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1. Introduction. In introducing his series of lectures at the conference, Hans Baues

discussed the question of classifying the homotopy types of indecomposable stable finite

complexes, mentioning logical problems which might arise in such a programme. The data

he chose to use in the classification of small complexes, stressed the role of the classical

Hurewicz homomorphism from homotopy to homology groups. This short note addresses

both aspects, but with a different approach. In the first section, we prove a theorem on

the Hurewicz homomorphism for a product of complex projective spaces in the stable

category. In the second section, we discuss its relevance to stable decompositions of some

spaces associated with the unitary group. The mathematics is joint work with Michael

Crabb.

Let P denote a product of n-copies of P∞ , infinite dimensional complex projective

space. When discussing the unitary group, it will be more natural to think of P as BT ,

with T a maximal torus in U(n). As P is an Eilenberg-Maclane space, its homotopy

groups are clear. This latter is not true if we consider its suspensions ΣtP . Let

hkr : πr(P )→ Hr(P, Z/kZ)

be the stable Hurewicz homomorphism, or

hkr : πr+t(Σ
tP )→ Hr+t(Σ

tP, Z/kZ)

for any positive t, where k is a fixed positive integer and the coefficients in the homology

group arise by tensoring the integral homology with Z/kZ.

Theorem 1.1. There exists an integer K(n, k) such that hkr is the zero homomor-

phism whenever r > 2K(n, k).
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At present, the theorem is primarily a qualitative result as the currently known upper

bounds on the integers K(n, k) when n > 2 are too large to be useful for computation.

Further progress on determining the indecomposable summands of the spaces discussed

in the second section using these techniques depends upon obtaining better results on

the K(n, k)

We describe the number theory needed for the proof of Theorem 1.1 from [7].

A rational polynomial p(ξ) ∈ Q[ξ] is a numerical polynomial, where we write ξ =

(ξ1, ξ2, . . . , ξn), if p(m) ∈ Z whenever m ∈ Zn. A basis for numerical polynomials over Z
is

{γi1(ξ1)γi2(ξ2) . . . γin(ξn))}, ij ≥ 0,

where γi(ξ) is the binomial polynomial ξ.(ξ − 1) . . . (ξ − i+ 1)/i!.

A numerical polynomial is a numerical M -form if it is homogeneous of degree M . An

example of an n(n+ 1)/2-form is given by

det{γi(ξj)}, 1 ≤ i, j ≤ n.

Any numerical M -form in n-variables can be written as

p(ξ) =
∑

ai1,i2,...,in
ξi11
i1!
.
ξi22
i2!

. . . .
ξinn
in!

.

where
∑
ij = M and each ai1,i2,...,in ∈ Z. We write A(p(ξ)) for the highest common

factor of the coefficients ai1,i2,...,in ; this is an invariant of p(ξ) under linear change of

variables over Z.

Corollary 1.4 of [7] gives the following.

Theorem 1.2. Let k be a fixed positive integer. There exists a smallest positive integer

K(n, k) such that whenever p(ξ) is a numerical M -form in n-variables and M > K(n, k),

then k divides A(p(ξ)).

There are completely analogous results when Z is replaced by Z(p), the integers lo-

calised at a prime p.

We deduce Theorem 1.1 from Theorem 1.2 using ordinary complex K-homology the-

ory and dual Adams operators. (It is convenient to use p-local connective K-theory

and stable Adams operators when working at a prime p.) In complex K-homology the-

ory, K0(P∞) is a filtered ring using the CW-filtration and the Pontrjagin product. If

ξ ∈ K0(P∞) is “dual” to the reduced Hopf line bundle in K-cohomology, a basis for

K0(P∞) is {γi(ξ)}, i ≥ 0. Let ξi denote

1⊗1⊗ . . . 1⊗ξ⊗1⊗ . . .⊗1

with ξ in the i-th position. The Künneth formula then enables us to identify K0(P )

with the linear space of numerical polynomials. The dual Adams operator ψα satisfies

ψα(ξi) = αξi. So the eigenspace corresponding to αM is precisely the space of numerical

M -forms.

