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Abstract. Halperin has conjectured that the Serre spectral sequence of any fibration that
has fibre space a certain kind of elliptic space should collapse at the E2-term. In this paper we
obtain an equivalent phrasing of this conjecture, in terms of formality relations between base
and total spaces in such a fibration (Theorem 3.4). Also, we obtain results on relations between
various numerical invariants of the base, total and fibre spaces in these fibrations. Some of our
results give weak versions of Halperin’s conjecture (Remark 4.4 and Corollary 4.5). We go on to
establish some of these weakened forms of the conjecture (Theorem 4.7). In the last section, we
discuss extensions of our results and suggest some possibilities for future work.

1. Introduction. We begin with a description of the conjecture referred to in the

title. In this paper, all spaces are simply connected CW complexes and are of finite type

over Q, i.e., have finite-dimensional rational homology groups. A fibration F
j−→ E

p−→
B is said to be totally non-cohomologous to zero (abbreviated TNCZ) if the induced

homomorphism j∗ : H∗(E;Q) → H∗(F ;Q) is onto. This is a very strong condition to

place on a fibration. It is equivalent to requiring that the Serre spectral sequence (for

cohomology with rational coefficients) collapse at the E2-term (cf. [McC,Th.5.9]). In this

case there is an isomorphism H∗(E;Q) ∼= H∗(B;Q) ⊗ H∗(F ;Q) of H∗(B;Q)-modules.

Thus a TNCZ fibration is somewhere between being trivial from the rational homology

point of view and being trivial from the rational cohomology algebra point of view (cf.

Example 1.2).

In the sequel we focus on certain fibre spaces F that satisfy the following conditions:

(1) H∗(F ;Q) is finite-dimensional.

(2) π∗(F )⊗Q is finite-dimensional.
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(3) The Euler characteristic of F , i.e.,
∑
i(−1)idim

(
Hi(F ;Q)

)
, is positive.

A space that satisfies (1) and (2) is called (rationally) elliptic. See [Ha1], [Fé,Ch.5] or

[Au] for a discussion of these spaces. It is known that elliptic spaces have non-negative

Euler characteristic [Ha1]. So condition (3) further restricts F to being one of two types

of elliptic space. We often refer to a space that satisfies conditions (1)–(3) as a positively

elliptic space. However, we also refer to such spaces in the long-hand, as ‘elliptic with

positive Euler characteristic’, particularly when stating results.

The conjecture of the title, with which we are concerned, is as follows:

1.1. Conjecture (Halperin). Let F be elliptic with positive Euler characteristic.

Then any fibration F → E → B is TNCZ.

This conjecture has been established in various cases, but in general it remains open.

Some results that concern it are mentioned later in the introduction.

We point out that this paper does not resolve Conjecture 1.1, not even in special

cases! Rather, as the title suggests, we are concerned here with variations on the theme

provided by the conjecture. These variations come about by considering consequences

of Conjecture 1.1, assuming it to be true. The motivation is two-fold: First, it is hoped

to open up new lines of approach to the conjecture itself. Second, by looking at such

consequences one can obtain weak versions of the conjecture. On the one hand, these

weak versions might prove more tractable than the original. On the other hand, they

should lead to a fuller understanding of the conjecture.

Although we consider consequences of Conjecture 1.1, some of our results are inde-

pendent of the status of this conjecture and furthermore are interesting in their own

right. For instance, Theorem 4.7 specializes to obtain the following result: If F → E →
S2n+1 is a fibration with fibre a positively elliptic space and base an odd sphere, then

cat0(E)=cat0(F )+1. This result establishes a weak form of Conjecture 1.1. But also, for

instance, it can be viewed as a strong form of Ganea’s conjecture in the (very) restricted

circumstances to which it applies.

Next, we outline the contents of the paper. This introductory section continues with

a discussion of positively elliptic spaces and some of their properties. We go on to dis-

cuss models of rational fibrations, the main technical tool that we use. The introduction

finishes with a brief summary of some results on Conjecture 1.1 and some notational

conventions. Section 2 is a short technical section, although in Theorem 2.2 we obtain a

very strong consequence of Conjecture 1.1. In Section 3 we relate the formality of E and

B, for a class of fibrations F → E → B including those to which Conjecture 1.1 applies.

In Proposition 3.2, for example, we show B formal implies E formal, under the hypothe-

sis that Conjecture 1.1 is true. We also obtain an equivalent phrasing of Conjecture 1.1,

in Theorem 3.4. In Section 4 we consider some numerical rational homotopy invariants.

Under the hypothesis that Conjecture 1.1 is true, we obtain inequalities that relate the

values of these invariants on base, total and fibre spaces of a suitable fibration (Remark

4.4). These inequalities can therefore be viewed as weak versions of Halperin’s conjec-

ture. We go on to establish these weakened forms of the conjecture in certain restricted

circumstances: For some of the invariants, we obtain complete results in case the base
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space is a wedge of odd-dimensional spheres (Theorem 4.7). In the last section, we discuss

extensions of our earlier results. Here we suggest various directions for future work, in

part by offering specific questions on these topics.

The spaces F that feature in Conjecture 1.1 are clearly of a very restricted kind. We

continue with a discussion of some of their properties. We have characterized them by

conditions (1)–(3) above. However, results of Halperin [Ha1] allow for various character-

izations. Halperin shows that, for an elliptic space F , the three conditions of positive

Euler characteristic, χπ(F ) = 0 and Hodd(F ;Q) = 0 are equivalent. Here, χπ(F ) denotes

the so-called homotopy Euler characteristic of F . This is a number defined for any space

that has finite-dimensional rational homotopy by χπ(F ) :=
∑
i(−1)idim

(
πi(F ) ⊗ Q

)
.

The cohomology algebra of a positively elliptic space F is zero in odd degrees and has a

presentation of the form

H∗(F ;Q) ∼=
Q[x1, . . . , xn]

(R1, . . . , Rn)

with relations generated by a maximal regular sequence {R1, . . . , Rn} in the polynomial

algebra Q[x1, . . . , xn]. Here, the relations R1, . . . , Rn need not be homogeneous (length)

polynomials. The minimal model of such a space is of a particularly restricted form. Recall

that the minimal model of a space X is a differential graded (henceforth DG) algebra

MX , dX , that as a graded algebra is a free graded commutative algebra (polynomial

on even degree generators and exterior on odd degree generators). Also, its (degree +1)

differential dX is decomposable, in the sense that it induces the trivial differential after

passing to the quotient module of indecomposables, i.e., it has zero linear part. See [Gr-

Mo], [Ha3] and [Ta] for the basics of minimal models and their use in rational homotopy

theory. The book by Félix [Fé] contains more recent material and references. Condition

(1) above implies that the minimal model has finite-dimensional cohomology, as the

cohomology of the minimal model is identified with that of the space. Condition (2)

translates into the condition that the minimal model be finitely-generated as a free graded

algebra, since the algebra generators of the minimal model are identified, as a graded

vector space, with the rational homotopy groups of the space. For an elliptic space,

condition (3) greatly restricts the form of the minimal model further. It implies, for

instance, that up to isomorphism the model is a pure model [Ha1]. This is to say that it

has the form

MF , dF = Λ(V even)⊗ Λ(V odd), dF

with dF (V even)=0 and dF (V odd)⊆Λ(V even). For an elliptic space, condition (3) further

implies that the minimal model has the same number of even degree generators as odd

degree generators. In symbols, this means dim(V even) = dim(V odd) and this fact corre-

sponds to the condition that χπ(F ) = 0. We state one more property of these remarkable

spaces. We have said that the cohomology algebra of a positively elliptic space is zero

in odd degrees. In fact, more is true. Suppose ΛV, d is any pure model, as above. We

place a second grading on ΛV by setting
(
ΛV
)
k

= ΛV even ⊗ ΛkV odd for k ≥ 0. Since

d(V even) = 0 and d(V odd) ⊆ Λ(V even), the differential d decreases second degree by 1 and

so ΛV, d is a bigraded DG algebra. This second grading passes to cohomology. Now, if ΛV

is the model of a positively elliptic space, then we have H+(ΛV, d) = 0 (see [Ha1,Th.2]).
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It is worthwhile remarking that, despite the highly restricted form of F , there are many

examples of such spaces, some of which correspond to spaces familiar to topologists and

geometers: Even-dimensional spheres, complex projective spaces, Grassmann manifolds

and in general homogeneous spaces G/H with G a compact, connected Lie group and H

a closed subgroup of maximal rank are all examples of positively elliptic spaces. Further,

given any algebra presented as above, there is some space F , necessarily positively elliptic,

that realizes the algebra as its rational cohomology algebra.

