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1. Introduction. It is well-known that the number of critical points of a smooth

function on a closed manifold is bounded below by the Lusternik-Schnirelmann category

of the manifold. If all the critical points are non-degenerate, as a consequence of Morse

theory, the number of critical points is at least as great as the sum of the Betti numbers

and torsion numbers (namely, the minimal number of generators of the homology groups).

Another origin of our story is the pioneering work of Poincaré, which is now called

Poincaré’s last geometric theorem or the Poincaré-Birkhoff fixed point theorem. Let φ be

a self-diffeomorphism of an annulus S1 × [0, 1] which is area and orientation preserving.

If φ satisfies the twisting condition, i.e., φ maps S1 × {0} and S1 × {1} to themselves

and “rotates” them in opposite directions, then the theorem states that there are at least

two fixed points of φ (see for instance [2]). Arnold proposed to study the symplectic

analog of critical point theory and suggested to explore new fields, now collectively called

symplectic topology.

A typical example of a symplectic manifold is the cotangent bundle T ∗X of a smooth

manifold X. For a function f on X, its differential df gives a lagrangian submanifold

in T ∗X, namely the graph Γdf . The intersection of Γdf and the zero section OX can be

identified with the critical point set of f , so the estimate mentioned above gives a lower

bound on the number of intersection points. One can therefore think of intersections of

lagrangian submanifolds as a generalization of critical point sets of functions on a certain

space.

Let (M,ω) be a symplectic manifold and L a lagrangian submanifold. A diffeomor-

phism φ is called a symplectomorphism if φ preserves the symplectic structure, i.e.,

φ∗ω = ω. If a diffeomorphism φ is the time-one map of a flow generated by a time de-

pendent Hamiltonian vector field XHt (see §2), it is called an exact symplectomorphism.
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By the Cartan formula for the Lie derivative, exact symplectomorphisms are certainly

symplectomorphisms. In the case of the graph Γdf in T ∗X, it is the image of the zero

section by the time-one map of a Hamiltonian flow. For a closed lagrangian submanifold

L in (M,ω), there exists a symplectomorphism from a tubular neighborhood of L in M

to a tubular neighborhood of OL in T ∗L (Weinstein). Thus for a small exact deformation

φ, φ(L) can be identified with the graph of an exact 1-form on L. Here a “small exact

deformation” is an exact symplectomorphism whose Hamiltonian function H is C2-small.

For an exact symplectomorphism φ, one may expect the number of intersection points

of L and φ(L) is at least the minimal number of critical points of smooth functions on L

and it is at least the minimal number of critical points of Morse functions on L provided

that L and φ(L) intersect transversally. This is not true in general and we need some

additional conditions to show such an estimate. For instance, a small circle on a surface

can be separated from itself by an exact symplectomorphism.

On the other hand, this estimate is established in some situations. Hofer [14] and

Laudenbach and Sikorav [18] established a somewhat weaker estimate for the case of a

zero section in the cotangent bundle of a closed manifold. A breakthrough was made by

Floer when he introduced a “middle infinite dimensional (co)homology theory” for the

symplectic action functional which is now called Floer homology [7]. Floer’s construction

has now been extended by Oh [25]. Chekanov established an estimate for exact symplecto-

morphisms with small Hofer norm instead of assuming some condition for the lagrangian

submanifold [5].

Since the graph Γφ of a symplectomorphism φ is a lagrangian submanifold in (M ×
M,−ω ⊕ ω), we can consider an analogous problem for fixed points of φ. Note that the

fixed point set of φ is identified with the intersection of Γφ and the diagonal set ∆M and

that Γφ is the image of ∆M by id×φ. The following problem, called Arnold’s conjecture

for symplectic fixed points, is the theme of this survey. There are good survey articles

[23], [29] up to 1990. We include here recent progress on the topic.

Conjecture. Let M be a closed symplectic manifold and φ an exact symplectomor-

phism. Then the number of fixed points is at least the minimal number of critical points

of functions on M . Moreover, if all the fixed points are non-degenerate, i.e., 1 is not an

eigenvalue for dφ at any fixed points of φ, then the number is at least the minimal number

of critical points of Morse functions on M .

