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Introduction. Traditionally, soft techniques of algebraic topology have found much

use in the world of hard geometry. In recent years, in particular, the subject of symplectic

topology (see [McS]) has arisen from important and interesting connections between sym-

plectic geometry and algebraic topology. In this paper, we will consider one application

of homotopical methods to symplectic geometry. Namely, we shall discuss some aspects

of the homotopy theory of circle actions on symplectic manifolds. Because this paper is

meant to be accessible to both geometers and topologists, we shall try to review relevant

ideas in homotopy theory and symplectic geometry as we go along. We also present some

new results (e.g. see Theorem 2.12 and §5) which extend the methods reviewed earlier.

This paper then serves two roles: as an exposition and survey of the homotopical ap-

proach to symplectic circle actions and as a first step to extending the approach beyond

the symplectic world.

1. Review of symplectic geometry. A manifold M2n is symplectic if it possesses

a nondegenerate 2-form ω which is closed (i.e. dω = 0). The nondegeneracy condition is

equivalent to saying that ωn is a true volume form (i.e. nonzero at each point) on M .

Furthermore, the nondegeneracy of ω sets up an isomorphism between 1-forms and vector

fields on M by assigning to a vector field X the 1-form iXω = ω(X,−). The symplectic

manifold M is then denoted by (M2n, ω). For the basic theory of symplectic manifolds,

see [Au1], [AM], [AL], [ABKLR] and [McS] for instance.
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Examples 1.1. (1) Let R2k denote Euclidean space with coordinates 〈x1, . . . , xk,
y1, . . . , yk〉. It is then easy to see that the form ω =

∑k
i=1 dx

i ∧ dyi is symplectic by

observing that ωk is a volume form.

(2) For any manifold Mk, the cotangent bundle T ∗M is a symplectic manifold with

a canonical symplectic form defined locally by a 1-form θ =
∑k
i=1 pi dq

i with exact

symplectic 2-form

ω = −dθ =

k∑
i=1

dqi ∧ dpi.

Here, (q1, . . . , qk, p1, . . . , pk) are local coordinates, the qi’s coming from M and the pj ’s

coming from T ∗M .

(3) In fact, the first two examples will not be of interest to us. From now on, we

will consider only closed (i.e. compact without boundary) manifolds. From (1), we can

obtain an example, however, by noting that the symplectic form on R2k is invariant under

translations xi 7→ xi + 2π and yi 7→ yi + 2π, so this form induces a symplectic form on

the orbit space T 2k = R2k/Z2k. Hence, the even tori have natural symplectic structures

derived from Euclidean space.

(4) Perhaps the most important example of symplectic manifolds from the viewpoint

of geometry are Kähler manifolds. Let M denote a complex k-manifold endowed with a

Hermitian metric (in local analytic coordinates (z1, . . . , zk)

h =

k∑
i=1

hijdz dz̄.

Writing dzi = dxi + i dyi and dz̄j = dxj − i dyj , we can expand the expression above into

its real and imaginary parts to get

h = g + i ω

where g is a Riemannian metric on M and ω is a 2-form (which must be nondegenerate

since it is the alternating part of a Hermitian form). The 2-form ω may be written as

ω = − i
2

k∑
i=1

hijdz
i ∧ dz̄j .

Then, if ω is closed, M is said to be a Kähler manifold. By what we have said above,

all Kähler manifolds are symplectic. Examples of Kähler manifolds include CP k for all

k as well as all smooth projective varieties V . In this case, the 2-form ω is obtained

as the pullback of the Kähler form of CP k via the inclusion V ↪→ CP k. A compact

Kähler manifold M2k also has the Hard Lefschetz Property which says (in part) that

multiplication by powers of the Kähler cohomology class, also denoted by ω, induce

cohomology isomorphisms

ωj : Hk−j(M ;Q)
∼=−→ Hk+j(M ;Q).

Furthermore, because forms on a Kähler manifold decompose into holomorphic and anti-

holomorphic parts, there is a Hodge decomposition on cohomology with

Hp,q(M ;C) ∼= H
q,p

(M ;C)
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so that Hn(M ;C) = ⊕p+q=nHp,q(M ;C). The isomorphism above then shows that, since

odd numbers have symmetric partitions into two numbers, in odd degrees, Betti numbers

must be even. In even degrees, because ωj 6= 0, the cohomology of a compact Kähler

manifold is always nonzero.

(5) If G is a compact Lie group, then it acts on the dual of its Lie algebra g∗ by the

coadjoint action. It is a fact that the orbits of this action are always symplectic manifolds.

For instance, the coadjoint action of SO(3) on so(3) ∼= R3 actually corresponds to rotation

in R3, so the orbits of the action are 2-spheres of varying radii. Of course, 2-spheres (as

well as all oriented surfaces) are symplectic.

The fundamental theorem about symplectic manifolds is a generalization of the situ-

ation for cotangent bundles.

Theorem 1.2 (Darboux’s Theorem). Around each point in a symplectic manifold

(M2k, ω) there are local coordinates (x1, . . . , xk, y1, . . . , yk) such that

ω =

k∑
i=1

dxi ∧ dyi.

This result says that symplectic manifolds have no local distinguishing invariants. In

this sense, symplectic geometry is a global subject.

Example 1.3. Symplectic geometry is the natural framework for Hamiltonian me-

chanics. Given a smooth function H : M → R (i.e. the Hamiltonian), let XH be the

vector field on M determined by the isomorphism between 1-forms and vector fields,

iXHω = dH.

