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Introduction. In the present paper we study examples of double coverings of the
projective space P3 branched over an octic surface. A double covering of P3 branched
over a smooth octic is a Calabi-Yau threefold. If the octic is singular then so is the
double covering and we study its resolution of singularities. In this paper we restrict our
considerations to the case of octics with only non-isolated singularities of a special type,
namely looking locally like plane arrangements.

Our research was inspired by a paper of Persson [5] where K3 surfaces arising as
double covers of P2 branched over curves of degree six are studied. In this note we also
adopt some methods introduced in [3] by Hunt in studying Fermat covers of P3 branched
over plane arrangements.

The main results of this note are Theorem 2.1 and Theorem 3.5 which can be formu-
lated together as follows

Theorem. Let S ⊂ P3 be an octic arrangement with no q-fold curve for q ≥ 4 and no
p-fold point for p ≥ 6. Then the double covering of P3 branched along S has a non-singular
model Y which is a Calabi-Yau threefold.

Moreover if S contains no triple elliptic curves and l3 triple lines then the Euler
characteristic e(Y ) of Y is given as follows

e(Y ) = 8−
∑
i

(d3i − 4d2i + 6di) + 2
∑
i6=j

(4− di − dj)didj

−
∑

i 6=j 6=k 6=i

didjdk + 4p04 + 3p14 + 16p05 + 18p15 + 20p25 + l3,

where di denotes the degree of the arrangement surfaces and pji the number of i-fold points
contained in j triple curves.
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For the arrangements we allow exactly six types of singularities. For each case we
describe precisely the resolution of singularities in the double cover. Then we study the
effect on the Euler number of every blowing-up. This leads to the formula on the Euler
number of Y as stated in the above Theorem. Using this formula we obtain a table of
examples of Calabi-Yau threefolds with 63 different Euler numbers. In the view of the
mirror symmetry it is important to have examples of Calabi-Yau threefolds with as many
Euler numbers as possible (it is conjectured that there are only finitely many possible
numbers to appear as the Euler number of a Calabi-Yau threefold).

1. Admissible blowing-ups. Let D be a reduced divisor on a smooth threefold X.
We assume that D is even as an element of the Picard group PicX, this means that
there exists B ∈ PicX such that D ∼= 2B. In this case there exists a double covering
π : Y → X branched along D. If the divisor is smooth then Y is also smooth and we
have

hi(OY ) = hi(OX) + hi(OX(−B)),
KY
∼= π∗(KX +B),

e(Y ) = 2e(X)− e(D).

If D is singular then the type of its singularities determines singularities of Y . Hence
it is enough to consider an embedded resolution D′ of D to obtain a resolution for Y .
The problem however is to ensure that the resulting divisor is even.

Persson, studying double sextics, introduced in [5] a notion of inessential singularities,
i.e. such which do not affect the Euler characteristic and the canonical divisor of the
double cover. In a threedimensional case an analogous characterization would be much
more complicated. Moreover in our paper we are interested in Calabi-Yau manifolds with
many different Euler numbers. This leads to the following description of blowing-ups
which do not affect the first Betti number and the canonical divisor of the double cover.

Let X be a smooth threefold and D ⊂ X an even, reduced divisor. Let Z ⊂ D be a
smooth irreducible proper subvariety and let σ : X̃ → X be the blowing-up of X in Z
with an exceptional divisor E. By multZ/D we denote the generic multiplicity of D at Z

and by D̃ the proper transform of D. Then the divisor D∗ ⊂ X̃ defined as

D∗ :=

{
D̃ if multZ/D is even,

D̃ + E if multZ/D is odd

is the only reduced and even divisor satisfying D̃ ≤ D∗ ≤ σ∗D.

Definition 1.1. Let Z ⊂ D ⊂ X be as above. We call the blowing-up σ : X̃ → X
admissible iff

K
X̃

+
1

2
D∗ ∼= σ∗(KX +

1

2
D).

The following proposition gives a characterization of admissible blowing-ups.

Proposition 1.2. On a smooth threefold X there are exactly four types of admissible
blow-ups:

C) blowing-up of a curve Z with multZ/D equal to 2 or 3,
P) blowing-up of a point Z with multZ/D equal to 4 or 5.
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P r o o f. Let r denote the codimension of Z in X and let m = multZ/D. Furthermore
let ε be equal 0 if m is even and 1 otherwise. Then we have K

X̃
∼= σ∗KX + (r− 1)E and

D∗ = σ∗D − (m− ε)E. Therefore

K
X̃

+
1

2
D∗ ∼= σ∗(KX +D) +

(
r − 1− m− ε

2

)
E.