Since this minorant is bounded from below by Lusternik-Schnirelmann category, and

so also by the cup-length, in the general case and by the sum of Betti numbers and

torsion numbers in the non-degenerate case, we also have a conjecture in terms of these

topological invariants. For the estimate of fixed points of an exact symplectomorphism,

it has been established in several cases. In the two dimensional case, this conjecture is

proven. The result is due to Nikishin, Simon (2-sphere), Conley and Zehnder (torus) and

Floer and Sikorav (oriented closed surfaces of higher genus). After these works, Floer gave

an estimate for the case that π2(M) = 0 using Floer homology. In the non-degenerate

case, there is some progress. Floer himself generalized the result to the monotone case [8]

and Hofer and Salamon and the author exteneded the argument to the weakly monotone

case [15], [26]. Recently, K. Fukaya and the author, G. Liu and G. Tian, Y. Ruan, H.
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Hofer and D. Salamon proved that the number is at least the sum of Betti numbers (rank

of rational homology). A similar result for non-exact symplectomorphisms symplectic

isotopic to the identity is also studied by Lê and the author [19].

For the degenerate case, there are results by Floer, Lê and the author, Schwarz for the

cup-length estimate or quantum cup-length estimate [8], [20], [31]. However the conjecture

has not yet been proven, even in its weak form, in general. During the present conference, 1

Rudyak and Oprea announced an estimate for the original form of the conjecture in cases

including π2(M) = 0.

2. Variational set-up. Let (M,ω) be a symplectic manifold and h : M → R a

smooth function. We define the Hamiltonian vector field Xh of h by dh + i(Xh)ω = 0.

For a time-dependent Hamiltonian function H : M ×R→ R, we have a time-dependent

Hamiltonian vector field XHt
, where Ht(x) = H(x, t). Denote by φ the time-one map

of the flow generated by XHt
. For such a φ, the Hamiltonian function H can be cho-

sen as a one-periodic function, i.e., H(x, t + 1) = H(x, t). Then there is a one-to-one

correspondence between fixed points of φ and one-periodic solutions of the equation

ẋ(t) = XHt
.

This equation is the Euler-Lagrange equation for the following functional on the space of

null-homotopic loops:

AH(x) = −
\

D2

u∗ω +

1\

0

H(x(t), t),

where u : D2 → M is an extension of the loop x : S1 = ∂D2 → M . The first term of

the right hand side may depend on the homotopy class of u bounding the loop x, hence

this functional is only defined on a certain covering space of the space of null-homotopic

loops. However, we shall first restrict ourselves to the simple situation π2(M) = 0 and

leave the general case to later discussion. In such a case, AH is defined on the space LM
of null-homotopic loops.

If one can extend critical point theory, e.g., Morse theory, to AH , one may get some

lower bound for the number of one-periodic solutions. We note a couple of difficulties

arising in this project. The Hessian of AH is a first order differential operator which has

an infinite number of both positive and negative eigenvalues. Roughly, finite dimensional

critical point theory studies the difference in topology of (sub)level sets of a function.

However in our setting, “homotopy type” changes by attaching a handle of infinite index

which is homotopically trivial when we cross a non-degenerate critical value, so one may

not see this difference homotopically.

Another difference is that the equation for the gradient flow is ill-posed as an initial

value problem and may not have solutions passing through given loops. Here is a rough

comparison between Morse theory and Floer theory.

1The author is grateful to J. Oprea and A. Tralle, the organizers of the workshop “Homo-

topy and Geometry” held at the Banach Center in June 1997, for a stimulating and enjoyable

atmosphere.
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f : M → R Morse function AH : LM → R

Crit(f) the critical point set 1-periodic solutions of ẋ = XHt
(x)

Morse index Conley-Zehnder index

gradient flow lines connecting orbits for AH
connecting critical points between one-periodic solutions

Morse homology Floer homology

This table is just the beginning of the theory and one may hope for more comparisons

(e.g., [11]).