Next, we survey some material on rational fibrations and their minimal models. For

a fuller discussion see [Ha2] or [Fé]. Consider a sequence of DG algebra maps of the form

B, dB
i→ B ⊗ ΛV,D

q→ ΛV, d

in which i : B, dB → B ⊗ ΛV,D is the inclusion and q : B ⊗ ΛV,D → ΛV, d is the

projection onto the quotient DG algebra of B ⊗ΛV by the ideal generated by B+. This

sequence is called a KS-extension of B, dB (for Koszul-Sullivan) if there is a well-ordered

basis {vα}α∈I of V such that, for each α ∈ I, D(1⊗vα) ∈ B⊗Λ(V<α). Here V<α denotes

the subspace of V generated by basis elements {vβ | β < α}. Such a well-ordered basis

is referred to as a KS-basis for the extension. In all cases of interest to this paper, the

quotient ΛV, d is minimal in the sense described earlier, i.e., it is free with decomposable

differential.

Next consider a map p : E → B of 1-connected spaces. There is a corresponding

DG algebra map of minimal models, M(p) : MB , dB →ME , dE . Now any map of DG

algebras can be converted into a KS-extension [Fé,p.26]. This process is analogous to that

of writing a map of spaces as a fibration up to equivalence, and results in the following

diagram:

MB , dB ME , dE

MB , dB MB ⊗ ΛV,D ΛV, d

M(p) //
�
�
�
�
�

�
�
�
�
�

' φ

��
i // q //

Here, the DG algebra map φ is a quasi-isomorphism, i.e., it induces an isomorphism on

cohomology. A fundamental result of rational homotopy theory asserts that if p : E → B

is a fibration of 1-connected spaces with fibre F , then ΛV, d is a minimal model of

the fibre (cf. [Ha2,Th.4.6] or [Fé,Th.2.3.3]). More generally, we call a sequence of

1-connected spaces F → E → B a rational fibration if, after forming the KS-model

MB , dB → MB ⊗ ΛV,D → ΛV, d of E → B, the quotient ΛV, d is a minimal model

of F . In this case, we refer to the KS-extension MB , dB → MB ⊗ ΛV,D → ΛV, d as

the minimal model of the rational fibration. Note that the differential D may have a

non-trivial linear part, even though we use the terminology ‘minimal’ for such a model

(cf. Example 1.2 below). Now suppose F → E → B is a rational fibration with min-

imal model MB , dB → MB ⊗ ΛV,D → ΛV, d. Then the ‘fibre inclusion’ j : F → E

is modeled by the projection q : MB ⊗ ΛV,D → ΛV, d and the ‘fibration’ p : E → B

by the inclusion i : MB , dB → MB ⊗ ΛV,D. In particular, it follows from the fun-

damental result about minimal models that j∗ is surjective if and only if q∗ is surjec-

tive.
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It is convenient to allow for some flexibility in modeling a given fibration. We say two

KS-extensions are quasi-isomorphic if there is a commutative diagram

B, dB B ⊗ ΛV,D ΛV, d

B′, dB′ B′ ⊗ ΛV ′, D′ ΛV ′, d′

i //

φ1 '
��

q //

φ2 '
��

φ3 '
��

i′ // q′ //

in which each φi is a quasi-isomorphism. Notice that in this case, q′ is surjective if and

only if q is surjective, so either KS-extension would be sufficient for determining whether

j∗ is surjective. By a model for a rational fibration, we mean any KS-extension that is

quasi-isomorphic to the minimal model.

There is a standard technique for changing the model of a fibration, known as change of

KS-basis. We mention it here for the sake of reference. Suppose that B, dB→B⊗ΛV,D→
ΛV, d is a KS-extension with KS-basis {vα}. Suppose given elements ηα ∈ B+⊗Λ(V<α),

for each α ∈ I. Define a map of algebras φ : B ⊗ ΛV → B ⊗ ΛV by setting φ = ι on B,

and φ(vα) = vα + ηα on basis elements of V , then extending to an algebra map. Finally,

define a new differential D′ on B ⊗ ΛV by D′ = φ−1Dφ. Then we have an isomorphism

of KS-extensions

B, dB B ⊗ ΛV,D ΛV, d

B, dB B ⊗ ΛV,D′ ΛV, d

�
�
�
�
�

�
�
�
�
�

i // q //
�
�
�
�
�

�
�
�
�
�

i // q //

φ

OO

In practice, the new differential D′ will have some simpler form, or display some desired

property. For instance, if we change basis in such a way that vα + ηα is a D-cocycle for

some α, then D′(vα) = 0. Another way of obtaining different models for a fibration is

to use the pushout in the context of KS-extensions. Suppose we have a KS-extension

B, dB → B ⊗ ΛV,D → ΛV, d and a map of DG algebras φ : B, dB → B′, dB′ . We form

the pushout as described in [Ba,p.66], for example. (In Baues’ terminology, the inclusion

i is a cofibration.) This gives the following pushout diagram:

B, dBi B ⊗ ΛV,D

B′, dB′ B′ ⊗ ΛV,D′

//

φ

��
φ̄

��
ī //

If φ is a quasi-isomorphism, then so is φ̄. Also, the new differential D′ projects to the

original d on ΛV . Hence, if φ is a quasi-isomorphism, we obtain a quasi-isomorphism of

KS-extensions as follows:

B, dB B ⊗ ΛV,D ΛV, d

B′, dB′ B′ ⊗ ΛV, δ ΛV, d

i //

φ '
��

q //

φ̄ '
��

�
�
�
�
�

�
�
�
�
�

ī // q′ //

We illustrate the foregoing discussion of models with an example:
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1.2. Example. There is a fibration S2 → CP 3 → S4 (obtained from the Hopf fibra-

tion) which has minimal model

Λ(w4, w7), dB → Λ(w4, w7)⊗ Λ(v2, v3), D → Λ(v2, v3), d.

Here, subscripts on generators indicate their degree and the differentials are given by

dB(w4) = 0, dB(w7) = w2
4, D(v2) = 0 and D(v3) = v2

2 − w4. We obtain d by projecting

onto Λ(v2, v3). Notice that D has a non-trivial linear part. This simple example turns

out to have several interesting features that illustrate quite well the topics of this paper.

In particular, we observe that this fibration is TNCZ but the cohomology of CP 3 is not

isomorphic as an algebra to the tensor product of the cohomology algebras of S4 and S2.

The model of a rational fibration is the main technical tool that is used in this paper.

Indeed, the results boil down to algebraic results about KS-extensions, which are proven

by direct analysis of the model. When we say ‘fibration’ in the sequel, therefore, we mean

rational fibration, as it is to this class of maps that our methods apply.

