complete way, to
the idea of the Hilbert-Samuel function. This family works in any dimension and is
divided into invariants of transversality and invariants of resonance. The main invariants
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of transversality are the adapted order, say r, the adapted multiplicity, say m, and the
directriz, call it Dir(F, E; P). The directrix is our version of the strict tangent space
of Hironaka. Given an homogeneous polynomial F(X,...,X,) denote by Dir(F) the
maximum linear subspace that leaves the cone F' = 0 invariant by translation. Taking
the above local adapted notation with coordinates b; for the form w, we define

(Nica Dir(In" ;) if m=r

Dlr(FaE; P) = {ﬂlgA Dir(InT bz) lf m=r-4+ 1

where In" b; means the initial part of degree r of the coefficient b;. The directrix has a
good behavior under appropriate blowings up: it determines the possible situation of the
points in the exceptional divisor for which the main invariants » and m do not drop,
except perhaps in the radially dicritical case. Moreover, another family of transversality
invariants is derived from the directrix; we extract from them the invariant d, of transver-
sal to E codimension of the directriz. It measures how many independent linear forms,
modulo X; for ¢ € A, appear in the equations of the directrix. The codimension of the
directrix is not necessarily stable under blowings up, but this invariant d is either in-
creasing or stable (always outside of the radially dicritical case). The case d = 0 is called
hidden directriz; it is a priori the most difficult case, but we can show that if this case is
stable we are always over the strict transform of certain components of the exceptional
divisor that we call contact components and essential components and hence we get a
maximal contact situation.

The resonance invariant Rs(F, E; P) takes three possible logical values 0,1,2. The
value 1 corresponds to the radially dicritical case, the value 2 to the other resonant cases
with m = r and Rs(F, E;P) = 0 otherwise. We modify the invariant m to get the
invariant m* defined by m* = m if Rs(F, E; P) = 0 and m* = m+ 1 otherwise. The pair
(r,m*) is always stable under appropriate blowing up and will act as the Hilbert-Samuel
function in our problem of reduction of singularities for the so called bad points.

Once this collection of invariants and of general definitions is established, we use
them to proof the existence of a reduction to pre-simple singularities in dimension three.
This problem has two parts; first a global criteria of blowing up that allows us to choose
globally the next center of blowing up and second a local control of this possibly infinite
sequence of global blowings up that implies that the sequence is not infinite. As we have
already said, we will separate the generic behavior from the bad one; this is in fact the
base of the global criteria and for this we need the idea of generic equireduction.

DEFINITION 10. Consider a point P € Sing*(F, E). We say that P is a good point,
or equivalently a point over which we have generic equireduction if and only if there is a
neighborhood U of P and a finite sequence of blowings up

4R 2 Tk
U(‘Ul(‘UQHU}C

such that Sing™(Fy, Ex) = 0 and for any index j = 1,..., k the locus Sing"(F,_1, Ej_1)
is non-singular, of codimension two, etale over Sing”*(F, E) and it is the center of the
next blowing up ;.

Call bad points the set BA(F, F) of points in Sing™(F, E') which are not good points.
In [10] there is a proof of the following result (in any ambient dimension).

PROPOSITION 11 (Generic equireduction). The set BA(F, E) is a closed analytic set
of N of codimension at least three.
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In particular, if n = 3 the set of bad points is a set of isolated points. The idea is first
to eliminate the bad points. Once this done the good points will disappear by a finite
number of canonical global blowings up in view of the generic equireduction. Thus the
global strategy of blowings up looks prior to the bad points having maximum invariant
(r,m*) (a finite number of points). We do not do the details here (see [7] in the non-
dicritical case and [8] in the general case) but let us remark the main properties of this
global strategy:

1. If there is one bad point having the initial maximum Samuel invariant (r,m*), then
we can always choose a global center accordingly with the global criteria. This center is
always appropriate at the bad points and permissible elsewhere.

2. After finitely many global blowings up following this strategy, we always modify at
least one bad point (that is there is at least one bad point included in the corresponding
center).

3. Locally at one bad point we priorize it as center when it is a radially dicritical
corner (three components of the divisor). Otherwise, we priorize the appropriate centers
of biggest dimension.

Let us do the global criteria to work. This produces a sequence of global blowings up.
If it stops, we get bad points with only smaller invariant (r,m*). By induction we can
eliminate the bad points and by generic equireduction we obtain the desired reduction
to pre-simple singularities. Thus we have only to consider the case where the sequence
does not stop and to prove that this is not possible. If we get an infinite sequence, we
can specialize it to an infinite sequence of local blowings up

T T4
B = W(ﬂ—lwl(ﬂ—zI/VQ(—]WJ &1
P0<—P1(—P2...<—Pj(—...

where W; is a small neighborhood of P; and P;;; maps to P;. Call this sequence B of
local blowings up an infinite bamboo of infinitely near points (it can also be seen as a star
in the sense of Hironaka [19]). This infinite bamboo B has the property that at each P;
the invariant (r, m*) is the same one. Moreover the centers of the local blowings up, being
specialization of the centers given by the global criteria, satisfy to the local conditions of
the global criteria. Now we have to prove that this infinite bamboo cannot exist and this
ends the proof of the reduction to pre-simple singularities.