The associated graded ring of K0(P ) is
⊕

i≥0H2i(P,Z)). If the image of ξi is xi
under the quotient map to K0(P )2/K0(P )1≡H2(P,Z)), then the image of any M -form
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p(ξ) ∈ K0(P )2M is p(x) in H2M (P,Z) , where x = (x1, x2, . . . xn). A basis in H∗(P,Z) is{
xi11
i1!

.
xi22
i2!

. . . .
xinn
in!

}
,

where ij ≥ 0.

Let f : S2q → P be a stable map realized as f : S2q+2u → Σ2uP . When w ∈
K̃(S2q+2u) is a generator, ψα(w) = αq+uw and so ψα(f∗w) = αq+uf∗w. If v ∈ K̃0(P )

suspends to f∗w, ψα(v) = αqv ∈ K̃0(P )2q and so, as above, v is a numerical q-form

p(ξ) ∈ K0(P ). If w̄ ∈ H2q+2u(S2q+2u) is the generator corresponding to w, f∗(w̄) = p(x),

by naturality.

So, in the language of stable homotopy, we have proved the following lemma.

Lemma 1.3. Let f : S2q → P be a stable map, u ∈ K̃0(S2q) a generator with corre-

sponding generator ū ∈ H2q(S
2q,Z). Then f∗(u) is a numerical q-form p(ξ) ∈ K0(P ) and

f∗(ū) = p(x) ∈ H2q(P,Z).

Theorem 1.1 follows from Lemma 1.3 and Theorem 1.2. Let [f ] ∈ πr+t(ΣtP ). Theorem

1.1 has no content unless r and t have the same parity and as the conclusion is preserved

under suspensions (but not de-suspensions), we can assume that both are even integers.

So we have a stable map f : S2q → P where 2q = r and f∗(u) = p(ξ) ∈ K0(P ) is a

numerical q-form. So by Theorem 1.2, k divides A(p(x)) and p(x) = 0 in H2q(P,Z/kZ)

or in Hr+t(Σ
tP,Z/kZ) when q > K(n, k). Thus hkr ([f ]) = 0 if r > 2K(n, k).

2. Applications. Theorem 1.2 was proved to help in the investigation of the stable

homotopy decomposability of spaces associated with connected Lie groups. A space or

spectrum X is indecomposable if it cannot be expressed as a wedge of two homotopically

non-trivial spaces or spectra. The basic strategy is routine. If X is a complex of finite

type and X ' Y ∨ Z where Y is 2q − 1 connected and H2q(Y,Z) is infinite, then there

exists a stable map f : S2q → Y inducing an injection in homology in degree 2q by

inclusion of a bottom cell. In what follows, we discuss the significance of Theorem 1.1

for BU(n), U(n) and ΩSU(n); near complete results are known only for n = 1 or 2 [3],

using number theory established in [1].

The idea can be illustrated for BG with G a compact, connected Lie group of rank

n and T a maximal torus. The infinite space BG is rich in cohomology and if one can

show that there are few potential summands and estimate their connectivities, a study

of cohomology operations can lead to a complete determination of these summands. So

we suppose that BG has a stable summand Y as in the paragraph above. We consider

the stable composition

S2q → Y → BG+
i!→ BT+

i→ BG+

where the first two maps and last map i are inclusions and the penultimate map i! is a

Becker-Gottlieb transfer. The composition (i.i!)∗ : H∗(BG,Z) → H∗(BG,Z) is multipli-

cation by χ(G/T ). So if χ(G/T ) does not divide k and f : S2q → BT+ is part of the

composition above, hk2q[f ] is non-zero and by Theorem 1.1, q ≤ K(n, k). Thus for each

summand in a decomposition of BG, there is a numerical form p(x) of degree less than

or equal to K(n, k) which does not vanish in H∗(BG,Z/kZ) by Lemma 1.3 .