Take Darboux coordinates (qi, pi) so that ω =
∑
dqi ∧ dpi and

XH =
∑

q̇i
∂

∂qi
+
∑

ṗj
∂

∂pj

where q̇i and ṗj are tangent vectors to the integral curves of XH . Now, the forms of ω

and XH immediately give

q̇i = ω

(
XH ,

∂

∂pi

)
= dH

(
∂

∂pi

)
=
∂H

∂pi

and

ṗi = −ω
(
XH ,

∂

∂qi

)
= −dH

(
∂

∂qi

)
= −∂H

∂qi
.

These are Hamilton’s equations of course, so the symplectic form is seen as providing the

proper theoretical avenue for studying mechanics.

The example above provides the motivation for studying S1 actions on symplectic

manifolds. The circle S1 acts symplectically on the symplectic manifold (M2n, ω) if each

g ∈ S1 satisfies g∗ω = ω as forms. We denote the action by A : S1 ×M → M and the

orbit map at m by am(g) = A(g,m) (or simply a when no confusion can arise). The

orbit map induces a map of tangent spaces Tea : TeS
1 → TmM for any given m, so

by fixing a unit vector X in TeS
1 ∼= R and mapping by Tea we obtain a fundamental

vector field X on M . Recall that the interior multiplication operator iX is defined on a
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k-form θ by iXθ(Y1, ..., Yk−1) = θ(X,Y1, ..., Yk−1). The operator iX is a derivation on the

commutative differential graded algebra of de Rham forms and it satisfies

LX = iXd+ diX ,

where LX is the Lie derivative and d is exterior differentiation. The definition of LX and

the S1-invariance of the closed form ω imply that

0 = LX(ω) = diXω.

Hence, iXω is a closed 1-form. The S1-action is said to be Hamiltonian if iXω is exact.

That is, the action is Hamiltonian if there is a smooth function µ : M → R with dµ = iXω.

This description may, of course, be generalized to torus actions as well.

Now, let H : M → R be a Hamiltonian and define a Hamiltonian vector field XH by

iXHω = dH. The integral curves (i.e. the motions of the system) ofXH satisfy Hamilton’s

equations

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi

where qi, pi are coordinates for which ω =
∑
dqi∧dpi (by Darboux’s theorem). Suppose

A : S1 ×M →M is a Hamiltonian circle action with iXω = df . Recall that the Poisson

bracket of functions H and f is defined to be

{f,H} = ω(X,XH).

The circle S1 acts as a Hamiltonian symmetry group if {f,H} = ω(X,XH) = 0. The

functions f and H are then said to Poisson commute. In this case, f is a constant of the

motion of H. To see this, simply compute

0 = {f,H} = ω(X,XH) = iXω(XH) = df(XH) = XH(f).

This says that f is constant along the integral curves of XH . Similarly, X(H)=0 so that

H is constant on orbits of the action. Let Mc = f−1(c) for c ∈ R a regular value and

note that the S1-action restricts to Mc. This follows since f is constant on orbits of the

action as well by

X(f) = df(X) = iXω(X) = ω(X,X) = 0.

Also, since f is constant on the integral curves of XH , we see that the portion of the

H-flow starting in Mc always remains in Mc. Thus, the Hamiltonian system restricts to

Mc with dimMc = dimM − 1. A reduced Hamiltonian system is then given on Mc by

H̃ : M̃ = Mc/S
1 → R and dim M̃ = dimM − 2. This process is called the Marsden-

Weinstein Reduction. This reduction may be extended to other compact Lie groups. In

fact, if Tn acts as a Hamiltonian symmetry group on (M2n, ω), then, in principle, the

Hamiltonian system may be solved by quadratures (i.e. successive integrations).

Another ingredient of symplectic geometry which we will need is the existence of

an almost complex structure on a symplectic manifold. Recall that an almost complex

structure on a manifold M is an automorphism of the tangent bundle J : TM → TM

such that J2 = −1TM . Because J behaves as the complex number i, it may be used to

give the tangent vector spaces complex structures at each point of M . Of the spheres,

only S2 = CP 1 and S6 have almost complex structures. Complex manifolds certainly



HOMOTOPY THEORY AND CIRCLE ACTIONS 67

have almost complex structures, but the existence of an almost complex structure does

not necessarily mean that the underlying manifold is a complex manifold. An almost

complex structure J on a symplectic manifold (M2n, ω) is said to be compatible with ω

if ω(JX, JY ) = ω(X,Y ) and ω(JX,X) > 0 for all vector fields X and Y . The second

condition allows us to define a Riemannian metric by g(X,Y ) = ω(JX, Y ).

Proposition 1.4. A symplectic manifold has a compatible almost complex structure.

Sketch of proof. Given a Riemannian metric 〈−,−〉, the nondegeneracy of ω allows us

to define an isomorphism A (on each tangent space) by ω(X,Y ) = 〈X,AY 〉. Then it is

easy to see that A is a normal and skew operator, so its polar decomposition A = S J

has S J = J S with S positive definite symmetric and J an isometry. Furthermore, these

properties and the skewness of A give

J t = At (S−1)t = −AS−1 = −S J S−1 = −J.
But J is an isometry, so J t=J−1. Hence, −J = J−1 and, therefore, J2 = J(−J−1) = −1.

Thus J is an almost complex structure. Also, the definition of A and the symmetricness

of S give

ω(JX, JY ) = 〈JX,AJY 〉 = 〈JX, SJ2Y 〉 = 〈JX,−SY 〉 = 〈SJX,−Y 〉 = 〈AX,−Y 〉
= −〈Y,AX〉 = −ω(Y,X) = ω(X,Y ).