Assume by contradiction that B exists. We separate two main cases: the m-stable case
and the m-unstable case. The m-stable case corresponds to the case in which the adapted
multiplicity m is the same one at each level P;. The m-unstable case corresponds to the
fact that m = r and m = r + 1 occurs infinitely many times (in particular m* = r + 1
and the steps with m = r are resonant ones).

For the control of the m-stable case, we consider first the situation where we have
a non-singular surface H having maximal contact with the bamboo B. This means that
all the centers of the blowings up (and hence the points P;) are contained in the corre-
sponding strict transforms of H. In that case, we can develop a concept of differential
idealistic exponent in the same spirit of [20]; we project in this way our reduction problem
to related problem in dimension two over the ambient space H whose solution is easily
done. Now we need to get this maximal contact situation. For this we essentially use
all our collection of invariants; they are stable under appropriate blowing up and so we
can assume that they are fixed along the bamboo B. This helps us to identify maximal
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contact surfaces. Let us only remark here that we need in some (quite transversal) cases
to add to our list of invariants some ones obtained directly from a characteristic polygon
that we draw by selecting coordinates very well prepared with respect to the bamboo B;
this characteristic polygon is inspired in [21, 22].

Finally, the m-unstable case is treated by identifying several hierarchized situations
or levels (around ten of them, but not complicated to define); each one is m-stable, hence
we have to change of level infinitely many times. But each time we change, we go to a
lower level. This ends the proof.

6. Simple singularities. The best way to define simple singularities is to establish
formal normal forms for the pre-simple singularities. This also gives a finer description
of the pre-simple singularities. The formal normal forms are directly derived from the
jordanization of commuting formal vector fields and from the formal normal form for
a 1-form in one variable. The main ideas are collected in Martinet’s Bourbaki [31], the
formal normal forms in dimension three for the non-dicritical case are in [9] and in the
general case in [8] (but there is no essential difference between the three-dimensional case
and the general case).

Take a pre-simple singularity P € Sing F adapted to E. Assume without loss of
generality that the dimensional type of F at P is n = dim N. Then we know that E has
either n — 1 or n irreducible components through P. Taking account of the results in the
section about pre-simple singularities, we easily find n — 1 germs of formal vector fields
of the type

0
Xi=x;,— —cij(x1,...,Tp)=—
J ]axj J( 1 ) n)awnv
j=1,...,n—1, where ¢;(0) = 0, that are tangent to the foliation and that commutes

(this is directly given by the integrability condition). Then we can decompose the vector
fields in semisimple and nilpotent parts as

X; = Sj + ./\G
in such a way that [S;,Ss] = 0 and [S;,N;] = 0 for any indices j, s. Moreover there is
a formal coordinate system (z1,...,x,) such that the semisimple parts have a diagonal
expression
0 0
Si=xj— —A\j—.
J J 81:j J 812"

The commuting properties imply now strong conditions over the expression of the nilpo-
tent parts in the coordinates (x1,...,z,) (for instance, if the eigenvalues \; are indepen-

dent over Z, necessarily the nilpotent parts are zero). We can reconstruct a generator
w of the foliation from the n — 1 vector fields above. The result is summarized in the
following proposition.

PROPOSITION 12 (Jordanization of a pre-simple singularity). Let P € Sing F be a
pre-simple singularity adapted to E and put t = 7(F, P). Then there is a formal co-
ordinate system (x1,...,1;) at P such that E C ([[,_, z; = 0) and a generator w of F
is written in one of the following forms:
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A) There are complex numbers \; € C*, i =1,...,t (that will be real ones if we work
over the real numbers) such that

o= (1) [0 2]

Zq
=1

B) There is an integer k > 1, a k-uple (py,...,pr) € (Z4)*, complex numbers \; € C,
=2,...,t with \; € C* fori =k+1,...,t and a one variable non-null formal series

T) zth ¥ (0) =0 such that
k

w= (llf[lxz) [;pids U ...xi’“)g;/\idxii}

C) There is an integer k > 2, a (k — 1)-uple (p2,...,pr) € (Z1)*"! and complex
numbers \; € C, 1 =2,...,t with /\t;éO and \; #0 fori=k+1,...,t such that

dz;
w-( xl){dx —x pl D ar i ]
H 1o Z Z -
Remark 13. The case B is given by the pull back of the 1-form

1 dy i dz;
—— + Ai—
U(y) vy 2 T

i=2 ’

under the morphism

(@1, ) = (Yoo, o) = (o abr ma, . 1y,).