It follows that σ is admissible if and only if m = 2(r − 1) + ε. As the only solutions for
r = 2 we get m = 2 or m = 3 and for r = 3 respectively m = 4 or m = 5.

2. Resolution of singularities of the branch locus. Before we start to resolve
singularities we need some definitions. We consider octic surfaces in S ⊂ P3 which locally
look like an arrangement of planes (see [3, p. 109]). More precisely, let S be the sum of
smooth irreducible surfaces S1, . . . , Sr contained in a smooth threefold U . We suppose
that

1. For any i 6= j the surfaces Si and Sj intersect transversally along a smooth irre-
ducible curve Ci,j or they are disjoint.

2. The curves Ci,j , Ck,l either coincide or intersect transversally.

We call a surface satisfying the above conditions an arrangement. If U = P3 and
surfaces S1, . . . , Sr are of degree d1, . . . , dr respectively, with d1 + . . . + dr = 8, then we
call S an octic arrangement.

We say that an irreducible curve C ⊂ S is a q-fold curve if exactly q of surfaces
S1, . . . , Sr pass through it. A point P ∈ S is called a p-fold point if exactly p of the
surfaces S1, . . . , Sr pass through it.

Theorem 2.1. Let S ⊂ P3 be an octic arrangement with no q-fold curve for q ≥ 4
and no p-fold point for p ≥ 6. Then there exists a sequence σ = σ1 ◦ . . . ◦ σs : P∗3 → P3

of admissible blowing-ups and a smooth and even divisor S∗ ⊂ P∗3 such that σ∗(S
∗) = S

and the double covering Y of P∗3 branched over S∗ is a smooth Calabi-Yau threefold.

P r o o f. The proof consists of careful resolving the singularities of S.

a) Fivefold points. First we blow up σ1 : P3
(1) → P3 all points P ∈ P3 which are 5-fold

points of S. Then in the exceptional divisor P2 over each of these points we get one of the
following configurations of lines—exceptional divisors for surfaces passing through P .
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The obtained cases depend on the number of threefold curves passing through P . Now
we replace S by its strict transform plus the exceptional divisor, and we call this new
branch locus S1. If there were no 5-fold points on S we have S1 = S. We observe that S1

contains no 5-fold points.
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b) Triple curves. If there are triple curves on S1 we
blow them up σ2 : P3

(2) → P3
(1). Let C ⊂ S1 be a triple

curve. Then in the exceptional divisor C × P1 we get the
following configuration where C1, C2, C3 are isomorphic to
C and L1, . . . , Lt are lines, with t equal to the number of
4-fold points on C.

C3

C2

C1

L1 L2 . . . Lt

p p pp p pp p p

C × P1Case b
As a new branch locus for the double cover we take S2 equal to the strict transform

of S1 plus the exceptional divisors. There are no 5-fold points and no triple curves on S2.

c) Fourfold points. Now we blow up σ3 : P3
(3) → P3

(2)

all the 4-fold points of S2. In the exceptional divisor over
a 4-fold point P ∈ S2 we get the following configuration.
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Case c

Now as S3 we take the strict transform of S2. On S3 there are no more singularities
of types a), b), c).

d) Double curves. In the last step we blow up σ4 : P∗3 =
P3
(4) → P3

(3) the double curves on S3 and take S∗ = S4 as
the strict transform of S3. Since S was an octic arrange-
ment we get S∗ smooth and even as an element of PicP∗3.

C2

C1

L1 L2 . . . Lt

ruled surface over C

p p p
p p p

Case d
Let σ = σ4 ◦ . . . ◦ σ1 and let π : Y → P∗3 be the double covering branched over S∗.

Using the adjunction formula and the Serre duality we get

KY
∼= π∗(KP∗

3
+

1

2
S∗) ∼= π∗(σ∗(KP3 +

1

2
S)) = OY

and

h1(OY ) = h1(OP∗
3
) + h1(OP∗

3
(−1

2
S∗))

= h1(OP∗
3
) + h2(OP∗

3
(KP∗

3
+

1

2
S∗)) = h1(OP3) + h2(OP3) = 0.

R e m a r k 2.2. Observe that the first three steps of the above resolution are uniquely
determined whereas the last step is defined only upto the order in which we blow up
the double curves. Change in the order in which the double curves are blown up may
lead to a flop of the resulting threefold, see e.g. [4]. However this does not affect the
Euler number in which we are interested. Hence we do not distinguish between birational
models differing by a flop.