Thus, J is an ‘isometry’ of ω also. Finally, define a new metric by

〈〈X,Y 〉〉 = 〈SX, Y 〉.
This definition then makes sense because S is positive definite symmetric in the old

metric. Moreover, since J is an isometry of the old metric and ω(X,Y ) = 〈X,AY 〉, we

have

ω(JX, Y ) = 〈JX,AY 〉 = 〈JX, SJY 〉 = 〈JX, JSY 〉 = 〈X,SY 〉 = 〈SX, Y 〉 = 〈〈X,Y 〉〉.
In fact, a symplectic form determines a homotopy class of almost complex structures

on (M,ω) and compatible structures can be found within this class. Therefore, when we

refer to the Chern classes of a symplectic manifold, we are referring to those unchanging

classes associated to any of the almost complex structures in the homotopy class. In

particular (also see §5),

Theorem 1.5 [McS]. If S1 acts symplectically on a symplectic manifold (M,ω), then

there exists an S1-invariant almost complex structure in the homotopy class of structures

determined by ω. Hence, this invariant structure has the same Chern classes as any

structure determined up to homotopy by ω.

2. Some homotopy theory. As we shall see below, much of what can be done con-

cerning circle actions on symplectic manifolds depends only on the homotopical structure

of the manifold and the cohomology class (which we also denote simply by) ω ∈ H2(M)

given by the symplectic form. (When coefficients are not explicitly mentioned, we are

taking real cohomology.) This leads us to

Definition 2.1. A manifold M2n is cohomologically-symplectic (or c-symplectic) if

there is a cohomology class ω ∈ H2(M) such that ωn 6= 0.
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It is not the case that c-symplectic and symplectic are the same. For instance, if M1

and M2 are symplectic, then M1#M2 is c-symplectic (since, in particular, the symplectic

cohomology classes for each of M1 and M2 multiply up to top classes for M1#M2). How-

ever, it is a general fact due to M. Audin [Au2] that, for M1 and M2 four-dimensional

almost complex manifolds, the connected sum M1#M2 is never almost complex — and,

hence, cannot be symplectic. This distinction between symplectic and c-symplectic then

gives somes meaning to our homotopical development of aspects of the theory of sym-

plectic actions.

As we have said above, the obstruction to a circle action being Hamiltonian is the

cohomology class represented by iXω in H1(M). Let us attempt to view this obstruction

from the point of view of algebraic topology.

An S1-action and its orbit map may be generalized to produce certain basic elements

in the fundamental group of the function space (MM , 1M ) in the following manner. By

the exponential law, a group action A : S1 ×M → M corresponds to a map α̂ : S1 →
(MM , 1M ) with α̂(s)(x) = A(s, x). Here, (MM , 1M ) denotes the path component of

MM containing the identity map. The evaluation, ev(f) = f(p) of a function at a

basepoint m ∈ M gives ev ◦α̂ = α ∈ π1(M) and we then write ev#(α̂) = α where

ev# : π1(MM , 1M )→ π1(M). Furthermore, α may be identified with the homotopy class

of the orbit map am = A(−,m) : S1 →M .

Now, because A : S1 ×M → M is an action, the adjoint map α̂ : S1 → MM is a

monoid map which induces a map of classifying spaces BS1 → Baut(M), where Baut(M)

is the classifying space for fibrations with fibre M . It is known that

πi+1(Baut(M)) ∼= πi(M
M , 1M )

for i ≥ 1, so, at the π2-level, α̂ corresponds to a de-looping S2 → BS1 → Baut(M). This

map, in turn, provides a fibration

M
i→ E → S2

with α = ∂#(1) ∈ Im(∂# : π2S
2 → π1M). Such a fibration has a Wang sequence

associated to it,

· · · → Hq(E)
i∗→ Hq(M)

λα̂→ Hq−1(M)→ Hq+1(E)→ · · · .

The map λα̂ is a derivation on H∗(M). That is, it satisfies

λα̂(uv) = λα̂(u)v + (−1)|u|uλα̂(v),

and is called the Wang derivation. The factorization S2 → BS1 → Baut(M) then pro-

vides a homotopy-commutative diagram

S1 → M
j→ MS1 → BS1

↑ || ↑φ ↑
ΩS2 → M

i→ E → S2

where MS1 is the total space of the Borel fibration associated to the group action. We

shall remind the reader of this fibration in a moment. Before we do, however, we point

out that the Wang derivation may be related to the action in a very simple way (e.g.

see [Sp]).
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Proposition 2.2. For any u ∈ Hq(M),

A∗(u) = 1× u+ σ̄ × λα̂(u),

where σ̄ ∈ H1(S1) is a generator and × is the external product.

If u ∈ H1(M), then A∗(u) = 1× u+ α∗(u)× 1, where α = ev ◦α̂.

Also, we should point out that (see [G1, 10.3]), for u ∈ Hq(M), λα̂(u) = h(α̂)\Ê∗(u),

where \ denotes slant product, h : π1(MM , 1M )
∼=→ H1(MM ;Z) is the Hurewicz map and

Ê : MM ×M →M is the evaluation map Ê(f, x) = f(x). Symplectic geometers actually

were aware years ago of such a slant product description for the important symplectic

invariant known as the Calabi invariant [Mc1].

For our purposes, the following simple observation is crucial.

Proposition 2.3. λα̂(ω) = 0 if and only if there exists ω̄ ∈ H2(E) with i∗ω̄ = ω.

P r o o f. This follows immediately from the exactness of the Wang sequence.

The λα̂-invariant is connected to symplectic geometry by the following fundamental

result.

Theorem 2.4 [LO2]. If α̂ ∈ π1(MM , 1M ) comes from a symplectic S1-action A on a

symplectic manifold (M,ω), then

λα̂(ω) = [iXω].