We now mention two ways to re-phrase Conjecture 1.1 that are used in the sequel. If

F is positively elliptic, then its minimal model is pure. We extend the notion of pureness

to fibrations with fibre F as follows:

1.3. Definition. Let F → E → B be a fibration in which F is elliptic with

positive Euler characteristic. The fibration is pure (as a fibration) if it has minimal model

MB , dB →MB⊗ΛV,D → ΛV, d in which D(V even) = 0 and D(V odd) ⊆MB⊗Λ(V even).

Our first rephrasing of Conjecture 1.1 is given in the following:

1.4. Theorem [Th1]. For a given fibration F → E → B, in which F is elliptic with

positive Euler characteristic, the following are equivalent :

(1) The fibration is TNCZ.

(2) The fibration is pure.

Halperin’s conjecture is therefore equivalent to the conjecture that each fibration with

fibre a positively elliptic space is a pure fibration. In [Th1], Thomas uses his result to

show the conjecture is true if the model for F has dim(V even) = 1 or 2.

Another re-phrasing of Conjecture 1.1 is given by Meier:

1.5. Theorem [Me]. Let F be elliptic with positive Euler characteristic. Then the

following are equivalent :

(1) Each fibration F → E → B, for arbitrary base space B, is TNCZ.

(2) Each fibration F → E → S2n+1, for n ≥ 1, is TNCZ.

(3) The (graded Lie algebra of ) negative-degree derivations of the cohomology algebra

of F are trivial , Der<0H∗(F ;Q) = 0.

In [Me], Meier uses his result to establish some special cases of the conjecture.

In addition to these results, various special cases of the conjecture have been estab-

lished. In [Sh-Te], the conjecture is shown to be true for F a homogeneous space of the

form G/H, where G is a compact, connected Lie group and H is a closed subgroup of max-

imal rank. In [Lu], the result of Thomas is extended to the case when dim(V even) = 3.
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In [Ma], it is shown that the class of spaces for which Halperin’s conjecture is true is

closed under fibrations. This paper of Markl also contains an introduction to Halperin’s

conjecture and some other interesting results. The conjecture has an interpretation in

terms of the rational homotopy theory of aut1(F ), the identity component of the monoid

of self-equivalences of F . This is an interesting aspect of the conjecture with which, how-

ever, we are not directly concerned here. See the articles [Fé-Th] and [Me] for information

and references about this.

We end this introductory section with some notation and conventions. In general, we

adopt the notation of [Fé] or [Ha-St]. We use V or W to denote a positively graded,

rational graded vector space of finite type. We have already used ΛV to denote the free

graded commutative algebra on the graded vector space V . We write Λ+V to denote the

elements of positive degree. In this paper Λ+V is the augmentation ideal of the canonical

augmentation of ΛV . Also, ΛnV denotes the vector space of polynomials of homogeneous

degree n, with respect to the grading by word length. If V is zero in even degrees, for

example, this agrees with the n’th exterior power of V . Then Λ≥nV denotes the ideal

in ΛV generated by ΛnV . The cohomology of a DG algebra A, δ is denoted H(A, δ)

or just H(A). The elements of positive degree are denoted H+(A). Other notation and

definitions will be given in the sequel.

Acknowledgements. I thank Octav Cornea, Yves Félix, John Oprea and Jean-

Claude Thomas for several very helpful conversations about this work.

2. Two preliminary results. We present two technical results about models of the

fibrations with which we are concerned. In these results, we focus on the case in which

the base is a wedge of odd-dimensional spheres or a single such sphere. From Meier’s

result, cited as Theorem 1.5, these fibrations are of particular interest from our point of

view.

The following result is not new (cf. [Lu]), but is included for completeness’ sake.

2.1. Lemma. Let F → E → S2n+1 be a fibration in which F is elliptic with positive

Euler characteristic. Up to isomorphism, the minimal model Λ(u) → Λ(u) ⊗ ΛV,D →
ΛV, d has D decomposable and D(V even) ⊆ u · Λ+(V even).

P r o o f. Suppose Λ(u)→ Λ(u)⊗ΛV,D → ΛV, d is the minimal model, with |u| = 2n+

1. The differential D is decomposable by [Ha2,Th.1.4(iii)] (cf. Prop.4.12 and Rem.4.18 of

the same reference). Now let v ∈ V even and write D(v) = uχ0 + uχ+, with χ0 ∈ (Λ+V )0

and χ+ ∈
(
ΛV
)

+
. The subscripts refer to the second grading of ΛV mentioned in the

introduction. Applying D again, we obtain 0 = D2(v) = −ud(χ0)− ud(χ+) = −ud(χ+).

Therefore, χ+ is a d-cocycle in
(
ΛV
)

+
. As stated in the introduction, each cocycle of

positive second degree is a boundary, so there is an element η ∈ ΛV with dη = χ+. Hence

D(uη) = −uχ+ and we have D(v + uη) = uχ0.

Now use the change of KS-basis argument mentioned in the introduction, replacing

each KS-basis element v ∈ V even with v + uη. In the isomorphic KS-extension obtained

as a result, we have D′(v) = uχ0, as is easily checked.
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The next result shows that Halperin’s conjecture implies the strongest possible re-

striction on a fibration with base a wedge of odd spheres. It uses the fact that a wedge

of spheres is a formal space. Recall that a space is formal if its minimal model is

determined by its cohomology algebra. Specifically, X is formal if there is a quasi-

isomorphism

ψ :MX , dX → H∗(X;Q), 0.

We mention in passing that there are many interesting examples of formal spaces includ-

ing H-spaces and co-H-spaces, symmetric spaces and simply connected, compact Kähler

manifolds (for this last assertion, see [D-G-M-S]). A product or wedge of formal spaces is

again a formal space. A positively elliptic space is a formal space. For further discussion

of formal spaces, see Section 3.

2.2. Theorem. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and B is rationally a wedge of odd spheres. If the fibration is TNCZ ,

then E 'Q B × F and the fibration (rationally) is trivial.

P r o o f. Suppose ΛW,dB → ΛW ⊗ ΛV,D → ΛV, d is the minimal model of the

fibration. By the result of Thomas, cited as Theorem 1.4, this model can be assumed

pure. Since B is rationally a wedge of spheres, it is formal and hence there is a quasi-

isomorphism ψ : ΛW,dB → H(B). Now form the pushout and obtain a quasi-isomorphic

KS-extension H(B)→H(B)⊗ΛV,D′→ΛV, d. Since the original KS-extension was pure,

it follows directly from the pushout construction that this KS-extension is also pure. The

observation that we have such a model also follows from a close reading of Thomas’ proof

of Theorem 1.4.

Now consider the pure model H(B)→ H(B)⊗ΛV,D → ΛV, d. Let v ∈ V odd and let

{bi} be a basis for H+(B). Write the differential D as

D(v) = dv +
∑
i

biΩi(v). (∗)

For parity of degree reasons each Ωi(v) is an odd-degree element of ΛV . Since this model

is pure, D(dv) = 0. Therefore, applying D to (∗) gives 0 = D2(v) = −
∑
i bidΩi(v).

For the last expression, we use the fact that products in H+(B) are trivial. Now we

have dΩi(v) = 0 for each i, so each Ωi(v) is a d-cocycle of odd degree, hence of positive

second degree in the second grading of ΛV mentioned in the introduction. However,

H+(ΛV ) = 0. Therefore, we can choose elements ηi ∈ ΛV for which Ωi(v) = dηi. This

gives D(
∑
i biηi) = −

∑
i biΩi(v).

Finally, make a change of KS-basis, replacing each KS-basis element v ∈ V odd with

v +
∑
i biηi(v). This gives a quasi-isomorphic KS-extension H(B)→ H(B)⊗ ΛV,D′ →

ΛV, d in which D′ = 1⊗ d, as is easily checked. The result follows.