238 J. R. HUBBUCK

There are well known stable decompositions of BU(n), U(n) and ΩSU(n). A good

reference is [2], except that the splitting for ΩSU(n), established by Mitchell and Richter,

was not known at the time and remains unpublished; a later paper [5] generalizing the

results contains the details needed to construct a proof.

The space BU(n) is filtered by inclusions

∗ ⊂ BU(1) = P∞ ⊂ U(2) ⊂ . . . ⊂ U(n)

and MU(i) ' BU(i)/BU(i− 1). Snaith [10] proved that

BU(n) '
∨

1≤i≤n

MU(i),

and so it is the indecomposability of the MU(i) which is of interest.

The homology group H∗(P
∞,Z) has a basis {bi}, i ≥ 0, where the degree of bi is 2i

and b1 is dual to the Euler class. Under the inclusion of P∞ in BU(n), H∗(BU(n),Z) ⊂
H∗(BU,Z) = Z[bi], i ≥ 0, is spanned by all monomials of homogeneous degree ≤ n. So

H̃∗(MU(n),Z) can be identified with the subspace spanned by monomials of degree n.

In applying Theorem 1.1 and Lemma 1.3, the most efficient results occur when k = 2β .

As χ(U(n)/T ) = n!, we set β = ν2(n!) in the discussion above, and deduce that if Y is a

non-trivial stable summand of MU(n), its connectivity is not greater than 2K(n, 2β). In

particular when n = 2, 2K(2, 4) = 24. Then using Lemma 1.3, one seeks to find numerical

M -forms of degree ≤ 12 which give non-zero classes in H∗(BT,Z/4Z). If one also uses

the fact that the map i! : H∗(BU(2),Z)→ H∗(BT,Z) is a symmetrization map, a short

computation shows that there are only two possible elements in H̃∗(MU(2),Z/4Z) which

could represent the lowest degree classes of summands; these are b21 and b1b3 + 2b22. We

deduce that MU(2) has at most two stable summands. The technical details will appear

in [4], where it is shown that this is the best possible result in the sense that MU(2) splits

into a wedge of two spectra provided one inverts the prime 3.

There are also stable splittings of U(n) and ΩSU(n). Let L ∈ P (Cn) , πL : Cn → Cn
be orthogonal projection onto L and λ be a complex number of modulus 1. Hopf defines

the pseudo-reflection ρL(λ) ∈ U(n) by setting ρL(λ) = λπL + (I − πL) . So taking

ΩU(n) = Map∗{S1, U(n)}, we have ρL ∈ ΩU(n). We can define subspaces of ΩU(n) by

setting

Ω(k)U(n) = {f ∈ ΩU(n) : f = ρL1
.ρL2

. . . ρLk
}

where the product is induced from that of U(n) and Li ∈ P (Cn). These lie in different

components, but if we choose a U(1) ⊂ U(n) and use the projection U(n)→U(n)/U(1) =

SU(n), we obtain a Mitchell filtration of ΩSU(n),

∗ ⊂ Ω(1)SU(n) = P (Cn) ⊂ Ω(2)SU(n) ⊂ . . . ⊂ Ω(i)SU(n) ⊂ . . . ⊂ ΩSU(n).

Let Wk(n) = Ω(k)SU(n)/Ω(k−1)SU(n). The theorem of Mitchell and Richter states

that

ΩSU(n) '
∨
k≥1

Wk(n).

The spaces Wk(n) have the homotopy types of finite complexes.
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The Pontrjagin ring H∗(SU(n),Z) = Z[bi] ≡ S∗{bi}, where 1 ≤ i ≤ n− 1, as ΩSU '
BU and H∗(ΩSU(n),Z) ⊂ H∗(ΩSU,Z). Then H∗(Ω

(k)SU(n),Z) =
⊕

h≤kS
h{bi} and

so H∗(Wk(n),Z) = Sk{bi}, the linear space spanned by monomials of degree k in bi,

1 ≤ i ≤ n− 1. In particular Wk(∞) 'MU(k). The earlier discussion relating to MU(k)

can therefore be applied to Wk(n) ⊂ MU(k). In particular when k = 2, we deduce that

W2(n) can have at most two stable summands by the same argument as for MU(2). But

whereas MU(2) splits at the prime 2, W2(n) is indecomposable; a routine though delicate

computation shows that one of the homology classes b2n−1 or bn−2bn−1, depending upon

the parity of n, cannot lie in either potential summand. Summarising the result for n = 2,

we have the following result.