The theorem is proved by showing that

A∗ω = p∗2ω + p∗1ν ∧ p∗2iXω

where X is the fundamental vector field associated to the symplectic action A and ν is a

volume form on S1. Theorem 2.4 is the first key to understanding Hamiltonian actions

from a homotopical point of view. Theorem 2.4 also leads to

Definition 2.5. An S1-action A : S1 ×M → M on a c-symplectic manifold (M,ω)

is c-Hamiltonian if λα̂(ω) = 0 where α̂ ∈ π1(MM , 1M ) corresponds to A.

The second key to the homotopical approach is to understand the relation between

λα̂ and the Borel fibration

S1 a→M
j→MS1 → BS1.

Recall that, if a compact Lie group G, say, acts on a space X, then various symmetry

properties of X may be understood by studying the orbit space X/G when G acts freely.

If the action is not free, then X/G may have a quite intricate structure which is not easily

described by homotopy theory. In the 1950’s, Borel invented a substitute for the orbit

space which is amenable to homotopical study, the so-called Borel fibration. To every G

there is associated a universal principal G-bundle

G→ EG→ BG,

where EG is contactible with free G-action (so BG = EG/G). This bundle classifies

principal G-bundles over a space X in terms of the homotopy classes of maps X → BG.
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Given an action G×X → X, (g, x) 7→ gx, we can form the orbit space

XG =
EG×X

G

where G acts diagonally EG and X. Because G acts freely on EG, it acts freely on

EG ×X, so this orbit space is reasonable. There are two maps from XG which tell us

something about it. First, since elements of XG are equivalence classes [e, x], we can

‘project’ onto the equivalence class [x] ∈ X/G. It is not hard to show that this map

XG→ X/G is a homotopy equivalence when the action is free. In fact, a Leray spectral

sequence argument shows that, if at each point x the isotropy group of the action defined

by Gx = {g ∈ G|gx = x} is finite, then XG→ X/G is a rational homotopy equivalence.

Therefore, the Borel space XG at least reduces homotopically to the right object under

a free or almost free (i.e. finite isotropy) action. Secondly, we can project [e, x] to the

equivalence class [e] ∈ BG to produce a fibration

X → XG→ BG

called the Borel fibration. Good general references for the cohomology theory and (ra-

tional) homotopy theory of compact group actions are [Br] and [AP]. Now, how does

the Borel fibration for a symplectic S1 action relate to the homotopy theory we have

presented so far?

Consider an S1 action on M with α̂ ∈ π1(MM , 1M ) represented by the adjoint map

of the action α̂ : S1 →MM . The action is homotopically encoded in the Borel fibration

(and its Barratt-Puppe extension with ΩBS1 ' S1)

S1 a→M
j→MS1 → BS1.

Each fibration has an associated long exact sequence in homotopy and the diagram

induces a commutative ladder

· · · → πi(M) → πi(MS1) → πi(BS
1) → πi−1(M) → · · ·

|| ↑ ↑ ||
· · · → πi(M) → πi(E) → πi(S

2) → πi−1(M) → · · · .

A simple diagram chase shows that, for i = 0, 1 or 2, πiE
∼=→ πiMS1 and also π3E →

π3MS1 is surjective. Applying the Hurewicz theorem and duality, we obtain the following

result.

Lemma 2.6. Let A : S1 × M → M be an action. With the above notation, φ∗ :

Hr(MS1)→ Hr(E) is an isomorphism for r ≤ 2.

For actions on a c-symplectic manifold, this has the following implication.

Theorem 2.7. Let A : S1×M →M be an action on a c-symplectic manifold (M2n, ω).

The action is c-Hamiltonian (i.e. λα̂(ω) = 0), if and only if there exists ω̃ ∈ H2(MS1)

with j∗ω̃ = ω.

P r o o f. We have seen in Proposition 2.3 that λα̂(ω) = 0 if and only if there exists

ω̄ ∈ H2(E) with i∗ω̄ = ω. The isomorphism on H2 obtained from Lemma 2.6 and the

homotopy commutativity of the diagram (i.e. φi ' j) now imply the result.
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Now, in order to make explicit the differences in approach, let us consider a basic

result about actions on symplectic manifolds from both the geometrical and homotopical

viewpoints.

Proposition 2.8. A Hamiltonian or c-Hamiltonian action has fixed points.

P r o o f 1. Assume the action is Hamiltonian and let df = iXω. Fixed points cor-

respond to zeros of X and these correspond to critical points of f . The manifold M is

(as always) assumed to be compact, so f attains its maximum and minimum. That is,

critical points exist, so fixed points do also.

P r o o f 2. Since the action is c-Hamiltonian, then λα̂(ω) = 0. By Theorem 2.7, there

exists ω̃∈H2(MS1) with j∗ω̃ = ω. Then we have j∗ω̃n = ωn 6= 0 so that ω̃n 6= 0 as well.

Now suppose there is no fixed point so that the action is almost free (i.e. finite isotropy).

Then MS1 →M/S1 is a rational equivalence so that, in particular, the image of ω̃n must

be nonzero in H2n(M/S1). But this is absurd since dimM/S1 = 2n − 1. Hence, fixed

points exist.

Remark 2.9. (1) The fact that Hi(M2n/S1;Q) = 0 for i > 2n − 1 is not so easy to

dig out in the literature, but a brief discussion of it, based on results in [Br], may be

found in [Yau].

(2) Proposition 2.8 has many generalizations. Frankel [Fr] proved that if M is Kähler,

then an action is Hamiltonian if and only if there are fixed points. This has been general-

ized to the case of Lefschetz type by Ono [On1] and to the case of c-symplectic manifolds

of Lefschetz type in [LO2]. For the notion of Lefschetz type, see §3 below.