Invoking the normal form of a meromorphic 1-form in one variable, we find a formal

coordinate u such that
1 dy 0+eu’du

U(y)y  u u
and so we can write the case B in the formal normal form

t k t
— . PRI Sl B A }
@ (EI@)[;M x; (5—&-633?1...902’“2 b

3

The above proposition gives us a description of the singular locus Sing F around a
pre-simple singularity. The formal description corresponds by faithful flatness to the con-
vergent one. So the singular locus is composed of non-singular irreducible components
of codimension two. Moreover, the natural stratification induced by the non-adapted
order v(F,D; P) (that is, the minimum of the orders of the coefficients of a holomor-
phic 1-form that generates ) has non-singular strata that are compatible (in the sense
of ojasiewicz [28, 29]) with all the components of the divisor E. Since v(F,0; P) =
7(F,P) — 1, this stratification is also induced by the dimensional type. Actually, the
adherence of the strata corresponding to dimensional type t is a union of non-singular
closed analytic subspaces of codimension exactly ¢ in the ambient space. Let I' be one
stratum corresponding to dimensional type t. We know that I is non-singular and given
two points P,Q € I' the germs of foliation of F in P and @ are isomorphic to a fixed
(n — t)-dimensional transversal section of F in the point P (this generates a kind of
holonomy).
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In the above proposition, the types A, B and C are mutually excluding: the type A
can be viewed as a type B with the invariant & = 0. Moreover, in the cases A or B, the
vector

A= (Aegt, s Ae) € (CF)F

is invariant for the foliation, up to multiplication by a non-null scalar and up to reordering
its entries. This allows us to give the following definition:

DEFINITION 14 (Simple singularities). Let P € Sing F be a pre-simple singularity
adapted to F and put t = 7(F, P). We say that P is a simple singularity adapted to F if
and only if we are either in the case A or B of the preceding proposition and the vector
A is not resonant in the sense that

t
D> @A #0
j=k+1

for any @ : {k +1,...,t} = Z, U {0} such that ® # 0.

The following proposition summarizes the specific properties for the simple singulari-
ties:

PRrROPOSITION 15. Let P € SingF be a simple singularity adapted to E and put
t =7(F,P). Two cases may occur:

1. e(E, P) =t and then the irreducible components of E are the only integral hyper-
surfaces of F at the point P. (Call this a simple corner.)

2. e(E,P) =t—1 and then there is exactly one transversely formal hypersurface H
at P such that EUH has normal crossings and the only integral hypersurfaces of F at P
are H and the irreducible components of E. (Call this a trace simple singularity.)

If Y is a permissible center for F adapted to E with P € Y and m : N' — N s
the blowing up with center Y, then m is non-dicritical and any singular point P’ over P
is a simple singularity. More precisely, if P is a simple corner, we produce only simple
corners by the blowing up and if P is a trace simple singularity, the only trace simple
singularities that are produced under the blowing up are in the strict transform of H.

In the case of simple corners, the singular locus and its stratification in terms of the
dimensional type is given by the natural stratification induced by the divisor E. In the
case of trace simple singularities, we get the same result changing F by E U H.

The next step in the problem of reduction of singularities of a singular foliation of
codimension one is to eliminate the pre-simple singularities that are not simple singula-
rities. This can be done in any dimension [8] and the precise statement is the following
one:

THEOREM 16 (Reduction to simple singularities). Let F be a singular foliation of
codimension one over an ambient space N that is a germ around a compact analytic
subset C C N and let E be a normal crossings divisor of N all whose irreducible compo-
nents are non-dicritical for F. Assume that we have only pre-simple singularities, that is
Sing™(F,E) = 0. Then there is a finite sequence of permissible blowings up

NN 2N, N = N
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such that all the singularities of the transform F' of F are simple singularities of F'
adapted to the divisor E' composed of the non-dicritical components of the total excep-
tional divisor in N'.

The proof of this result is essentially based in the destruction of the resonances. In
a quite easy way we first eliminate the pre-simple singularities of the type C, getting a
persistent situation of types A or B. Let us assume for simplicity that all our singularities
are of type A (the strategy in the general case is very similar). In the two-dimensional
case there is only one strategy for blowing up (to modify the non-simple points) but
in higher dimension it is not evident what is the strategy to adopt. Let us look at the
following example (due to P. Fortuny): take

A=(-2,3/2+14,3/2 —1i,-3).
If we adopt the (a priori reasonable) strategy of blowing up resonant centers of maximal
dimension, we can take the center z; = x5 = x3 = 0 and after blowing up, in one of the
charts we get
A=(1,3/2+14,3/2—1i,-3).
Now, blowing up 1 = x4 = 0 in one of the charts we get the initial situation
A=1(-2,3/2+1,3/2—1,-3).
Thus, we have to be careful with the strategy to adopt. Actually, we can translate the

problem of destruction of resonances to another known problem (toroidal embeddings)
as follows. Given the resonant vector A € C! define the rational vector space

L(\) = {e= (&), € QY Zem =0}.