Conley-Zehnder [6] used finite dimensional reduction for AH in the case of a torus

R2n/Z2n and proved the conjecture (see also [4]). The theory of pseudo-holomorphic

curves was invented by Gromov who gave many applications in symplectic topology [13].

One of them is the existence of a fixed point of an exact symplectomorphism in the case

that π2(M) = 0. Floer combined these ideas and constructed “middle infinite dimensional

homology theory”, which is now called Floer homology. We shall sketch the argument in

the case that π2(M) = 0.

In order to define the gradient of a function, one needs a Riemannian metric. We need

a little preparation to define a metric on LM . Since the unitary group U(n) is a maximal

compact subgroup of the group of linear symplectic transformations on a 2n-dimensional

symplectic vector space, the structure group of the tangent bundle of (M,ω) reduces to

U(n). Hence, M admits an almost complex structure J .

An almost complex structure J on (M,ω) is called compatible or ω-calibrated, if

the bilinear form given by gJ(u, v) = ω(u, Jv) is a Riemannian metric. By reduction

of the structure group, there exist compatible almost complex structures unique up to

homotopy. Pick a compatible almost complex structure J , where gJ is a Riemannian

metric which induces an L2-inner product on the tangent space of the loop space. In this

way, we get a “metric” on LM .

Computing the gradient of AH with respect to this metric, we get

grad AH(x) = Jẋ+∇ Ht(x),

where ∇ Ht is the gradient of Ht with respct to gJ . We also compute formally its Hessian,

which is a first order elliptic ordinary differential operator. A critical point is called non-

degenerate, if its Hessian is non-degenerate.

In our case, non-degenerate critical points of AH are exactly one-periodic solutions

such that 1 is not a Floquet multiplier, i.e., 1 is not an eigenvalue of dφ at any fixed point,

where φ is the time-one map of the corresponding Hamiltonian flow. In Morse theory,

the index of a critical point is the number of negative eigenvalues of Hessian matrix. In

our case, there are infinitely many negative eigenvalues (as well as positive eigenvalues).

However, the relative index, i.e., the difference of indices at one-periodic solutions, can

be defined by the spectral flow [1] of Hessian operators along a path joining two one-

periodic solutions. Moreover there is a so-called Conley-Zehnder index [30] so that the

relative index is the difference of Conley-Zehnder indices.
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Formally, a minus gradient trajectory γ of AH is a path γ : R→ LM satisfying

γ̇ = −grad AH(γ).

Interpret the map γ : R → LM as u : R × S1 → M . Then a gradient trajectory

corresponds to a map u satisfying

∂u

∂s
+ J(u)

∂u

∂t
+∇ Ht(u) = 0.(1)

So far, these computations are just formal. From now on, we take this as the defini-

tion of gradient trajectories of AH , which we call connecting orbits for AH . Denote by

M̃(x−, x+) the space of connecting orbits joining x− to x+. The equation (1) is invariant

under translations in the s variable, hence R acts on M̃(x−, x+). This action is free

unless x− = x+.

As we noticed, we can compare the difference of indices of Hessian operator along a

path u joining two one-periodic solutions x− and x+. The Atiyah-Patodi-Singer index

theorem implies that the spectral flow equals the index of the corresponding elliptic

operator on the cylinder with a certain boundary condition. In our situation, the spectral

flow equals the index of the linearization of (1) with asymptotic convergence to x± as s

tends to ±∞. Hence the dimension of the moduli space of solutions of (1) is given by the

difference of Conley-Zehnder indices.

The gradient flow of f is called of Morse-Smale type if stable manifolds and unstable

manifolds intersect transversally. Suppose that a function f is a Morse function and

its gradient flow is of Morse-Smale type. The Morse complex of f is generated by the

critical point set as modules and its differential is defined by counting, with signs, gradient

trajectories joining two critical points of index difference 1. The resulting homology group

is called Morse homology, which is isomorphic to the ordinary homology. Details can be

found in [32].

The Floer complex is generated by one-periodic solutions. The Morse-Smale condition

of the gradient flow is interpreted as the surjectivity of the linearization operator of (1).