The result above is just a simple application of topological notions to the geometry of

Hamiltonian actions. More interesting applications may be found in [LO2]. For example,

we mention the following result which is a mixture of the ideas presented above and work

of Gottlieb [G1].

Theorem 2.10. Suppose the first Chern class of a symplectic manifold (M,ω) is a

positive multiple of ω. That is, c1(M) = r · ω for r > 0. Then any symplectic S1 action

on M is Hamiltonian.

Sketch of proof. Without loss of generality, we take an S1-invariant almost complex

structure and associated Chern classes (which are the same as those for any other struc-

ture in the homotopy class determined by ω). Because the almost structure is S1-invariant,

the map α̂ : S1 →MM associated to the action A lifts to a map S1 → Bundle Maps(TM),

where TM is the tangent bundle of M . Gottlieb shows that this lift then factors through

an essentially contactible space and that k∗◦α̂ is nullhomotopic (i.e. homotopic to the con-

stant map at k denoted ∗k). Here, k : M → BU(n) classifies TM and k∗ : (MM , 1M )→
(BU(n)M , k) is the induced map given by k∗(f) = k◦f . It is easy to see that the following

diagram commutes.

S1 ×M (k∗◦α̂)×1−−−−→ (BU(n)M , k)×M
A ↓ ↓ ev

M
k→ BU(n)
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Here, ev is the evaluation map defined by ev(f,m) = f(m). This diagram then gives

k ◦A ' ev((k∗ ◦ α̂)× 1) ' ev(∗k × 1) ' k ◦ p2
where p2 : S1 × M → M is projection onto the second factor. Then, for any class

c ∈ H∗(BU(n)),

A∗k∗(c) = p∗2k
∗(c) = 1× k∗(c).

By our description of λα̂, this means that λα̂(k∗(c)) = 0. But the Chern classes of M

come from universal Chern classes in H∗(BU(n)), so λα̂ vanishes on all Chern classes of

M . If c1(M) = r · ω, then λα̂(ω) = 0 as well and A is Hamiltonian.

Remark 2.11. In [On3], K. Ono shows that there are no nontrivial symplectic actions

of compact connected Lie groups on M when c1(M) = rω for r < 0. Thus, the condition

r > 0 in the theorem is to ensure nontriviality.

Theorem 2.10 may also be used to obtain conditions when certain results in symplectic

geometry can be made S1-equivariant. It is a standard fact in symplectic geometry ([Ti])

that if (M2n, ω) is a symplectic manifold with integral form ω (i.e. [ω] ∈ H2(M ;Z) ⊂
H2(M)), then there is an embedding φ : M ↪→ CPN with N = 2n + 1 and φ∗(ω0) = ω,

where ω0 is the standard Kähler form on CP 2n+1.

Let φ∗TCPN be the pullback of the tangent bundle of CPN by the embedding φ.

Then, denoting the normal bundle of the embedding by ν, we have φ∗TCPN = TM ⊕ ν.

Also, ν is a complex bundle just as TM and TCPN are. The reason for this is that

the normal bundle ν ⊂ TCPN is the ω-orthogonal complement to TM ⊂ TCPN and

ω thus restricts to give a skew-symmetric bilinear (i.e. symplectic) form on ν. Since

U(n + 1) ' Sp(2n + 2,R), this gives the required reduction of the structure group to

U(n+ 1).

Theorem 2.12. Suppose (M,ω) is a symplectic manifold with integral form ω. If

c1(ν) = 0, then, for any symplectic S1-action on (M,ω), there is an S1-equivariant

symplectic embedding θ : M ↪→ CPK (i.e θ∗(ω0) = ω) for large enough K.

P r o o f. Let L denote the complex line bundle given by c1(L∗) = [ω]. Ono [On1]

shows that such an equivariant embedding exists if the S1-action may be lifted to L. But,

using the Hattori-Yoshida lifting theorem [HY], Gottlieb [G3] showed that such a lifting

exists exactly when λα̂(ω) = 0. (As usual, we write ω for both the symplectic form and

its cohomology class, but the context should be clear.) Therefore, we shall prove that

this holds under the assumption c1(ν) = 0. First, note that

c(φ∗TCPN ) = c(TM) · c(ν)

= (1 + c1(M) + c2(M) + . . .) · (1 + c1(ν) + c2(ν) + . . .).

Hence, c1(φ∗TCPN ) = c1(M) + c1(ν) = c1(M) by hypothesis. Of course, c(CPN ) =

(1 + ω0)N+1, so c1(CPN ) = (N + 1)ω0. Also,

c1(φ∗TCPN ) = φ∗(c1(CPN )) = φ∗((N + 1)ω0) = (N + 1)ω.

Thus, c1(M) = (N + 1)ω and, by Theorem 2.10, any symplectic S1-action has λα̂(ω)

= 0.
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We have given only the barest hint of the homotopical approach to Hamiltonian

actions above. In the next section, we will see how the c-Hamiltonian approach provides

a solution to one case of a conjecture mixing symplectic geometry, group actions and

rational homotopy theory.

3. Nilmanifolds of Lefschetz type. Thurston [Th] (and, independently, Kodaira)

gave the first example of a symplectic non-Kähler manifold by defining a certain 4-

dimensional nilmanifold KT which he showed was symplectic with first Betti number

three. As in Example 1.1 (4), the Hard Lefschetz property for Kähler manifolds requires

odd Betti numbers to be even, so the Kodaira-Thurston manifold could not be Kähler.