The fact that A is resonant means that L(A)N(Q4)! # 0. Let V(A) C Qf be the orthogonal
of L(A). Then, for any non-null element a € V(\) N Z* we have a decomposition

a=p—4g
where p,q € Z' — {0}. Consider the ideal generated by the binomials of the type

g

It defines a toric variety whose reduction of singularities gives the elimination of the
resonances. Actually we can prove it directly in a globally coherent way: first we draw
a characteristic polyhedra and second we use on it the global strategy derived from the
Spivakovsky’s solution to the weak Hironaka game [37].

7. Reduction of the singularities of foliations. Like in the two-dimensional case,
we can establish the statement of reduction of the singularities of foliations concerning
divisors in the ambient space that may have dicritical components. Let F be a singular
foliation and D a normal crossings divisor on the ambient space N. Denote by F the
union of the non-dicritical components of D relatively to F and let D, be the union of
the dicritical components.

DEFINITION 17. Take a point P € N, we say that the foliation F and the divisor D
have normal crossings at the point P if and only if the following conditions hold:

1. The point P is either a non-singular point for F or a simple singularity for F
adapted to E.
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2. Let t be the dimensional type of F at the point P. Then there are local coordinates
(z1,...,2n) at P such that F is generated by a 1-form w of the type

W= Za(mi, ey Xy )da;

i=1
and D, C (z441...2, = 0) locally at P.

The complete result of reduction of singularities for a foliation should be the following

STATEMENT 18 (Reduction of singularities of a foliation). Let F be a singular folia-
tion of codimension one over an ambient space N of dimension n that is a germ around
a compact analytic subset C C N. Then there is a finite sequence of permissible blowings
up

NENEN &N =N
such that the transform F' of F in N’ and the total exceptional divisor D' have normal
crossings everywhere.

This result is proved in dimensions two and three [8] and it is still a conjecture for
n > 4. In dimension three, it is derived from the reduction to pre-simple singularities,
after we get simple singularities and finally, we put by means of additional blowings up
the dicritical components of the divisor having normal crossings with the foliation and the
non-dicritical divisor. The last step is surely true and not too difficult in any dimension
and a more general context (modulo the use of one of the known algorithms [2] for the
reduction of singularities of hypersurfaces) that we call the conditionated reduction:

STATEMENT 19 (Conditionated reduction). Let F be a singular foliation of codimen-
sion one over an ambient space N of dimension n that is a germ around a compact ana-
lytic subset C' C N. Consider a normal crossings divisor E on N which is non-dicritical
for F and let S be a hypersurface on N (may be singular, with several irreducible com-
ponents). Assume that all the singularities of F are simple singularities adapted to E.
Then, there is a finite sequence of permissible (in an enlarged sense) blowings up

NN 2N, 8N =N

such that the transforms F' of F and D' of EUS have normal crossings everywhere.

8. Thom’s conjecture on the existence of integral hypersurfaces. One of the
applications that we would like to present here of the known results of reduction of
singularities of the foliations is the proof of the existence of an integral hypersurface for
any germ of non-dicritical holomorphic foliation F over (C™,0).

Before starting with the proof itself, let us look at the non-dicriticalness condition,
that we have studied in [5, 6]. The more precise definition for a non-dicritical foliation is

DEFINITION 20. We say that F is non-dicritical if and only if for any finite sequence
of permissible blowings up

(C"0)=N{E Ny &2 N, 8N = N

all the irreducible components of the total exceptional divisor E’ are non-dicritical com-
ponents for the transform F’ of F.
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In dimension two, to be dicritical is equivalent to have infinitely many integral curves.
This is directly done by the reduction of the singularities. The dicriticalness in dimension
two can be tested with the canonical reduction of the singularities (actually, assuming
that the reduction of singularities exists in dimension n, we think that any reduction of the
singularities is enough to test the non-dicriticalness condition). Now, appearing a dicritical
component in the two-dimensional reduction of the singularities gives infinitely many
integral curves, by projecting the integral curve passing though each non-singular point
(not a corner) of this dicritical component. Conversely, if we have infinitely many integral
curves, there is necessarily one dicritical component in the reduction of the singularities.
More precisely, for a non-dicritical foliation in dimension two we have a bijection

formal integral singular trace points
curves of F after reduction of singularities

and the correspondence gives convergent integral curves if and only if the corresponding
trace simple singularity has convergent integral curve transverse to the divisor.