3. Euler characteristic of double octics. In this section we compute the Euler
characteristic of Calabi-Yau threefolds obtained from octic arrangements as in Theo-
rem 2.1.

For an arrangement S we introduce the following notation:
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e∗(S) is the sum of Euler numbers of all components of S,

Ep(S) is the sum of Euler numbers of p-fold curves on S,

pj(S) is the number of isolated j-fold points on S,

pkj (S) is the number of isolated j-fold points lying on exactly k triple curves.

Now we compute how the above data changes under blowing-ups described in the
proof of Theorem 2.1.

Proposition 3.1. Let S ⊂ U be an arrangement in a threefold U . Let σ : V → U be
a blowing-up of the type a), b), c) or d) with the center Z and the exceptional divisor E.
As before S∗ = σ∗S + εE, with ε = 0 or 1 depending on the case a–d). In this situation
we have

2e(U)− e∗(S) + 2E2(S)− p3(S) + 6E3(S) + 12p25(S) + 9p15(S) + 6p05(S)

= 2e(V )− e∗(S∗) + 2E2(S∗)− p3(S∗) + 6E3(S∗) + 12p25(S∗) + 9p15(S∗) + 6p05(S∗).

P r o o f. The following table describes how the blowing-up affects the Euler numbers
of the threefold and the arrangement. The next table shows changes of the combinatorial
data. If Z is a q-fold line then t denotes the number of (q + 1)-fold points on Z.

type e(V )− e(U) e∗(S∗)− e∗(S) E2(S∗)− E2(S) E3(S∗)− E3(S)

a-1 2 8 10 0

a-2 2 8 10 0

a-3 2 8 10 0

b e(Z) 2e(Z) + t 3e(Z) + 2t −e(Z)

c 2 4 0 0

d e(Z) t −e(Z) 0

type p3(S∗)− p3(S) p05(S∗)− p05(S) p15(S∗)− p15(S) p25(S∗)− p25(S)

a-1 10 −1 0 0

a-2 7 0 −1 0

a-3 4 0 0 −1

b 3t 0 0 0

c 0 0 0 0

d −t 0 0 0

It is simple to check the entries of the above tables and then case by case to verify
that the term given in the proposition remains invariant.

As a corollary from the above proposition we obtain the following

Proposition 3.2. In the setup of Theorem 2.1 we have

e(Y ) = 8− e∗(S) + 2E2(S)− p03(S) + 6E3(S) + 12p25(S) + 9p15(S) + 6p05(S).

Now we give some formula to compute the invariants used in the above proposition.
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Lemma 3.3. For an octic arrangement S in P3 we have

e∗(S) =
∑

d3i − 4d2i + 6di,

and 2E2(S) + 6E3(S) = 2−
∑
i 6=j

(4− di − dj)didj .

P r o o f. From the adjunction formula we have

e(X) = d3 − 4d2 + 6d

for a smooth surface X ⊂ P3 of degree d. Similarly if C ⊂ P3 is a smooth complete
intersection of surfaces of degree d1, d2 we have

e(C) = (4− d1 − d2)d1d2.

In [3] a formula for the number of singular points of an arrangement of planes is
given. This formula can be generalized to the case of an arbitrary octic arrangement. In
the simplest case if there are no triple curves we have∑

q≥3

(
q

3

)
pq =

∑
i 6=j 6=k 6=i

didjdk.

Situation becomes more complicated if there are also triple curves in the arrangement.
Since deg(S) = 8 there are only two possibilities:

• either there is one triple elliptic curve and no more triple curves
• or there are only triple lines.

We can easily classify arrangements with a triple elliptic curve

• d1 = d2 = d3 = d4 = 2, p3 = 8, p5 = 0, e = −16;
• d1 = d2 = d3 = 2, d4 = d5 = 1, p3 = 6, p5 = 0, e = 12;
• d1 = d2 = d3 = 2, d4 = d5 = 1, p3 = 3, p05 = p25 = 0, p15 = 1, e = 24;
• d1 = d2 = d3 = 2, d4 = d5 = 1, p3 = 0, p05 = p25 = 0, e = 36;

Lemma 3.4. For an arrangement with l3 triple lines (l3 = 1
2E3) and no triple elliptic

curves we get the following formulas:

p3 + 4p4 + 10p5 − (p14 + p15 + 2p25 − l3) =
∑

i 6=j 6=k 6=i

didjdk,

5l3 = p14 + 2p15 + 4p25.