After this example, the problem became to find examples of simply connected symplectic

non-Kähler manifolds and this proved much harder. Finally, in 1984, McDuff [Mc2] found

such examples via a type of blow-up construction. (More, recently, R. Gompf has used

symplectic surgery to create a host of new examples.) For more on this question of

symplectic versus Kähler, see [TO]. To see how this question relates to the λα̂-invariant,

we need to review several things.

First, because there are symplectic manifolds which are not Kähler, it is often the case

that we wish to compare homotopical properties of symplectic and Kähler manifolds. In

this way, we obtain an algebraic measure of the disparity in the two classes of manifolds.

With this in mind, we make the

Definition 3.1. A c-symplectic manifold has Lefschetz type if multiplication by ωn−1

is an isomorphism from H1(M) to H2n−1(M).

Example 3.2. A general way to obtain non-Kählerian, symplectic manifolds of Lef-

schetz type is as follows. Let (X2m, ωX) be a Kähler manifold and let (Y 2n, ωY ) be a

simply-connected symplectic manifold. Their product X × Y is a (2m+ 2n)-dimensional

symplectic manifold with symplectic class ωX +ωY . This manifold is clearly of Lefschetz

type. Suppose in addition that the symplectic manifold Y has some odd Betti number

that is odd. Then so too does the product X × Y . For if b2i+1(Y ) is the first odd Betti

number which is odd, then

b2i+1(X × Y ) = b2i+1(X) + b2i(X)b1(Y ) + b2i−1(X)b2(Y )+

. . .+ b1(X)b2i(Y ) + b2i+1(Y ).

Since X is Kähler, each b2j+1(X) is even and, by assumption, each b2j+1(Y ) for j < i is

even. Hence each term in the righthand sum except the last, which is odd, is even and so

b2i+1(X×Y ) is odd. It follows that X×Y cannot admit a Kähler structure. Furthermore,

if X is a Kähler manifold and if Y is a symplectic manifold of Lefschetz type, then X×Y
is again of Lefschetz type. As previously, if Y has an odd Betti number that is odd,

so does the product, which therefore cannot admit a Kähler structure. Starting with

McDuff’s examples [Mc2] of simply-connected, symplectic manifolds that have an odd

Betti number which is odd, we thus obtain many examples of symplectic manifolds of

Lefschetz type that cannot admit a Kähler structure.

Second, recall that a nilmanifold N/π of dimension 2k is the quotient of a nilpotent

Lie group N 2k by a discrete subgroup π so that N/π is compact. An n-dimensional
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nilpotent Lie group is diffeomorphic to Rn, so

N/π ' K(π, 1).

Then, since N/π is compact, π is finitely generated torsionfree nilpotent. Indeed, by

Malcev’s work, every such group arises as the fundamental group of a nilmanifold. Now,

in the 1950’s Nomizu [No] proved that π-invariant forms on N contain the left invariant

forms on N so as to induce an isomorphism on cohomology. In other words,

H∗(ΩNN )
∼=−→ H∗(ΩπN ) ∼= H∗(N/π).

But the left invariant forms ΩNN may be identified with the cochain complex Λ∗n of the

Lie algebra n ofN . Now, Λ∗n is an exterior algebra, so, by the identifications above, if ω∈
H∗(N/π) with ωk 6= 0, then there is a degree two exterior form β in Λ∗n which has βk 6= 0

in Λ∗n. But in an exterior algebra, this must mean that the 2-form is nondegenerate. This

is essentially the same argument as that which gives the equivalence of nondegeneracy of

symplectic forms with the property of wedging to a volume form. Thus, the corresponding

2-form on N/π is nondegenerate as well and N/π is symplectic. Therefore, c-symplectic

and symplectic mean the same thing for nilmanifolds.

On the algebraic side, there is a refinement of the upper central series of π,

π ⊇ π2 ⊇ π3 ⊇ · · · ⊇ πn ⊇ 1,

with each πi/πi+1
∼=Z. The length of this series is invariant and is called the rank of π. So,

for π above, rank (π) = n. This description implies that any u ∈ π has a decomposition

u = ux1
1 · · ·uxnn , where 〈un〉 = πn, · · · 〈ui〉 = πi/πi+1. The set {u1, · · ·un} is called a

Malcev basis for π. Using this basis, the multiplication in π takes the form

ux1
1 · · ·uxnn uy11 · · ·uynn = u

ρ1(x,y)
1 · · ·uρn(x,y)n

where

ρi(x, y) = xi + yi + τi(x1, . . . xi−1, y1, . . . yi−1).

For instance, we may consider the Heisenberg subgroup N = Un(R), the group of upper

triangular matrices with 1’s on the diagonal, and take π = Un(Z), such matrices with

integral entries. A Malcev basis is given by {uij | 1 ≤ i < j ≤ n} where uij = I + eij and

ρij(x, y) = xij + yij +
∑
i<k<j

xikykj .

Now, consider the central extension πn → π → π. The cocycle for the extension is

τn : π × π → Z. Of course π is also finitely generated torsionfree with refined upper

central series,

π =
π

πn
⊇ π2
πn
⊇ · · · ⊇ πn−1

πn
⊇ πn
πn

= 1.

Hence, rank (π) = n− 1 and

ρi(x, y) = ρi((x, 0), (y, 0)) = xi + yi + τi(x1, . . . xi−1, y1, . . . yi−1)

for i < n. Clearly, then, we may iterate this process and decompose π as n central

extensions of the form

Z→ G→ G
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with cocycles τi ∈ H2(G;Z) (where the coefficients are untwisted since the extension is

central).