A particular corollary of the above discussion is that in dimension two and the dicrit-
ical case we always have at least one convergent integral curve (actually infinitely many
of them). This is not the situation in higher dimension. The reason is that a germ of
hypersurface in a point obtained after some blowings up does not necessarily project in
a hypersurface in the initial ambient space, we need to have a coherent global object.
Look at the following example of Darboux studied by Jouanolou [25]. Consider the germ
of foliation on (C3,0) given by the integrable homogeneous 1-form

w=(z™y — 2" dx + (y"z — 2™ dy + (2" —y™ T H)dz

(m > 2). It is dicritical (actually radially dicritical). After one blowing up of the origin, the
exceptional divisor is a projective plane P? transverse to the transform of our foliation.
In fact the foliation is a foliation by cones and the leaves over the projective plane are
the projectivization of that cones. It can be proved [25] that this foliation over P? has
no integral algebraic curve. Hence the initial foliation has no integral hypersurface, since
otherwise it is a cone whose projectivization is a closed integral algebraic curve of the
foliation induced over P2.

Thus, it is reasonable to consider Thom’s question only in the non-dicritical case.
Assume in the sequel that the foliation F is non-dicritical. We will give an outline of the
proof of the following theorem, done for dimension two in [4], for dimension three in [9]
and for dimension bigger than three—in [11].

THEOREM 21 (Existence of convergent integral hypersurface). Let F be a non-dicri-
tical foliation over (C™,0). Then there is at least one germ of convergent integral hyper-
surface for F.

In dimension two, the first proof of the existence of a convergent integral curve for F is
due to Camacho and Sad [4]. It uses first the reduction of the singularities of F and second
an invariant of global-local nature (of residue type) that allows to find a contradiction
with the fact that there is no convergent integral curve. This proof is existential and
involves a complicated combinatorial argument. Other direct proofs that construct step
by step the integral curve are in [13] or in [12] where the Newton-Puiseux method is
extended to the case of differential equations.

In dimension three, the existence of convergent integral hypersurface is a consequence
of the existence of reduction of singularities and the description of the simple singularities
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that we obtain [9]. Denote by
7: N — N =(C30)

a non-dicritical reduction of the singularities of the foliation F. Let F’ be the transform
of F and E’ the total exceptional divisor. Thus E’ is a normal crossings divisor on N, all
its components are non-dicritical for 7' and any singular point P € Sing F’ is a simple
singularity for F adapted to E’. Recall that we have two types of singularities:

Corner singularities. The only integral hypersurfaces through a corner singularity are
the irreducible components of the divisor E’. The singularities near a corner singularity
are also corner singularities.

Trace singularities. There is exactly one integral hypersurface H through a trace
singularity different from the irreducible components of the divisor. Moreover this hyper-
surface is transversely formal (and not merely formal) and the trace singularities near a
trace singularity correspond exactly to E' N H.

Thus, the trace singularities form a closed analytic subset of N’. Denote it by
Tr(F', E’). Each irreducible component of it is non-singular of codimension two and
Tr(F’, E’) has normal crossings with E’. Denote by N’ the formal analytic space obtained
from N’ along the exceptional divisor E’. The nature of that formal integral hypersur-
faces H allows to glue them over each connected component of the set Tr(F’, E'). We get
so a closed hypersurface H of N’ that is an integral hypersurface of the foliation F7 in-
duced by F in N'. Moreover, the hypersurfaces obtained in this way are the only integral
hypersurfaces of F’ different from the irreducible components of E’. Thus, considering
the morphism

#:N' = N = (C3,0)
induced by the proper morphism 7, we get the following bijections:

Formal integral Integral I}ypersprfaces Connected components
hypersurfaces of F of 7/ in N’ of Tr(F', E')

Moreover, in this correspondence we get a convergent integral hypersurface of F if and
only if the corresponding connected component T' of Tr(F’, E’) supports a convergent
integral hypersurface H (equivalently, the corresponding H comes from a convergent
hypersurface in N'). This property can be tested in any point of the connected com-
ponent T the easiest one will be a generic point of dimensional type two. Thus we are
allowed to prove that there is at least one of such points. This will be done by using the
corresponding result in dimension two. By a classical transversality result [32] we can
consider a non-singular two-dimensional subspace

A C (C3,0)

such that if w generates F then the restriction @ of w to A has only isolated singularity. By
the result in dimension two, there is at least one convergent integral curve I for @. Let T
be the strict transform of I" by the morphism 7 (note that all the centers in 7 are contained
in the singular locus of the foliation and thus they do not contain I'). There is a point
P’ € I N E'. This point is necessarily a trace singularity that supports a convergent H.
To see this, let us assume that up to additional blowings up of points, the strict transform
I’ is non-singular at P’ and has normal crossings with E’, in particular there is only an
irreducible component of E’ through P’. Now H is locally an analytic cylinder over I”
directed by the singular locus Sing F, that is non-singular and of codimension two. Hence
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H is convergent and thus the corresponding integral hypersurface of F is so. This ends
the proof of the result in the three-dimensional case.