2.3. Remark. Notice that we cannot relax the hypothesis on the base to allow even-

dimensional spheres. Indeed, Example 1.2 is a non-trivial fibration with positively elliptic

fibre and base an even-dimensional sphere. For more comments along these lines, see

Section 5.
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3. Formality and TNCZ fibrations. Halperin’s conjecture asserts that a fibration

is close to trivial if the fibre is positively elliptic. So suppose a fibration has base a formal

space and fibre a (formal) positively elliptic space. Then the conjecture asserts that the

total space is close to a product of formal spaces and therefore close to being formal. This

point of view turns out to yield an equivalent formulation of the conjecture.

A formal space has minimal model that is more highly structured than an arbitrary

minimal model. We recall here some properties of the bigraded model that are used in the

sequel. See [Ha-St] for a full discussion. The bigraded model of a formal space is a minimal

model ΛV, d for which the vector space of generators has a second grading, V = ⊕i≥0Vi.

This gives ΛV the structure of a bigraded algebra. Furthermore, the bigraded model

is a bigraded DG algebra in the sense that d : ΛV → ΛV decreases second grading by

exactly 1. In particular, d(V0) = 0. The second grading therefore passes to cohomology

and, as further properties of the bigraded model, we have H(ΛV, d) = H0(ΛV, d) and

H+(ΛV, d) = 0. There is a quasi-isomorphism — indeed, the bigraded model proper —

given by

ρ : ΛV, d→ H(ΛV, d) = H0(ΛV, d)

which maps V+ to zero and each v ∈ V0 to the class it represents in H(ΛV, d). A positively

elliptic space is formal and its bigraded model has a simple form. We identify V0 = V even

and V1 = V odd. There are no generators of second degree ≥ 2. Notice that this accords

with the fact that H+(ΛV, d) = 0, as we stated in the introduction. Following [Ha-St],

we adopt the notation V(n) = ⊕ni=0Vi and (ΛV )(n) = ⊕ni=0(ΛV )i.

3.1. Proposition. Let F → E → B be a fibration in which F and B are formal. If

the fibration is TNCZ , then there is a model

H(B), 0→ H(B)⊗ ΛV,D → ΛV, d,

in which ΛV, d is the bigraded model of F and H(B) ⊗ ΛV,D is filtered in the following

sense: Let V = ⊕i≥0Vi be the second grading of the bigraded model. Then D(V0) = 0 and

for each i ≥ 1, D(Vi) ⊆ H(B)⊗ (ΛV )(i−1).

P r o o f. Since the base and fibre are formal, we can suppose there is a model H(B)→
H(B) ⊗ ΛV, δ → ΛV, d in which ΛV, d is the bigraded model of F . Suppose that the

fibration is TNCZ. We begin by showing that up to isomorphism, δ(V0) = 0.

Let v ∈ V0, so that v represents a class [v] in H(ΛV ). By assumption, there is some

δ-cocycle χ ∈ H(B) ⊗ ΛV with q∗([χ]) = [v]. It is easy to see that we may choose the

δ-cocycle to be χ = v + β with β ∈ H+(B) ⊗ ΛV . Now use the change of KS-basis

argument, replacing each KS-basis element v ∈ V0 by χ. Observe that in the isomorphic

model, H(B)→ H(B)⊗ ΛV, δ0 → ΛV, d, we have δ0(V0) = 0.

Now suppose inductively that for some n ≥ 0, we have a model H(B) → H(B) ⊗
ΛV, δn → ΛV, d in which δn is a filtered differential on H(B) ⊗ ΛV(n), i.e., δn(Vi) ⊆
H(B)⊗ (ΛV )(i−1) for i = 0, . . . , n. Let v ∈ Vn+1 and write

δn(v) = dv + ξ(n) + ξ+ (∗1)

for elements ξ(n) ∈ H+(B)⊗ (ΛV )(n) and ξ+ ∈ H+(B)⊗ (ΛV )≥n+1.
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Claim. There is an element η ∈ H+(B)⊗ ΛV for which δn(v) = dv + ξ(n) + δn(η).

Proof of Claim. Suppose that ξ+ =ξm+ + ξm+1
+ + · · ·+ ξM+ , for some 2 ≤ m ≤M , with

each ξi+ ∈ Hi(B)⊗(ΛV )≥n+1. Let {bj} be a basis for Hm(B) and write the ‘lowest’ term

ξm+ as ξm+ =
∑
j bj ⊗ χj for suitable elements χj ∈ (ΛV )≥n+1. Applying δn to (∗1) gives

0 = δ2
n(v) = δn(dv + ξ(n)) + δn(ξm+ ) +

M∑
i=m+1

δn(ξi+). (∗2)

The induction hypothesis on δn implies that δn(dv+ξ(n)) ∈ H(B)⊗(ΛV )(n−1). The ideal

in H(B)⊗ ΛV generated by elements of H(B) of degree at least m+ 1 is δn-stable and

contains all terms contributed by the δn(ξi+) for i ≥ m+ 1. Therefore, in equation (∗2),

terms of the form
∑
j(−1)mbj ⊗ d(χj) are the only contributions to Hm(B) ⊗ (ΛV )≥n.

It follows that each d(χj) = 0. Since this is the bigraded model, in which H+(ΛV ) = 0,

there are elements ηj ∈ ΛV such that (−1)mχj = d(ηj), for each j. Thus we have

δn

(∑
j

bj ⊗ ηj
)

= ξm+ + ζm+1
+ + · · ·+ ζM

′

+ ,

with each ζj+ ∈ Hj(B) ⊗ (ΛV )≥n+1, for m + 1 ≤ j ≤ M ′. Substituting this into (∗1)

above gives

δn(v) = dv + ξ(n) + ξ′+ + δn

(∑
j

bj ⊗ ηj
)
,

where ξ′+ = ξ+ − ξm+ −
∑
j≥m+1 ζ

j
+ ∈ H≥m+1(B) ⊗ (ΛV )≥n+1. An induction argument

on m, repeating this last step as necessary, shows the claim. End of Proof of Claim.

Hence we can make another change of KS-basis, this time replacing a KS-basis element

v ∈ Vn+1 by v− η. In the isomorphic model H(B)→ H(B)⊗ΛV, δn+1 → ΛV, d we have

δn+1(v) = dv+ξ(n), with ξ(n) ∈ H+(B)⊗(ΛV )(n). Therefore, δn+1 is a filtered differential

on H(B)⊗ ΛV(n+1).

To finish, use the inductive step just proved to make a global change of KS-basis,

working inductively over n. This results in a filtered model as required.

We now develop the main result of the section. The next proposition is a little more

general than we need in the sequel. However, it is interesting in its own right. In it, we

only assume that the fibre space is formal and elliptic. Recall Halperin’s result [Ha1], that

any elliptic space has non-negative Euler characteristic. If a space is positively elliptic,

then it is formal. However, a space that is formal and elliptic need not have positive

Euler characteristic. For instance, a product of odd-dimensional spheres is elliptic and

formal, but has Euler characteristic equal to zero. There are strong restrictions on a

space, however, that follow from the hypothesis of formal and elliptic. We do not dwell

on this point here, but simply point out that any space that is formal and elliptic has a

two-stage bigraded model (cf. [Fé-Ha1]). This is the feature of these spaces that we use

in the result.

3.2. Proposition. Let F → E → B be a fibration in which F is formal and elliptic

and B is formal. If the fibration is TNCZ , then E is formal also.
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P r o o f. From Proposition 3.1 we have a model of the fibration

H(B), 0→ H(B)⊗ ΛV,D,→ ΛV, d

in which D(V0) = 0 and for i ≥ 1, D(Vi) ⊆ H(B)⊗ (ΛV )(i−1). This means, in particular,

that D(V1) ⊆ H(B) ⊗ (ΛV )0. Since the bigraded model for F is two-stage, and thus

V = V0 ⊕ V1, the total space H(B) ⊗ ΛV,D in this model is actually a bigraded DG

algebra.