This description allows a geometric formulation. The extension class τn is an ele-

ment of H2(π;Z) ∼= H2(K(π, 1);Z) ∼= [K(π, 1),K(Z, 2)] where the last bijection follows

from the usual identification of cohomology groups with sets of homotopy classes into

K(Z,m)’s. Now, K(Z, 2) = CP∞, the classifying space for principal S1-bundles, so τn
induces a bundle over K(π, 1),

S1 −→ K(π, 1)

↓
K(π, 1)

τn−→ CP∞.

The total space of the bundle is clearly K(π, 1) since the ensuing short exact sequence

of fundamental groups in classified by τn. Now, because we can iterate the algebraic

decomposition of π, we obtain an iterated sequence of principal S1-bundles classified by

the τi.

S1 −→ M = K(π, 1)

↓
S1 −→ Mn−1

τn−→ CP∞
↓
...
↓

S1 −→ M1
τ2−→ CP∞

↓
∗ τ1−→ CP∞

All along, we have only been interested in real (or de Rham) cohomology, so it should

be no surprise that our approach to understanding symplectic nilmanifolds comes from

rational or real homotopy theory. With this in mind, recall that, to any space X with

finite-type rational homology, is associated a minimal model (ΛV, d), where V is a posi-

tively graded vector space and ΛV is a freely generated (commutative) differential graded

algebra (DGA) which is polynomial on even degree generators, exterior on odd degree

generators and which has a decomposable differential d. The minimal model of X is con-

structed from the commutative differential graded algebra of rational polynomial forms

A∗(X), akin to de Rham forms on a smooth manifold. Indeed, if we are interested in real

homotopy type, then we may take the minimal model of the de Rham forms as the model

of X.

A nilpotent space is one whose fundamental group is nilpotent and whose fundamen-

tal group acts nilpotently on higher homotopy. For example, an H-space or a simply

connected space is nilpotent. More important for us, however, is the fact that a nilman-

ifold is clearly a nilpotent space. The fundamental theorem of rational homotopy theory

asserts that each nilpotent space X has a minimal model which contains all the rational

homotopy information about the space. In particular, for nilpotent X, there is a natural

isomorphism H∗(X;Q) ∼= H∗((ΛV, d)) and Hom(π∗(X),Q) may be read off from V . For

details, see [Su], [GM].
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More precisely, the minimal model for a space is constructed in a stage by stage

fashion which precisely mirrors the rational Postnikov tower of the space. In fact, the

differential d of the model corresponds to the k-invariant in the tower. In particular, the

decomposition of the nilmanifold M = K(π, 1) into a tower of principal S1-bundles is, in

fact, the Postnikov decomposition of M with k-invariants the τi. With this in mind, we

have

Proposition 3.3. The minimal model of a nilmanifold has the form,

Λ(M) = (Λ(x1, . . . xn), d) with |xi| = 1,

where dxi = τi, the extension cocycle representing the class τi ∈ H2(Mi−1;Z). Note that

Λ(M) is an exterior algebra because all generators are in odd degree 1.

Examples 3.4. (1) The torus Tn. The minimal model is (Λ(x1, x2, . . . , xn), d = 0). If

n = 2k, then Tn is symplectic by Example 1.1(3) and a symplectic ‘form’ in the minimal

model is ω = x1xk+1 + . . .+ xkx2k.

(2) The Heisenberg manifold. From the description above of the Heisenberg subgroup

U3(Z), we see that a minimal model for the associated nilmanifold is given by

Λ(U3(Z)) = (Λ(x, y, z), dx = 0, dy = 0, dz = xy).

(3) The torsionfree nilpotent group

π = 〈x, y, z : [x, y] = z2, [x, z] = e = [y, z]〉,

has, by a Malcev basis argument, τ = 2xy. Hence, a minimal model for K(π, 1) is given

by

Λ(π) = (Λ(x, y, z), dx = 0, dy = 0, dz = 2xy).

(4) The Kodaira-Thurston manifold KT . Rationally, this manifold is obtained by

taking the product of the Heisenberg manifold M = U3(R)/U3(Z) and the circle S1. The

minimal model is then given by

(Λ(x1, x2, x3, x4), d) with dx = 0, dy = 0, dz = xy, du = 0

because of the general fact that the minimal model of a product is the tensor product of

the minimal models of the factors. A symplectic ‘form’ is then given by ω=xu+yz. Note

that the degree 1 cohomology of KT is generated by the classes of x, y and u. Hence, the

first Betti number is three and KT cannot be Kähler.

(5) Take the minimal model (Λ(x1, x2, x3, x4), d) with dx = 0, dy = 0, dz = xy and

du=xz. Recall that the corresponding finitely generated torsionfree nilpotent group may

be realized as a nilmanifold. Then a symplectic ‘form’ is given by ω = xu+ yz.

Remark 3.5. The torus T 4 and Example 3.4 (4) and (5) are all the possible real

homotopy types of 4-dimensional nilmanifolds. Thus, all 4-dimensional nilmanifolds admit

symplectic structures (see below also).

There is one other important feature about minimal models of nilmanifolds which

should be emphasized. Namely, there are precisely n degree 1 generators for an n-

dimensional nilmanifold. Because the minimal model is an exterior algebra (so that the

square of each generator vanishes), there is only one element which can represent the top
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class in cohomology. That element is the product of all generators, ν = x1 · · ·xn. Now

let’s tie in the symplectic geometry of nilmanifolds with the minimal model.

If a nilmanifold M2k is symplectic (which is the same as c-symplectic remember),

then there must be a degree 2 element of the minimal model which multiplies up to a

multiple of the top element ν = x1 · · ·x2k. By changing the basis of degree 1 generators

if necessary, we can write this degree 2 element as

ω =
∑

xi · xj .