Now let us give the guides to the proof in higher dimensions done in [11]. It uses
the result in dimension three, the generic equireduction and a cohomological triviality
that works for the passage 3 to n, but not 2 to n. Let us denote by B C (C™,0) the
set of bad points of F, that is we have generic equireduction over any singular point not
in B. The set B is a closed analytic set of codimension at least three. Invoking the above
transversality theorem, we can consider a three-dimensional non-singular subspace

M = (C3,0) c (C",0)

such that the restriction @ to M of a generator w has singular locus of codimension at
least two and moreover M N B is an isolated point. Denote by F the restriction to M
of F. We know that F is non-dicritical and thus, by application of the result in dimension
three, there is one convergent integral hypersurface H C M of F. Consider a small open
annulus C C M = (C3,0) and the open set

W =Cx (C"30) C (C",0).

Locally at each point P of HNW the integral hypersurface H of F extends in a unique way
to a germ at P of integral hypersurface Hp for F. This is evident if the point P is a non-
singular point of F. If P € Sing F we use the fact that we have a canonical equireduction;
the given H contains a germ of curve at P not in the singular locus that points exactly one
of the germs of integral hypersurfaces that we get by generic equireduction. Recall that
the generic equireduction in the non-dicritical case is like a two-dimensional reduction
with parameters given by the singular locus. Glueing together the germs Hp we obtain a
closed hypersurface H that is an integral hypersurface of the restriction of F to W. Note
also that H N W C H. Now applying classical results of cohomological triviality [36] we
know that H extends to a closed hypersurface H of (C", 0). Obviously H is an integral
hypersurface of F and H C H, in particular the origin is in H and it is a well defined
germ. This ends the proof.

9. The frontier of a pfaffian hypersurface. In the real analytic case we can use
the above results of reduction of singularities to give a description of the frontier of a
pfaffian hypersurface [10]. One situation is to be excluded: the spiraling situation. The idea
is to show that outside this spiraling phenomena, the frontier of a pfaffian hypersurface
can be constructed as a finite union of proper projections of pfaffian hypersurfaces, in
the same spirit as the theory of subanalytic sets [23, 24, 28, 29].

The elementary blocks that we use are the so called pfaffian hypersufaces with Rolle
property (see [26], for another approach to this objects). A pfaffian hypersurface is a
4-uple

H=(V,M,N;F)
where N is a real analytic ambient space and F a singular foliation of codimension one
over N (we always work with objects that admit a good complexification). The subset
M C N is an open semianalytic subset of N such that N NSing F = @. Finally, the set V,
that we call the support of the pfaffian hypersurface, is a leaf of the non-singular foliation

induced by F on M. In this definition we admit the degenerate case F = 0; then the
support should be a connected component of the semianalytic open set M.
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We say that ‘H has the Rolle property if and only if any analytic parametrized curve
~v in M transverse to F cuts the leaf V' at most once. The spiraling situation is an
example of non-Rolle property (it is exactly the contrary under certain assumptions
[34]). Actually, when the semianalytic set M is simply connected we always have the
Rolle property [34]. Thus, making a locally finite decomposition of M as union of simply
connected semianalytic open sets, we can express any pfaffian hypersurface in a reasonable
way as a, possible infinite, union of pfaffian rollian hypersurfaces.

The objective is to describe the frontier of a given rollian pfaffian hypersurface. In [10]
we prove the following theorem.

THEOREM 22. Let F be a singular foliation over N. Given a rollian pfaffian hyper-
surface H = (V,M,N;F), the frontier OV is an F-set. More generally, the topological
closure W of any F-set W is also an F-set.

Of course, the meaning of the above result is contained in the definition of F-set. By
definition, an F-set is a locally finite union of elementary F-sets. Thus, let us define what
is an elementary F-set.

An admissible morphism A = (6, = {a;}%_,) is given by a finite sequence of mor-
phisms:

N=N &N EN,. &N =N
such that each «; is either a local blowing up or a closed immersion. Then we put
d=apo...oa;: N — N.

Denote by F; the transform of F;_; by «;, where Fy = F. We say that A*F = Fj
is the transform of F by the admissible morphism A. It is very important to remark
that A*F is not necessarily the transform §~'F of F by 6. The fact that we construct
the transforms in an iterative way is closely related with the dicriticalness property. As
we shall see later, it explains also geometrically some of the transcendence properties of
the frontier of the pfaffian hypersurfaces and more generally of the F-sets. Look at the
following example. Take the radial foliation in dimension two given in R? by

w=ydr —rdy.

Let oy : N1 — R? be the blowing up of the origin and let ay : E = Ny — N; be the
closed immersion of the exceptional divisor E in Ni. Put § = aq o as. Then § ' F = 0
but A*F # 0, since the first blowing up is dicritical.

DEFINITION 23. A subset W C N is an elementary F-set if and only if W is of the
form W = §(V) for an admissible morphism A = (6, = {a;}¥_,) and a rollian pfaffian
hypersurface

H=(V,M,Ny; A" F)
such that § : V — N is a proper mapping.

It is obvious from the definition that a rollian pfaffian hypersurface on N is an F-set.
A basic argument, even in order to derive very elementary properties of the F-sets is
the finiteness property that is proved in [33]:

The intersection of a locally finite number of pfaffian rollian hypersurfaces and
semianalytic sets is also locally finite.
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The proof of this result is based on the existence of stratifications simultaneously
compatible with the foliations and the semianalytic sets. This is an argument that we
will also use later.