Let Ci(H,J) be the free module generated by one periodic solutions with Conley-Zehnder

index µ = i. Denote by P(H) the set of one-periodic solutions which are null homotopic.

The boundary homomorphism ∂ : Ci(H,J)→ Ci−1(H,J) is defined by:

∂x =
∑

µ(y)=i−1

m(x, y)y,

where m(x, y) is the cardinality of M(x, y) = M̃(x, y)/R counted with sign. By the

Gromov compactness argument, if a sequence inM(x, y) is uniformly bounded up to the

first derivative, it converges locally uniformly (after reparametrization). In this case, the

limit may be a tuple (u1, . . . , uk) ∈ M(x, x1) × · · · × M(xk−1, y). Here u1, . . . , uk are

not constant paths in the loop space. For a generic pair (H,J), the linearization of (1) is

surjective and M̃(x, y) is a manifold of dimension µ(x)− µ(y).

Suppose that µ(x) − µ(y) = 1. Since M(x, y) has positive dimension unless x = y,

one of M(xi, xi+1) has negative dimension, hence is empty, if k ≥ 2. So the sequence is

convergent. If the derivatives of the sequence are not uniformly bounded, the Gromov

compactness argument implies that J-holomorphic bubbles appear from the sequence. In
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the case of π2(M) = 0, no J-holomorphic sphere exists. HenceM(x, y) consists of finitely

many points. This manifold also carries a natural orientation (see [8], [9], [12]). When

µ(x)− µ(y) = 1, we compare this orientation with the action of R. If these orientations

are the same, we count the point by +1, if not, −1. In this way, the definition of the

boundary homomorphism is established.

We can show that ∂2 = 0 by studyingM(x, z) with µ(x)−µ(z) = 2. This manifold may

not be compact and its ends correspond to M(x, y) ×M(y, z) with µ(y) = µ(x) − 1 =

µ(z) + 1. The signed number of points in the boundary of a compact 1-dimensional

manifold must be zero and this implies that ∂2 = 0.

The resulting homology group is called Floer homology HF∗(H,J) and we can show

that the groups HF∗(Hi, Ji) are isomorphic for generic pairs (Hi, Ji), i = 1, 2.

To prove this, we need to study the solution space of the following equation:

∂u

∂s
+ J(u)

∂u

∂t
+∇ Hs,t(u) = 0,(2)

where Hs is a path in the space of one-periodic Hamiltonians such that Hs = H1 for

s < −R and Hs = H2 for s > R for some constant R > 0. The equation (2) is an

s-dependent analog of the equation (1) and not invariant under translations in the s-

variable.

A similar argument as that in the proof of ∂2 = 0 gives a chain homomorphism

HF∗(H1, J1)→ HF∗(H2, J2). In fact, it is an isomorphism (see, for instance, [23]).

For computation, we take a C2-small Morse function f and consider a Hamiltonian

H(x, t) = f(x). If the solutions of (1) are t-independent, hence correspond to gradient

trajectories of f , then HF∗(f, J) ∼= H∗+n(M). Once the surjectivity of the linearization

is established, the conclusion follows easily. For surjectivity, see [10], [26]. For another

approach to computation, see [27].

So far, we have considered the case π2(M) = 0. In general, we need to work on a

covering space of LM . Namely, we introduce

L̃M = {(x, u)|x : S1 →M,u : D2 →M such that u|∂D2 = x}/ ∼,

where (x, u) ∼ (y, v) if and only if x = y and evaluations of ω and c1(M) with the

2-spherical cycle u](−v) are zero. Here −v is the mapping from the disk with opposite

orientation. Then p : L̃M → LM is a covering space with covering transformation group

Γ = π2(M)/Ker Iω ∩Ker Ic1(M). Iω and Ic1(M) are homomorphisms from π2(M) to R

corresponding to the cohomology classes [ω] and c1(M).

The action functional AH is well-defined on L̃M . Write

P̃(H) = p−1(P(H)) ⊂ L̃M.