We now show that, with respect to this bigrading, H+

(
H(B) ⊗ ΛV

)
= 0. For let

x ∈ (H(B) ⊗ ΛV )r be a D-cocycle, for any r ≥ 1. We show that x is exact with

an argument similar to that used to show the claim in Proposition 3.1. Write x as

x = xm + xm+1 + · · ·+ xM , for 2 ≤ m ≤ M , where each xi ∈ Hi(B)⊗ (ΛV )r. Let {bj}
be a basis for Hm(B). Then we can write the ‘lowest’ term xm as xm =

∑
j bj ⊗ χj

for appropriate terms χj ∈ (ΛV )r. Now (D − d)(χj) ∈ H+(B) ⊗ ΛV and also the ideal

H≥m+1(B)⊗ ΛV is D-stable. Therefore, as x is a D-cocycle, we have

0 = D(x) ≡ (−1)m
∑
j

bj ⊗ d(χj),

where the congruence is modulo the ideal H≥m+1(B) ⊗ ΛV . Therefore, dχj = 0 and,

since ΛV, d is the bigraded model and since r is positive, there are elements ηj with

dηj = (−1)mχj for each j. This yields D(
∑
j bj ⊗ ηj) ≡

∑
j bj ⊗ χj , again modulo

H≥m+1(B)⊗ ΛV . Now we can write

x = D
(∑

j

bj ⊗ ηj
)

+ x′m+1 + · · ·+ x′M ′ ,

with each x′i ∈ Hi(B) ⊗ (ΛV )r. An induction argument repeating this argument as

necessary obtains the result that x is D-exact.

We have shown that H
(
H(B)⊗ΛV, δ

)
= H0

(
H(B)⊗ΛV, δ

)
. But now the projection

p : H(B)⊗ ΛV, δ → H(B)⊗ ΛV, δ(
δV1

) = H0

(
H(B)⊗ ΛV, δ

)
is a quasi-isomorphism. Since H(B) ⊗ ΛV, δ is quasi-isomorphic to the minimal model

for E, and also p is a quasi-isomorphism from it to its cohomology, it follows that E is

formal.

The next result is something of a converse to Proposition 3.2.

3.3. Proposition. Let F be be elliptic with positive Euler characteristic and let F→
E → S2n+1 be a fibration. If E is formal , then the fibration is TNCZ.

P r o o f. From Lemma 2.1 the fibration has a model

Λ(u)→ Λ(u)⊗ ΛV,D → ΛV, d,

in which Λ(u) ⊗ ΛV,D is actually the minimal model of E, and D(V0) ⊆ u · Λ+V0.

We will show that E formal implies D(V0) = 0. Recall the characterization of for-

mality given in [D-G-M-S, Th.4.1]. This says that there is a vector space decomposi-

tion 〈u〉 ⊕ V ∼= C ⊕ N with D(C) = 0, D : N → Λ(u) ⊗ ΛV injective and such

that any cocycle in the ideal I(N) of Λ(u) ⊗ ΛV generated by N is exact. Clearly
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u ∈ C, and we show that V0 ⊆ C, for any such decomposition. For suppose not, so

that D(V0) 6= 0. Choose a KS-basis V0 = 〈x1, . . . , xn〉. There is at least one of the xi
with non-zero differential, so let r be the largest subscript with D(xr) 6= 0. Note that

xr ∈ N in the decomposition. Now D(V0) is contained in the ideal of Λ(u)⊗ ΛV gener-

ated by elements {ux1, . . . , uxr−1}, which we denote Ir−1. For parity of degree reasons,

(D − d)(V1) is contained in the ideal generated by u · V1. Also, we have d(V1) ⊆ Λ≥2V0.

Let J denote the ideal of Λ(u) ⊗ ΛV generated by u · V1 + Λ≥2V0. Then the image

of D is contained in the ideal Ir−1 + J . Now D(xr) = uχ for some χ and hence

we obtain a D-cocycle uxr ∈ I(N). This cannot be exact, as it is not in the ideal

Ir−1 + J . This contradicts the assumptions on the decomposition C ⊕N . Therefore, we

must have V0 ⊆ C and so D(V0) = 0. From this it follows easily that the fibration is

TNCZ, because then q∗ : H(Λ(u) ⊗ ΛV ) → H(ΛV ) is surjective onto the generators of

H(ΛV ).

Finally, we collect together the preceding results into the main result of the section.

As we see, we have obtained an equivalent formulation of Halperin’s conjecture.

3.4. Theorem. Let F be elliptic with positive Euler characteristic. Then the following

are equivalent :

(1) Any fibration with fibre F is TNCZ.

(2) For any fibration F → E → B in which B is formal , E is formal also.

(3) For any fibration F → E → S2n+1, the total space E is formal.

P r o o f. The implication (1)⇒ (2) follows from Proposition 3.2. (2)⇒ (3) is obvious,

since spheres are formal spaces. Assume (3). Then Proposition 3.3 implies that each

fibration F → E → S2n+1 is TNCZ. Hence, from Meier’s result (Theorem 1.5), any

fibration F → E → B is TNCZ.

4. Numerical invariants. Here we consider some invariants related to the Lusternik-

Schnirelmann category . Recall that this is a numerical homotopy invariant of a space,

defined as one less than the smallest number of open sets required to cover the space,

when each is contractible in the space. As is usual in rational homotopy theory, we have

‘normalised’ so that a sphere has category equal to 1. This invariant and its approxi-

mations have been much studied both in ordinary and rational homotopy theory. See

[Ja] for a recent survey with many references. Here we focus on four rational homotopy

invariants. We define these invariants and include some discussion, before proceeding to

the results:

(Rational) Cup-length: This is the nilpotency—as an algebra—of the rational co-

homology algebra of a space X. It is denoted here cup0(X). For example we have

cup0(CPn) = n for each n ≥ 1.

(Rational) Toomer’s invariant : As in [Fé-Ha2,Rem.9.3] we describe this invariant as

follows: Let ΛV, d be the minimal model of X. Consider the projection

pn : ΛV → ΛV

Λ≥n+1V
.
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We obtain our rational invariant, denoted e0(X), by setting e0(X) ≤ n if (pn)∗ is injec-

tive. In other words, e0(X) is the largest n for which some non-zero class in H(ΛV ) is

represented by a cocycle in Λ≥nV .

(Rational) Category : This is the Lusternik-Schnirelmann category of the rationaliza-

tion of X. We denote it cat0(X) and, following [Fé-Ha2,Th.4.7], we describe it in terms

of the minimal model of X: Set cat0(X) ≤ n if the above projection pn makes ΛV into a

retract of the quotient ΛV/Λ≥n+1V .

(Rational) Cone-length: This is the least number of steps required to build the rational

homotopy type of a space X as a succession of cofibration sequences of rational spaces.

It is denoted cl0(X). Specifically, set cl0(X) = 0 if X 'Q ∗ and cl0(X) = 1 if X has

the rational homotopy type of a wedge of spheres. In general, set cl0(X) ≤ n if there

are spaces X1, A1, . . . , An−1, each of which has the homotopy type of a wedge of rational

spheres, and n− 1 cofibration sequences Ai → Xi → Xi+1, for i = 1, . . . , n− 1, such that

Xn 'Q X. In [Co] it is shown that cl0(X) agrees with the ‘homotopical nilpotency’ of the

minimal model of X, i.e., the least n for which the minimal model is quasi-isomorphic to

a DG algebra that is of nilpotency n as an algebra. It is in this latter guise that we meet

this invariant here.