Theorem 2.1. (a) W2(n) is stably indecomposable (at the prime 2).

(b) W2(∞) = MU(2) splits as a wedge of two indecomposable spectra, if the prime 3

is inverted.

The technical details needed for the proof and related results will appear in [4].

The pseudo-reflection ρL(λ) ∈ U(n) also leads to a filtration on U(n). Let

U(n)(k) = {ρL1
(λ1).ρL2

(λ2) . . . ρLk
(λk) : Li ∈ P (Cn)}

where λi∈C with modulus 1. Then

∗ ⊂ U(n)(1) = Σ(P (Cn)+) ⊂ U(n)(2) ⊂ . . . ⊂ U(n)(n) = U(n).

We set Xk(n) = U(n)(k)/U(n)(k−1). There is an induced filtration on SU(n) and we

define SXk(n) = SU(n)(k)/SU(n)(k−1). A part of the main theorem of [9] gives the

following stable decompositions.

U(n) '
∨

1≤k≤n
Xk(n)

SU(n) '
∨

1≤k≤n−1
SXk(n)

As U(n) is homeomorphic to S1×SU(n), stably Xk(n) ' ΣSXk−1(n)∨SXk(n), and

so we are interested in the indecomposability of the stable finite complexes SXk(n).

At the level of homology H∗(SU(n),Z) ≡
∧∗{Σbi}, 1 ≤ i ≤ n−1 and H∗(SU(n)(k),Z)

≡
⊕

j≤k
∧k{Σbi}. So H∗(Wk(n),Z) can be identified with

∧k{Σbi}, 1 ≤ i ≤ n− 1, the

space spanned by {Σbi1∧Σbi2∧ . . .∧Σbik}, i1 < i2 < . . . < ik.

Let G be a compact Lie group with Lie algebra g and denote by λ(G) the Lie algebra

bundle EG×Gg over BG. The transfer construction applied to the bundle

BT = EU(k)/T → BU(k) = EU(k)/U(k)

defines a map of Thom spectra i! : BU(n)λ(U(n)) → BTλ(T ). But BTλ(T ) = Σk(BT+)

and BU(k)λ(U(k)) = Xk(∞).

It is proved in Lemma 4.1 of [3] that in homology

i!∗ : H̃∗(Xk(∞),Z)→ H̃∗(Σ
kBT+,Z)

is the skew-symmetrisation map and as such is a monomorphism in homology with Z/2Z
coefficients. Using a line of reasoning similar to that above, we deduce that if Y is a non-

trivial summand of SXk(∞) or of SXk(n), then it is at most k+ 2K(n, 2)− 1 connected.

When k = 2, there are only 2 classes in H̃∗(SX2(∞),Z/2Z) which can represent the
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lowest dimensional classes of stable summands, Σb1∧Σb2 and Σb1∧Σb3. Again, and for

similar reasons, one has a dichotomy between the finite and the infinite unitary groups,

given as Theorems 1.1 and 1.2 of [3].

Theorem 2.2. (a) The space SX2(n) is stably indecomposable (at the prime 2).

(b) The spectrum SX2(∞) splits as a wedge of two indecomposable pieces if the prime

3 is inverted.

The techniques discussed here for the unitary group are not appropriate for the real

orthogonal group. In the symplectic case, the second summand of the “Miller splitting”

as in Theorem 2.2 of Sp(n) is indecomposable in the finite and infinite cases. But the

situation for ΩSp(n) is quite different [8,6,5].
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