P r o o f. The number on the right-hand side of the first equation is just the sum of
intersection numbers of all possible triples of arrangement surfaces, i.e. the number of
triple points in case all intersections are transversal and reduced. On the left-hand side
we take account of the multiple points and multiple lines. For example, if there is a
triple line in the picture then it is an intersection of three planes (cf. condition 1 for the
arrangement) and corresponds to one “lost” point. A 4-fold point corresponds to 4 “lost”
points etc.

The second formula follows from the Bézout theorem applied to all triple lines in
the arrangement. Such a line lies on three planes and intersects the remaining quintic
properly.

From Proposition 3.2, Lemma 3.3 and Lemma 3.4 we get the main result of this paper.
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Theorem 3.5. If S is an octic arrangement with no triple elliptic curve then

e(Y ) = 8−
∑
i

(d3i − 4d2i + 6di) + 2
∑
i6=j

(4− di − dj)didj

−
∑

i 6=j 6=k 6=i

didjdk + 4p04 + 3p14 + 16p05 + 18p15 + 20p25 + l3.

4. Examples. In this section we apply the preceding results to various examples
of octic arrangements and for the double coverings we get 63 distinct Euler numbers.
We collect the data describing an arrangement and the corresponding Euler number.
Some Euler numbers arise from more than one arrangement, the table contains only one
example in order to keep it reasonable short.

(d1, . . . , dr) p4
0 p4

1 p5
0 p5

1 p5
2 l3 e(Y)

8 −296
1, 7 −240
2, 6 −200
1, 1, 6 −180
3, 5 −176
4, 4 −168
1, 2, 5 −140
1, 1, 1, 5 −120

1 −116
2, 2, 4 −104
2, 3, 3 −92
1, 1, 2, 4 −84

1 −80
2 −76

1, 1, 3, 3 −72
1 −68

1, 1, 1, 1, 4 −64
1 −60

1, 2, 2, 3 −56
1 −52

1, 1, 1, 1, 4 1 −48
1, 2, 2, 3 3 −44
2, 2, 2, 2 −40
1, 1, 1, 2, 3 −36

1 −32
2 −28
3 −24

1, 1, 2, 2, 2 −20
1, 1, 1, 1, 1, 3 −16

1 −12
2 −8
3 −4
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(d1, . . . , dr) p4
0 p4

1 p5
0 p5

1 p5
2 l3 e(Y)

1, 1, 1, 1, 2, 2 0
1 4
2 8
3 12

1 16
1, 1, 1, 1, 1, 1, 2 20

1 24
2 28
3 32

1 36
1, 1, 1, 1, 1, 1, 1, 1 40

1 44
2 48
3 52
4 56
5 60
6 64
7 68
8 72
9 76

1 2 1 80
8 1 2 84

12 88
4 1 1 2 92
6 2 2 96
7 2 3 104
9 1 1 3 108
3 3 3 112

1 3 3 3 116
2 3 3 3 120

4 4 4 136

Most of arrangements from the above table are easy to construct. We conclude this
paper by giving hints as to construct those which, at least to the authors, seem less
obvious.

e = −44

We take two general quadrics and a plane. They have four common points. Now,
we add a cubic passing through three of these points. The Bertini theorem implies that
the transversality conditions are satisfied away of the fourth point. But there they are
obviously fulfilled.

e = −24

We take two general planes and a cubic. They have three common points. Then we
take a general quadric through two of these points and a plane through the third one.
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e = 52, 56, 60, 64, 68, 72, 76
We take six planes as the faces of the cube. Then we let other two planes pass through

0, 1, 2, 3, 4, 5, 6 vertices, respectively.

e = 88
Here we consider faces of the octahedron. They have four 4-fold points in the affine

part and eight more at the infinity.

e = 104
We take four planes P1, P2, P3, P4 in the general position. Let P5 be a general plane

through the line P1 ∩ P2 and similarly P6, P7 general planes through the lines P2 ∩ P3

and P3 ∩ P4. The eighth plane can be taken generally.

e = 112, 116, 120
We consider two tetrahedra glued by a face and take their seven faces. The two vertices

not lying on the common face are triple points. Then we add a plane through none, one
or two of them.

e = 136
We take four planes P1, P2, P3, P4 in the general position and add a general plane

through each of the lines P1 ∩ P2, P1 ∩ P3, P2 ∩ P4, P3 ∩ P4.

Finally, we remark that many more examples of Euler numbers can be obtained
allowing additionally to the non-isolated singularities some isolated ones, e.g. double
points. Similarly one can weaken the assumption on the reducibility of the arrangement
allowing surfaces with selfintersections. These aspects will be studied elsewhere.
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