The Floer chain complex is generated by P̃(H), on which the Conley-Zehnder index

is well-defined. The boundary homomorphism is defined, in the same way as before, by

counting solutions of (1). We call a solution u a connecting orbit from (x−, u−) to (x+, u+)

if the evaluations of ω and c1(M) on the 2-spherical cycle u−]u](−u+) are zero. Note that

the number of end points (x+, u+) of connecting orbits, with index difference 1, starting

from (x−, u−) can be infinite. However the boundary homomorphism is well-defined on

the completion of the free module generated by P̃(H) with respect to AH .
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Compactness of M(x, y) with µ(x) − µ(y) = 1 is established once bubbling off of

J-holomorphic spheres is avoided. This follows from transversality of evaluation maps for

connecting orbits and J-holomorphic spheres (see [15]). For a weakly monotone symplectic

manifold (M,ω), Hofer and Salamon constructed Floer homology for a generic pair (H,J).

Here (M,ω) is called weakly monotone (or semi-positive), if the following condition holds:

ω ·A < 0 for A ∈ π2(M) satisfying c1(M) ·A < 3−m, where m is half of the dimension

of M .

Denote by M̃J(A) the space of J-holomorphic spheres representing the homology class

A ∈ H2(M ;Z). Write MJ(A) = M̃J(A)/PSL(2,C) the moduli space of J-holomorphic

spheres representing the homology class A ∈ H2(M ;Z). Suppose that (M,ω) is weakly

monotone. If a sequence fk is not convergent in MJ(A), it converges locally uniformly

outside of finitely many points. J-holomorphic bubbles appear around these points after

a rescaling procedure. So the limit of fk consists of finitely many J-holomorphic spheres

g1, . . . , gl satisfying the following conditions.

1.
∑l
i=1[gi] = A.

2. The union of images of gi is connected.

If the linearization operator of the J-holomorphic curve equation at gi is surjective, then

MJ([gi]) is a manifold near gi by the implicit function theorem and its dimension is given

by the Atiyah-Singer index formula.

dim MJ([gi]) = 2m+ 2c1(TM)[gi]− 6.

Here 6 is the dimension of the automorphi sm group PSL(2,C) of CP 1. If evaluation

maps for [gi] are transver sal, then the dimension of the set of limit points of MJ(A) is

less than the dimension of MJ(A) at least by 2. This insures the existence of a good

compac tification. We explain this fact in the case l = 2 for simplicity. The general case

is also treated in the same spirit, but is more complicated.

Let evi : M̃J([gi])→M be the evaluation map at the point [1, 0] of CP 1. If ev1 and

ev2 are transversal, then the dimension of (ev1 × ev2)−1(∆M ) is 2m + 2c1(TM)[g1] +

2m+ 2c1(TM)[g2]− 2m = 2m+ 2c1(A), where ∆M is the diagonal set in M ×M . This is

the space of pairs of J-holomorphic spheres representing [gi] respectively and coinciding

at [1, 0]. Then the product of two copies of the automorphism group of (CP 1, [1, 0]) acts

on it locally freely if [gi] 6= 0 for i = 1, 2.

This group is 2 × 4 = 8 dimensional and the moduli space of such pairs is 2m +

2c1(TM)[A] − 8, which is less than dim MJ(A) by 2. McDuff proved surjectivity of

the linearization operator for somewhere injective J-holomorphic curves with respect to

a generic J . Here a map f is called somewhere injective if there exists a point x in

the domain such that df is injective at x and f−1(f(x)) = {x}. For transversality of

evaluation maps, see [24]. For connecting orbits and J-holomorphic bubbles, a similar

argument holds [15].

If a J-holomorphic map f from a closed Riemann surface is not somewhere injective,

it factors into a branched covering between closed Riemann surfaces and a somewhere

injective map h. If (M,ω) is weakly monotone, we have c1(TM)[f ] ≥ c1(TM)[h]. So if a
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multi-covered curve f appears as gl, say, then the union of the image of g1, . . . , gl−1, h is

also connected.

This condition enables us to compactifyMJ(A) by attaching lower dimensional strata.