We have been a little careless in phrasing the above definitions by implicitly assuming

these invariants finite. Although the case when one or other of these is infinite does not

seem so interesting in our context, it is allowed for, where appropriate, in the following

results.

For these invariants, we always have inequalities as follows:

cup0(X) ≤ e0(X) ≤ cat0(X) ≤ cl0(X).

In the special case that X is a formal space, all these invariants agree. In this case we

will denote their common value nil0(X). This usage accords with Cornea’s homotopical

nilpotency in this case. In particular, if F is a positively elliptic space, then it is formal

and we have cup0(F ) = e0(F ) = cat0(F ) = cl0(F ), which we denote by nil0(F ).

We mention some examples to illustrate these invariants:

4.1. Examples. If X = Sn, then X is formal, our four invariants agree and we

have nil0(X) = 1. If X = CPn, it is likewise formal and nil0(X) = n. Next, suppose

X = S2 ∨ S2 ∪α e5, where α = [ι1, [ι1, ι2]], the triple Whitehead product in π4(S2 ∨ S2).

Then we have cup0(X) = 1 but e0(X) = cat0(X) = cl0(X) = 2. A well-known example of

Lemaire-Sigrist, developed by Félix-Halperin (cf. [Fé-Ha2]), is X = (CP 2 ∨ S2)∪ω e7 for

a certain attaching map ω. This space satisfies cup0(X) = e0(X) = 2 whilst cat0(X) =

cl0(X) = 3. Furthermore, this example has e0(Xn) = 2n and cat0(Xn) = 3n. This

illustrates that e0(X) can be smaller than cat0(X) by an arbitrarily large amount.

These invariants behave quite well for products of spaces. The product formula

cup0(X × Y ) = cup0(X) + cup0(Y ) is well-known. It is easy to see that e0 likewise

is additive for products [Fé-Ha2,Rem.9.3]. Recently, cat0 has been shown to be additive

for products [Fé-Ha-Le], and cl0 to be additive at least for products of rational Poincaré

duality spaces. Indeed, it has been shown that e0(X)=cat0(X)=cl0(X) whenever X is

a rational Poincaré duality space (see [Fé-Ha-Le] and [Co-Fé-Le]). Now Halperin’s con-
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jecture asserts that in certain fibrations the total space is close to being a product of the

base and fibre spaces. These remarks combine to suggest there should be good relations

between these invariants for base, total and fibre spaces in such fibrations. We shall see

that this is the case.

First we give some results that complement one of Jessup [Je,Prop.3.6]. Let F →
E → B be a TNCZ fibration with F formal. Then Jessup’s result gives cat0(E) ≥
cat0(B) + nil0(F ). Actually, his result applies a little more generally and was proved for

(what was then thought to be) a different numerical invariant, Mcat0. The conclusion for

cat0 follows by a result of Hess [He], which identified cat0 with Mcat0.

We specialize this result to the following:

4.2. Proposition. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and B is formal. If the fibration is TNCZ , then E is also formal

and we have nil0(E) ≥ nil0(B) + nil0(F ).

P r o o f. The formality of E follows immediately from Proposition 3.2. Since E and

B are both formal, nil0 = cat0 for these spaces and the conclusion follows from the result

of Jessup mentioned above.

Next, consider the case in which B is not formal. Notice the following result does not

require that F be positively elliptic.

4.3. Proposition. Let F → E → B be a fibration with F formal. If the fibration is

TNCZ , then we have the following inequalities:

(1) cup0(E) ≥ cup0(B) + nil0(F ).

(2) e0(E) ≥ e0(B) + nil0(F ).

P r o o f. Actually, for (1) the hypothesis of formality on F is redundant. Recall from

the introduction, that if a fibration F → E → B is TNCZ, then H∗(E;Q) ∼= H∗(B;Q)⊗
H∗(F ;Q) as H∗(B;Q)-modules. Under this isomorphism, two elements of 1⊗H∗(F ;Q)

multiply as (1⊗ x)(1⊗ y) = 1⊗ xy + χ, for some χ in the ideal generated by H+(B). It

follows that cup0(E) ≥ cup0(B) + cup0(F ).

For (2), we work with a model of the fibration. Suppose that F is formal and the

fibration is TNCZ. Then it has a model ΛW,dB → ΛW⊗ΛV,D → ΛV, d in whichD(V0) =

0. This follows from the argument in the first two paragraphs of the proof of Proposition

3.1, replacing H(B) there by ΛW . So let α ∈ Λ≥nV be a cocycle representative for

some non-zero class in H(ΛV ). Since F is formal, we can suppose that α ∈ Λ≥nV0. In

our model we have D(V0) = 0, so [α] ∈ H(ΛW ⊗ ΛV ). Furthermore, α is not D-exact,

since it is not d-exact. Let β ∈ Λ≥mW be a cocycle representative for some non-zero

class of H(ΛW ). Since we have H(ΛW ⊗ΛV ) ∼= H(ΛW )⊗H(ΛV ) as H(ΛW )-modules,

the product [β][α] = [βα] is non-zero in H(ΛW ⊗ ΛV ). Now αβ ∈ Λ≥m+n(W ⊕ V ) so

e0(E) ≥ m+ n.

Example 1.2 illustrates that inequality, as in Proposition 4.3, is the best that can be

hoped for in general. But see below for stronger relations in special cases.

If B is not formal in Proposition 4.3, there is no a priori reason why the invariants

cup0, e0 and cat0 for B or E should agree. Therefore, it can be thought of as giving three



VARIATIONS ON A CONJECTURE OF HALPERIN 129

distinct necessary conditions for Halperin’s conjecture to be true. We summarise this in

the following:

4.4. Remark. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic. If B is formal and if the fibration is TNCZ, then E is also formal

and nil0(E) ≥ nil0(B) + nil0(F ). For general B, if the fibration is TNCZ then we have

three inequalities
cup0(E) ≥ cup0(B) + nil0(F )

e0(E) ≥ e0(B) + nil0(F )

cat0(E) ≥ cat0(B) + nil0(F ).

Each of these inequalities gives a necessary condition for Halperin’s conjecture to be true.

A much stronger consequence follows if we restrict the base as follows:

4.5. Corollary. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and B is rationally a wedge of odd spheres. If the fibration is TNCZ ,

then E is formal , the invariants cup0(E), e0(E), cat0(E) and cl0(E) all agree and their

common value, nil0(E), satisfies nil0(E) = 1 + nil0(F ).

P r o o f. This follows from Theorem 2.2.

So far, we have collected together some consequences of Halperin’s conjecture. These

consequences can be read as weak versions of Halperin’s conjecture. We go on to establish

some of these weak versions of the conjecture. We can deal quite well with the case in

which the base B is a wedge of odd-dimensional spheres.

The next result generalizes part of [Fé-Ha2,Th.10.4(iv)].

4.6. Proposition. Let F → E → B be any fibration in which F is a rational Poincaré

duality space and B is a wedge of odd-dimensional spheres. Then e0(E) ≥ 1 + e0(F ).

P r o o f. Suppose ΛW,dB → ΛW ⊗ ΛV,D → ΛV, d is the minimal model of the

fibration. Observe that ΛW ⊗ ΛV,D must actually be the minimal model of E, i.e.,

the differential D must be decomposable. Indeed, this is the case for any fibration in

which F is a space with finite dimensional rational cohomology and B is a wedge of

odd-dimensional spheres, as follows from [Ha2,Th.1.4(iii)]. Observe further, that since B

is a wedge of spheres, it is both formal and coformal. Thus its minimal model ΛW,dB
is a bigraded model in the sense discussed earlier, and the differential is quadratic, i.e.,

dB : W → Λ2W . We use these observations in the proof.