By using the finiteness property and results of rectilinearization of Hironaka as well
as stratifications in the spirit of ojasiewicz, we get a list of elementary properties for the
F-sets:

1. The class of F-sets is closed for locally finite union.

2. From the connectedness viewpoint, each F-set W is arc connected, has a finite
(locally finite) number of connected components and each connected component of W is
also an F-set.

3. The F-sets are locally defined in the sense that a subset of N is an F-set iff it is
so in restriction to a basis of open sets.

4. The intersection of an F-set and a subanalytic subset of N is also an F-set. But it
is not clear that the intersection of two F- sets will be an F-set (actually we think that
this is not true).

5. An F-set is a finite union of F-sets that are non-singular subvarieties of the ambient
space N. Unfortunately we do not get a complete stratification.

The structure of the proof of the theorem above is as follows. By a Whitney’s type
wing lemma [27] we reduce ourselves to the exterior of an arbitrary subset of codimension
three. Outside this bad set, we can use generic equireduction that gives to us the result.
Let us detail a little bit more the argument.

First, we can work by induction over the ambient space. Second, the local descrip-
tion of the F-sets and the rectilinearization of Hironaka [23] reduce the problem to the
study of a pfaffian hypersurface V on a quadrant M (the frontier of M will be a normal
crossings divisor). Up to invoke the induction over the dimension and the wing lemma,
we can assume that we have generic equireduction over the singular locus. Now, we do
the equireduction. Along this blowing up procedure our total transform divisor (the new
frontier of M) has dicritical and non-dicritical components. In the case of dicritical com-
ponents, we get a piece of the frontier that corresponds to the same problem in lower
dimension (the new ambient space will be the divisor). Along the non-dicritical compo-
nents we get a quite trivial (subanalytic) part of the frontier looking how a leaf of a
simple singularity accumulates over the divisor. Actually, the presence of the dicritical
components corresponds to a certain transcendence of the frontier.

Let us end this paragraph with an example [10] in dimension 4 (the first non-trivial
one) that illustrates the behavior cited above. Consider the foliation F on R* generated
by

w =2zt (ydx — xdy) + y>(tdz — 2° dt))
and let V' be any leaf over the semianalytic open set M = {y > 0,z > 0,¢t > 0}. The
analytic function f defined on M by

f(x,y,z,t) = (x/y)Q - 1/Z—L0gt

is a first integral of the foliation over M. Thus assume V' = (f = 0). Let us study the
closure V of V along the 2-plane x = y = 0 (the most interesting piece). Doing the
blowing up with this center, in a chart = vy the transformed foliation is given by

W = 2t2?dz + tdz — Z2dt
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the exceptional divisor y = 0 is dicritical and we have a the first integral given in the
inverse image of M by

f'=v*—1/z—Logt
(tangent to the fibers of the projection (v, y, z,t) — (v, z,t) over the exceptional divisor).
Thus the closure over the exceptional divisor corresponds to the closure of

v —1/z—Logt=0, z>0,t > 0.
Projecting over the two plane x = y = 0 we get
{t > exp(—1/2),z >0} U{t >0,z =0}

which is not subanalytic.

References

[1] J. M. Aroca, H. Hironaka, J. L. Vicente, The Theory of the Mazimal Contact, Memorias
de Matematica del Instituto “Jorge Juan” 29, Madrid, 1975.

[2] J. M. Aroca, H. Hironaka, J. L. Vicente, Desingularization Theorems, Memorias de
Matematica del Instituto “Jorge Juan” 30, Madrid, 1975.

[3] C. A. Briot, J. C. Bouquet, Propriétés des fonctions définies par les équations différen-
tielles, Journal de 1’Ecole Polytechnique 36 (1856), 133-198.

[4] C.Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields,
Ann. of Math. (2) 115 (1982), 579-595.

[5] F. Cano, Dicriticalness of a singular foliation, in: Holomorphic Dynamics (México 1986),
X. Goémez-Mont, J. Seade, A. Verjovski (eds.), Lecture Notes in Math. 1345, Springer,
Berlin, 1988, 73-94.

[6] F. Cano, Foliaciones singulares dicriticas, Mem. Real Acad. Cienc. Exact. Fis. Natur.
Madrid 24 (1989).

[7] F. Cano, Reduction of the singularities of non-dicritical singular foliations. Dimension
three, Amer. J. Math. 115 (1993), 509-588.

[8] F. Cano, Reduction of singularities of codimension one foliations in dimension three, in
preparation, Univ. Valladolid.

[9] F. Cano, D. Cerveau, Desingularization of non-dicritical holomorphic foliations and ex-
istence of separatrices, Acta Math. 169 (1992), 1-103.