We encounter a problem when a multi-covered curve f satisfies c1(TM)[f ] < c1(TM)[h],

i.e., c1(TM)[h] < 0. We call such a problem a “negative multiple cover problem”. We

shall explain the way to overcome it in the next section.

3. Kuranishi structure and multi-valued perturbation. This section is a sur-

vey on joint work with Kenji Fukaya concerning Gromov-Witten invariants and the

Arnold conjecture for general symplectic manifolds [12]. There are several mathemati-

cians who have discussed this problem independently. J. Li and G. Tian constructed

Gromov-Witten invariants for algebraic manifolds and also for general symplectic man-

ifolds. G. Liu and G. Tian used their method to prove the Arnold conjecture. There

are also works by Y. Ruan, B. Siebert, and H. Hofer and D. Salamon. Gromov-Witten

invariants for algebraic manifolds were also constructed by K. Behrend [3].

To deal with compactification of the moduli space of J-holomorphic curves and the

moduli space of connecting orbits, we introduce the notion of stable maps due to Kontse-

vich [16]. It is widely known that singular Riemann surfaces with at most double points

are necessary to compactify the moduli space of Riemann surfaces. We need to con-

sider the moduli space of Riemann surfaces with marked points, namely the space of

(C, x1, . . . , xk) where C is a Riemann surface and x1, . . . , xk are points on C, i.e., marked

points. The genus of a singular Riemann surface C =
⋃

Σi with at most double points

is defined as the sum of the genus of its normalization and the first Betti number of a

graph associated to it. Here the vertices of the graph are irreducible components. For

double points, we put an edge joining vertices corresponding to irreducible components

containing the double point. This gives a graph associated to C. A possibly singular Rie-

mann surface C of genus g and with k marked points and at most double points is called

a stable curve, if each irreducible component Σi of C satisfies the following:

Either the genus of Σi is at least 2, the number of marked points and double points

on Σ is at least 1 if its genus is 1 and at least 3 if its genus is 0.

This condition is equivalent to the condition that the automorphism group of C is

finite. Here a homeomorphism φ : C → C is an automorphism if its restriction to each

irreducible component is biholomorphic and φ preserves marked points. The moduli space

of stable curves of genus g and with k marked points is a compact orbifold.

When we consider the limit of a sequence of J-holomorphic curves with varying com-

plex structure on the domain, we have to take the limit of complex structures on the

domain into account. However this is not enough. For instance, regular fibers of an ellip-

tic surface are holomorphic curves of genus 1. Singular fibers are limits of such curves and

classified by Kodaira. In the list of singular fibers, there are “unstable curves”. Kontsevich

considered a stability condition for J-holomorphic curves.

Let C =
∑

Σi be a singular Riemann surface with at most double points. A J-

holomorphic map f : C → M is called a stable map, if each irreducible component

satisfies one of the following:
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1. The restriction of f to Σi is not a constant map.

2. The genus of Σi is at least 2.

3. The number of marked points and double points on Σ is at least 1 if its genus is 1

and at least 3 if its genus is 0.

A biholomorphic automorphism φ of (C, x1, . . . , xk) is called an automorphism of

f : C → M , if f = f ◦ φ holds. The condition of stability for f is, again, equivalent

to the condition that its automorphism group is finite. We can introduce a topology on

the moduli space of stable curves and show that it is compact and Hausdorff. A similar

construction can be done for connecting orbits in Floer theory.

This space may be pathological and we may not define its fundamental class. We

describe this space by “local defining equations” and “perturbing the equations” so that

the zero locus becomes nice. The first step is based on the Kuranishi method [17] and

the gluing argument for J-holomorphic curves in the appendix of [24]. The second step

is subtle since usual perturbation may not work. This is because of the existence of

automorphisms. We introduced the notion of multi-valued perturbation and making the

zero locus nice.

Recall that a map f : (Σ, j)→ (M,J) is (j, J)-holomorphic or simply J-holomorphic

if it satisfies

df + J ◦ df ◦ j = 0.