Suppose that e0(F ) = n. Since F is a Poincaré duality space, the fundamental class

of F can be represented by a cocycle α ∈ Λ≥nV (cf. [Fé,Lem.5.6.1]). Suppose that

u ∈ W is a generator of lowest (odd) degree, so that dB(u) = 0. Consider the element

uα ∈ Λ≥n+1(W ⊕V ). There is no a priori reason why uα should be a D-cocycle, but we

will show the following:

Claim. There is an element η ∈ Λ≥n+1(W ⊕ V ), with η ∈ (ΛW )+ ⊗ ΛV , such that

D(uα+ η) = 0.

Proof of Claim. We argue by induction, using the second grading of the bigraded

model ΛW . Let {bi,j}j∈Ji be a (vector space) basis of (Λ+W )i, for each i ≥ 0. It is
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convenient for our argument to have this basis be a monomial basis, so that each basis

element has a certain length. Also, our element u is one of the basis elements b0,j , but

we denote it u anyway so as to distinguish it.

Write D(α) =
∑
i≥0,j bi,j Ωi,j , for suitable elements Ωi,j ∈ ΛV . Each term bi,j Ωi,j ∈

Λ≥n+1(W ⊕ V ), as D is decomposable. Then we have

D(uα) = −
∑
j

u b0,j Ω0,j −
∑
i≥1,j

u bi,j Ωi,j .

Now ΛW,dB is the minimal model of a wedge of spheres, whose cohomology has trivial

products. It follows that each ub0,j ∈ (Λ≥2W )0 is a dB-cocycle. So dB(η1,j) = ub0,j for

some η1,j ∈ (ΛW )1. Furthermore, since ΛW,dB is coformal, each η1,j is of length one less

than ub0,j . For each j, we have

D(η1,j Ω0,j) = ub0,j Ω0,j + (−1)|η1,j | η1,j D(Ω0,j).

From the observation about the length of each η1,j , together with the fact that D is

decomposable, it follows that each η1,j Ω0,j ∈ Λ≥n+1(W ⊕ V ) and each η1,j D(Ω0,j) ∈
Λ≥n+2(W ⊕ V ). Finally, write η(1) =

∑
j η1,j Ω0,j , so that η(1) ∈ Λ≥n+1(W ⊕ V ) and

η(1) ∈ (ΛW )+ ⊗ ΛV . Then we have

D(uα+ η(1)) = −
∑
i≥1,j

u bi,j Ωi,j +
∑
j

(−1)|η1,j | η1,j D(Ω0,j) =
∑
i≥1,j

bi,j Ω
(1)
i,j ,

for suitable Ω
(1)
i,j ∈ ΛV , and each bi,jΩ

(1)
i,j ∈ Λ≥n+2(W ⊕ V ). This starts the induction.

Now suppose inductively that we have an element η(r) ∈ Λ≥n+1(W ⊕ V ) with η(r) ∈
(ΛW )+⊗ΛV and D(uα+η(r)) =

∑
i≥r,j bi,j Ω

(r)
i,j ∈ Λ≥n+2(W⊕V ). Re-write

∑
j br,jΩ

(r)
r,j ,

the part of D(uα + η(r)) that contains terms of lowest second degree in ΛW , as follows:

Let {ck}k∈K be a (vector space) basis for ΛV . Then write∑
j

br,j Ω
(r)
r,j =

∑
k

βr,k ck

for suitable terms βr,k ∈ (ΛW )r. For i ≥ r+ 1, we have D(bi,j Ω
(r)
i,j ) ∈ (ΛW )≥r⊗ΛV . So

working modulo the ideal generated by (ΛW )≥r in ΛW ⊗ ΛV , we have

0 = D2(uα+ η(r)) ≡
∑
k

dB(βr,k) ck.

Hence dB(βr,k) = 0 for each k. Recall once again that ΛW,dB is the bigraded model, with

H+(ΛW,dB) = 0. Since r ≥ 1, it follows that each βr,k is dB-exact. So dB(ηr+1,k) = βr,k
for some ηr+1,k ∈ (ΛW )r+1. As ΛW is coformal, ηr+1,kck ∈ Λ≥n+1(W ⊕ V ) for each k.

Now set η(r+1) = η(r) −
∑
k ηr+1,kck. Note that η(r+1) ∈ Λ≥n+1(W ⊕ V ) and η(r+1) ∈

(ΛW )+ ⊗ ΛV . A straightforward check shows that

D(uα+ η(r+1)) =
∑

i≥r+1,j

bi,j Ω
(r)
i,j −

∑
k

(−1)|ηr+1,k| ηr+1,kD(ck)

=
∑

i≥r+1,j

bi,j Ω
(r+1)
i,j ,
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for suitable terms Ω
(r+1)
i,j ∈ ΛV with each bi,j Ω

(r+1)
i,j ∈ Λ≥n+2(W ⊕ V ). This completes

the inductive step.

Since B is simply connected, the lowest degree of a generator in Wr increases strictly

with r. Hence, by taking r sufficiently large, we obtain an element η(r) as in the claim,

with D(uα+ η(r)) = 0. End of Proof of Claim.

We now show that this cocycle is not D-exact. Suppose that D(ζ + χ) = uα + η

for ζ ∈ ΛV and χ ∈ Λ+W ⊗ ΛV . Then d(ζ) = 0. However, ζ has higher degree than

α, which represents the fundamental class of F . Thus ζ = d(a) for some a ∈ ΛV so

D(a) = ζ + χ′ for some χ′ ∈ Λ+W ⊗ ΛV . Write χ− χ′ =
∑
i,j bi,jχi,j . Working modulo

the ideal in ΛW ⊗ΛV generated by Λ≥2W0 + (ΛW )+, we have D(χ+ ζ) = D(χ− χ′) =∑
j(−1)|b0,j | b0,j d(χ0,j) ≡ uα. This implies α is d-exact, which is a contradiction since

α represents the fundamental class of F . Therefore, uα + η is a non-exact D-cocycle in

Λ≥n+1(W ⊕ V ). The result follows.

Next we give the main result of this section.

4.7. Theorem. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and B is a wedge of odd-dimensional spheres. Then for E we have

e0(E) = cat0(E) = cl0(E) and furthermore these equal nil0(F ) + 1.

P r o o f. In fact the proof will display a simple model for E of homotopical nilpotency

equal to 1+nil0(F ). Let ρ : ΛV, d→ H(F ) be the bigraded model for F . By construction

we have ρ(V1) = 0 and hence ρ
(
(ΛV )+

)
= 0. Consider the ideal ker ρ ⊆ ΛV . This

is a differential ideal since all boundaries are in ker ρ. Further, it is an acyclic ideal

since ρ is a surjective quasi-isomorphism. Since B is formal, the fibration has a model

H(B)→ H(B)⊗ΛV,D → ΛV, d. We claim that the ideal H(B)⊗ ker ρ of H(B)⊗ΛV is

also a differential acyclic ideal. To see this, we argue as follows:

Let {bi} be a basis for H+(B). For any χ ∈ ΛV , we can write

D(χ) = dχ+
∑
i

biΩi(χ),

and a standard argument shows that this defines derivations Ωi on ΛV, d, each of negative

even degree according as the degree of the bi (cf. the result of Meier, cited as Theorem

1.5). Now for w ∈ V1, we have D(w) = dw+
∑
i biΩi(w). For parity of degree reasons we

must have Ωi(w) ∈ (ΛV )+. It follows that Ωi
(
(ΛV )+

)
⊆ (ΛV )+ for each derivation Ωi.