[10] F. Cano, J. M. Lion, R. Moussu, Frontiére d’une hypersurface pfaffienne, Ann. Sci. Ecole
Norm. Sup. (4) 28 (1995), 591-646.

[11] F. Cano, J. F. Mattei, Hypersurfaces intégrales des feuilletages holomorphes, Ann. Inst.
Fourier (Grenoble) 42 (1992), 49-72.

[12] J. Cano, An extension of the Newton-Puiseuz polygon construction to give solutions of
pfaffian forms, Ann. Inst. Fourier (Grenoble) 43 (1993), 125-142.

[13] J. Cano, Construction of invariant curves for holomorphic vector fields, Proc. Amer. Math.
Soc. 125 (1997), 2649-2650.

[14] V. Cossart, Forme normale pour une fonction sur une variété de dimension trois en ca-
ractéristique positive, These d’Etat, Orsay, 1988.

[15] J. Giraud, Forme normale d’une fonction sur une surface de caractéristique positive, Bull.
Soc. Math. France 111 (1983), 109-124.

[16] J. Giraud, Condition de Jung pour les revétements radiciels de hauteur un, in: Algebraic
Geometry (Tokyo/Kyoto 1982), M. Raynaud and T. Shioda (eds.), Lecture Notes in Math.
1016, Springer, Berlin, 1983, 313-333.



(17]
(18]

(19]
(20]

(21]

(32]
(33]
(34]
(35]
(36]
37]

(38]

SINGULARITIES OF FOLIATIONS 71

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characterictic
zero, Ann. of Math. (2) 79 (1964), 109-203, 205-326.

H. Hironaka, Introduction to the Theory of Infinitely Near Singular Points, Memorias de
Matematica del Instituto “Jorge Juan” 28, Madrid, 1975.

H. Hironaka, La voite étoilée, Astérisque 7-8 (1973), 13—20.

H. Hironaka, Idealistic exponents of singularity, in: Algebraic Geometry, John Hopkins
Univ. Press, Baltimore, 1977, 52-125.

H. Hironaka, Characteristic polyhedra of singularities, J. Math. Kyoto Univ. 7 (1967),
251-293.

H. Hironaka, Desingularization of excellent surfaces, appendix in: V. Cossart,
J. Giraud, U. Orbanz, Resolution of Surfaces, Lecture Notes in Math. 1101, Springer,
Berlin, 1984.

H. Hironaka, Introduction to Real-analytic Sets and Real-analytic Maps, Istituto Mate-
matico L. Tonelli, Pisa, 1973.

H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative
Algebra, Kinokuniya, Tokyo, 1973, 453—-493.

J. P. Jouanolou, Equations de Pfaff algébriques, Lecture Notes in Math. 708, Springer,
Berlin, 1979.

A. G. Khovanskii, Real analytic varieties with the finiteness property and complex abelian
integrals, Functional Anal. Appl. 18 (1984), 119-127.

J. M. Lion, Un lemme d’aile pour les ensembles pfaffiens, C. R. Acad. Sci. Paris Sér. I
Math. 316 (1993), 187-189.

S. Lojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Etudes Scientifiques, Bures-
sur-Yvette, 1965.

S. Lojasiewicz, M. A. Zurro, Una introduccion a la geometria semi y sub analitica,
Secretariado de Publicaciones, Universidad de Valladolid D.L., ed. Serie Ciencias 6, 1993.
B. Malgrange, Frobenius avec singularités. I. Codimension un, Inst. Hautes Etudes Sci.
Publ. Math. 46 (1976), 162-173.

J. Martinet, Normalisation des champs de vecteurs holomorphes (d’aprés A.-D. Bryuno),
in: Séminaire Bourbaki, vol. 1980/81, Lecture Notes in Math. 901, Springer, Berlin, 1982,
exp. 564, 55-70.

J. F. Mattei, R. Moussu, Holonomie et intégrales premiéres, Ann. Sci. Ecole Norm. Sup.
(4) 13 (1980), 469-523.

R. Moussu, C. Roche, Théorie de Hovanskii et probléme de Dulac, Invent. Math. 105
(1991), 431-441.

R. Moussu, C. Roche, Théorémes de finitude pour les variétés pfaffiennes, Ann. Inst.
Fourier (Grenoble) 42 (1992), 393-420.

A. Seidenberg, Reduction of the singularities of the differential equation Ady = Bdx,
Amer. J. Math. 90 (1968), 248-2609.

Y. T. Siu, Techniques of Extension of Analytic Objects, Lecture Notes in Pure and Appl.
Math. 8, Dekker, New York, 1974.

M. Spivakovsky, A solution to Hironaka’s polyhedra game, in: Arithmetic and Geometry
vol. IT, M. Artin and J. Tate (eds.), Progr. Math. 36, Birkh&auser, Boston, 1983, 419-432.
M. Spivakovsky, Resolution of singularities, preprint, Grenoble-Valladolid-Toronto, 1996.