Consider the left hand side of this equation as a section ∂ of a Banach bundle E with

fiber at f being Γ(Σ, T ∗
0,1Σ ⊗C f∗T 1,0M). For fixed j and J , ∂ is a Fredholm section.

Locally we can choose a finite dimensional subbundle Ff in E such that ∂ is transversal

to Ff . Then the inverse image of Ff is a finite dimensional manifold Vf . In fact, we may

have non-trivial automorphisms of f . In this case, we can choose the subbundle so that

it is invariant under the automorphism group Γf , i.e., an equivariant vector bundle over

Vf . A stability condition for f is finiteness of Γf . On Vf , the section ∂ takes values in Ff
and gives a section sf of Ff → Vf . For a stable map f : C → M , we modify the gluing

argument in [24] in the situation with “obstruction bundles” and give a local description

of the moduli space in a similar way. The moduli space is locally isomorphic to the image

of the zero locus of sf in the quotient space Uf = Vf/Γf . (Uf is an orbifold.) If sf is

perturbed to a section transversal to the zero section in equivariant way, the zero locus

in Uf becomes an orbifold. However such a perturbation is not always possible.

So we consider a multi-valued section, each branch of which is transversal to the zero

section. We can perturb sf , not necessarily in an equivariant way, so that it is transversal

to the zero section (Thom’s transversality theorem). Then we take all the images of this

section under Γf . Consider the set of points where one of branches of the multi-section

vanishes. For a point in this set, we associate the weight by the ratio of the number of

branches vanishing at the point to the number of all the branches. This construction is

local and we have to make such multi-valued perturbations everywhere in a compatible

way. This is discussed in terms of Kuranishi structure defined below.

A Kuranishi structure of dimension n on a compact metrizable space Y is a collection

(Up, Ep, sp, ψp, φpq, φ̂pq) for each p ∈ Y such that
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1. Up = Vp/Γp is an orbifold and Ep is an orbibundle on it.

2. sp is a single valued section of Ep.

3. ψp is a homeomorphism from s−1
p (0) to a neighborhood of p in Y .

4. Let q ∈ ψp(s−1
p (0)). Then there exists an embedding φpq : Uq → Up in the category

of orbifolds, which is covered by an embedding of orbibundles φ̂pq : Eq → Ep.

5. sp ◦ φpq = φ̂pq ◦ sq, ψp ◦ φpq = ψq.

6. If r ∈ ψq(s−1
q (0)), then φpq ◦ φqr = φpr, φ̂pq ◦ φ̂qr = φ̂pr.

7. dim Up − rank Ep = n for all p ∈ Y .

We can find multi-valued sections for Ep in a compatible way so that each branch is

transversal to the zero section (see [12]). The last condition in the definition of Kuranishi

structure is satisfied in our case, because the linearization operator of the J-holomorphic

curve equation is a Fredholm operator and its index is invariant under compact pertur-

bation. Note that for a higher dimensional complex manifold Z and a holomorphic vector

bundle E, the difference of dimensions of H0(Z;E) and H1(Z;E) is not necessarily in-

variant under deformation. Only the alternating sum of the dimensions of Hk(Z;E) is

given by the Riemann-Roch-Hirzebruch formula or the Atiyah-Singer index formula and

topological invariants.

We can also define an orientation of a Kuranishi structure and show that there is a

canonical orientation for the Kuranishi structure on the moduli space of J-holomorphic

curves. This enables us to define the “fundamental cycle” with rational coefficients. This

is the way to overcome the negative multiple bubble problem and we can define Gromov-

Witten invariants.

The construction of Floer homology also follows by a similar argument and we get

the following:

Theorem. Let (M,ω) be a closed symplectic manifold and φ an exact symplecto-

morphsm of (M,ω) with only non-degenerate fixed points. Then the number of fixed points

of φ is at least the sum of Betti numbers of M , i.e.,
∑
k dim Hk(M ;Q).
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[16] M. Kontsevich, Enumeration of rational curves by torus actions, in: Moduli space of

curves, ed. by H. Dijkgraaf, C. Faber, G. v. d.Geer, 335–368, Progress in Mathematics

129, Birkhäuser 1995.
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