Next, if χ ∈ ker ρ ⊆ ΛV , write χ = χ0 + χ+ where χ0 ∈ ΛV0 and χ+ ∈ (ΛV )+. Since

χ ∈ ker ρ, it follows that χ0 ∈ ker ρ and hence χ0 = dη for some η ∈ (ΛV )1. Then

D(χ) = d(χ+) +
∑
i

biΩi(χ0) +
∑
i

biΩi(χ+)

= d(χ+) +
∑
i

biΩi(dη) +
∑
i

biΩi(χ+)

= d(χ+) +
∑
i

bid
(
Ωi(η)

)
+
∑
i

biΩi(χ+).
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This term is in H(B)⊗ ker ρ because ker ρ contains all boundaries in ΛV and also, as

remarked earlier, Ωi(χ+)∈Ωi
(
(ΛV )+

)
⊆ (ΛV )+⊆ker ρ. We have shown that D(ker ρ) ⊆

H(B)⊗ ker ρ and since D = 0 on H(B), it follows that H(B)⊗ ker ρ is D-stable.

Further, suppose α ∈ H(B) ⊗ ker ρ is a D-cocycle. We can write α = α′ +
∑
i biαi

with α′ and each αi in ker ρ. Then D(α) = 0 implies d(α′) = 0 and hence α′ = dη′ for

some η′ ∈ ker ρ, as ker ρ is acyclic. Without loss of generality, we can choose η′ ∈ (ΛV )+,

as d(V0) = 0. Then D(η′) = d(η′) +
∑
i biΩi(η

′). From an earlier remark, each Ωi(η
′) ∈

(ΛV )+ ⊆ ker ρ. So we have

α = D(η′) +
∑
i

bi
(
αi − Ωi(η

′)
)

= D(η′) +
∑
i

biα
′
i

for elements η′, α′i ∈ ker ρ. As all products in H+(B) are trivial, D(α) = 0 implies each

d(α′i) = 0, so that α′i = dηi for elements ηi ∈ ker ρ. But D(biηi) = −bid(ηi) and hence

α = D(η′ −
∑
i biηi) with η′ −

∑
i biηi ∈ H(B) ⊗ ker ρ. This shows H(B) ⊗ ker ρ is an

acyclic ideal of H(B)⊗ ΛV .

To finish, notice that the projection

q : H(B)⊗ ΛV → H(B)⊗ ΛV

H(B)⊗ ker ρ

is a quasi-isomorphism, as H(B)⊗ker ρ is acyclic. If nil0(F ) = n, then Λ>nV ⊆ Λ>nV0 +

(ΛV )+ ⊆ ker ρ and hence the quotient H(B)⊗ ΛV/(H(B)⊗ ker ρ) is a nilpotent DG

algebra of length ≤ n + 1, and is quasi-isomorphic to a KS-model for E. Therefore, it

follows from [Co] that cl0(E) ≤ n+ 1. From Proposition 4.6, we have n+ 1 ≤ e0(E). But

in general we have e0(E) ≤ cat0(E) ≤ cl0(E). Hence these three invariants must agree

and furthermore must equal n+ 1.

5. Discussion and questions. In this last, somewhat informal, section we discuss

the foregoing results and give some additional ones. The intention is to indicate both

limits on, and possibilities for, development of the work in Sections 3 and 4. We also offer

some specific questions along these lines. All this is collected under two subheadings,

according as the topic relates to Section 3 or Section 4.

5.1. Formality. One can attempt a quite general study of relations between the for-

mality of F , E and B in a fibration (cf. [Th2] and [Vi]). It is tempting to think that

the very restrictive hypotheses of Proposition 3.2 might be relaxed, whilst keeping the

conclusion. However, the following sort of example suggests these hypotheses are actually

sharp.

Example. There is a rational fibration S2∨S2∨S2→E→S3 that is TNCZ in which

E is not formal. We omit details of this example, as it is similar to [Th2,Ex.III.13] and

other examples. We note that the fibre is formal with non-zero cohomology only in even

degrees. The fibration we have in mind is actually much closer to being trivial than just

TNCZ. It satisfies H∗(E;Q) ∼= H∗(B;Q) ⊗H∗(F ;Q) as algebras and admits a rational

section.
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In case a weaker conclusion is acceptable, then of course there are more possibilities.

In Proposition 3.2, we can remove the hypothesis of ellipticity on the fibre space, but so

far only at the cost of a greatly weakened conclusion, thus:

Proposition. Let F → E → B be a fibration in which F and B are both formal. If

the fibration is TNCZ , then E has spherically-generated cohomology.

The proof of this proposition is omitted. It can be proved with an argument similar to

that of Proposition 3.2. The above example also suggests this might be a sharp conclusion,

without much more restrictive hypotheses.

It would be satisfying to have a converse of Proposition 3.2. In Proposition 3.3, we

have such a result but only for a very special base. We offer the following as a specific

question in this area:

Question 1. Let F → E → B be a fibration in which F is formal and elliptic and B

is formal. If E is formal , then is the fibration is TNCZ?

Of course, there are many variations on this type of question to investigate. For more

results and examples along these lines, see [Th2] and [Vi].

Returning to Conjecture 1.1, it may be possible to apply Theorem 3.4, together with

an appropriate obstruction theory for the formality of E in such a fibration. Such an

obstruction theory does exist, and I hope to develop this line of investigation in future

work.

5.2. Numerical invariants. The results of Section 4 deal nicely with fibrations F →
E → B, in which F is positively elliptic and B is a wedge of odd-dimensional spheres,

but only for the invariants e0, cat0 and cl0.

Question 2. For a fibration F → E → B, in which F is elliptic with positive Euler

characteristic and B is a wedge of odd-dimensional spheres, is cup0(E) = 1 + nil0(F )?

Of course, if Halperin’s conjecture is true, it implies an affirmative answer to Question

2 (Corollary 4.5). It is curious that Question 2 remains unresolved whilst its counterpart

for the invariants e0, cat0 and cl0 is established.

Another ‘asymmetry’ in the results we have presented is the lack of an inequality for

cone-length in Proposition 4.3. This gives our next specific question:

Question 3. Let F → E → B be a fibration with F formal. If the fibration is TNCZ ,

then is cl0(E) ≥ cl0(B) + nil0(F )?

As regards extending the results presented in Section 4, we can show at least the

following:

Proposition. Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and B has e0(B) = 1. Then e0(E) ≥ 1 + nil0(F ).

Of course, if e0(B) = 1, then the base space B is rationally a wedge of spheres and

e0(B) = cat0(B) = cl0(B) = 1. Notice, however, that we allow even dimensional spheres
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and also that we do not have Poincaré duality in either the base or the total spaces. The

current proof of this Proposition uses a rather involved reduction argument, similar to

that of [Th1] or Proposition 4.6 here. This result suggests that the ‘next step’ might be

to investigate one of the following questions:

Question 4 (a). Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic and e0(B) = 2. Is e0(E) ≥ 2 + nil0(F )?

Question 4 (b). Let F → E → B be a fibration in which F is elliptic with positive

Euler characteristic. Is e0(E) ≥ 1 + nil0(F )?

In the previous two paragraphs, we focussed on the e0-invariant. Choosing one of the

other three invariants gives similar questions to be investigated. There is some overlap

between all these questions, because of the results of [Co-Fé-Le] and [Fé-Ha-Le] mentioned

earlier: e0(X) = cat0(X) = cl0(X) whenever X is a rational Poincaré duality space. Thus,

if F → E → B is a fibration in which F and B are rational Poincaré duality spaces, then

so too is E a rational Poincaré duality space and hence the three invariants agree on each

of F , E and B. Notice that this observation obtains the first part of the conclusion to

Theorem 4.7 in the case B = S2n+1. Finally, we mention that Jessup’s result [Je,Prop.3.6]

also shows that cat0(E) ≥ cat0(B) + 1 for any fibration in which F is positively elliptic

— without the hypothesis of TNCZ. These latter observations give some interesting

complements to the results presented here.
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