Since ωk = ν, the sum in the expression for ω must contain all the degree 1 generators.

Also, recall that the symplectic ‘form’ ω must be closed. The following series of results

focuses on the question of what Kähler properties symplectic nilmanifolds can have.

Theorem 3.6 ([BG], [Has]). Let M = N/Γ be a compact nilmanifold. If M admits a

Kähler structure, it is diffeomorphic to a torus.

Sketch of proof. We have seen that the minimal model of M is an exterior algebra

Λ(x1, . . . , xn) with top class represented by the cocycle ν = x1 · · ·xn. Now, except when

dxi = 0 for all i = 1, . . . , n, no matter how we write the generators of the model, ν is

always an element of the ideal Ideal(N) generated by the complement N to the closed

degree 1 generators. In rational homotopy theory, this is what is meant by saying that

ν is a non-vanishing Massey product. The main result of [DGMS] says that all Massey

products vanish (uniformly) for a Kähler manifold. Hence, M cannot be Kähler unless

d = 0 and then M has the rational homotopy type of a torus.

Now, since the fundamental group π1(M) of a nilmanifold is torsionfree and Q-

localization has torsion kernel, π1(M) must inject into⊕Q. Hence, since π1(M) is finitely

generated and injects into an abelian torsionfree group, it must be the case that π1(M) ∼=
⊕Z and M has the homotopy type of a torus. But M is a true nilmanifold, so its fun-

damental group classifies its diffeomorphism type ([Mos]). Therefore, M is diffeomorphic

to a torus.

In fact, however, the hypothesis of Theorem 3.6 is too strong. Recall from Definition

3.1 that a (cohomologically) symplectic manifold M has Lefschetz type if

[ω]n−1· : H1(M)→ H2n−1(M)

is an isomorphism. Just as we did before, we will now give a geometric and an algebraic

proof for the following extension of Theorem 3.6.

Theorem 3.7 ([BG], [Mc3], [LO1], [LO2]). A symplectic nilmanifold M of Lefschetz

type is diffeomorphic to a torus.

P r o o f 1 [Mc3]. Without loss of generality, we can assume the symplectic form on

M = N/π comes from a left invariant form on the nilpotent Lie group N . Now, the center

of π is contained in the center of N , so each element of the center of π gives rise to a free

symplectic circle action on M . If π is nilpotent but not abelian, then there exists [Wa]

an element α in the intersection of the center of π and the commutator subgroup [π, π].

But then we have a free (so without fixed points) circle action with ι∗(νS1) = α = 0

since H1(M) = π/[π, π]. This contradicts the fact due to Ono [On1] (and generalized in
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[LO2]) that, in the presence of the Lefschetz type condition, a symplectic circle action

S1×M →M on a closed symplectic manifold M has fixed points if and only if the orbit

map (restricting the action to a fixed m0 ∈M) ι : S1 →M is trivial on homology. Hence,

the non-abelian hypothesis is incorrect and M is a torus.

P r o o f 2 [LO1]. We have seen that the minimal model for M is (Λ(x1, . . . , x2n), d)

with symplectic ‘form’ given by

ω =
∑
i,j<2n

aijxixj + zx2n

where we have taken out all terms involving the last generator x2n. Assume that d 6= 0.

First note that, because of the stage-by-stage construction of the minimal model, the last

generator x2n cannot appear in any differential dxi, i = 1, . . . , 2n. Hence, since dω = 0,

the only way to have the term dz · x2n cancelled is for z to be a cocycle, dz = 0. Now

define a derivation λ of degree −1 by

λ(xi) = 0 for i < 2n, λ(x2n) = 1.

Extend λ freely to (Λ(x1, . . . , x2n), d). The effect of λ on ω follows from the definition

and the derivation property:

λ(ω) = z.

The derivation λ obeys the relation λd = −dλ because d is decomposable, so a derivation

of cohomology is induced with λ([ω]) = [z] 6= 0 since z is a non-zero degree 1 cocycle.

Now, a basis for H1(M) consists precisely of the generators x1, . . . , xs with dxi = 0,

i=1, . . . , s. By the definition of λ then, λ(H1(M)) = 0. Let [α] be any element of H1(M)

and consider [α]∪ [ωn]. Since this class is above the top degree, [α]∪ [ωn] = 0. Applying

λ, we obtain

0 = λ([α] ∪ [ωn]) = λ([α]) ∪ [ωn]− [α] ∪ λ([ωn]) = −[α] ∪ λ([ωn]).

Now [α] ∪ λ([ωn]) = 0 for any [α] ∈ H1(M), where λ([ωn]) ∈ H2n−1(M). By Poincaré

duality (i.e. the nondegeneracy of the bilinear form), this can only be true if λ([ωn]) = 0.

But then

0 = λ([ωn]) = nλ([ω]) ∪ [ωn−1]

and the hypothesis of Lefschetz type implies that this can happen only when λ([ω]) = 0.

This contradicts the equation λ([ω]) = [z] 6= 0 derived above. The contradiction lies in

the assumption that d 6= 0, so we see that a Lefschetz type nilmanifold must have d = 0

and, so, have the rational homotopy type of a torus.

Now, the same argument as in the final paragraph of the proof of Theorem 3.6 shows

that M is diffeomorphic to a torus.

Remark 3.8 (Connections between proofs 1 and 2). The construction of the minimal

model from the decomposition of the fundamental group of the nilmanifold shows that

x2n (as well as the dual derivation λ) corresponds to an element in the intersection of

the center of π and the commutator subgroup of π. This is McDuff’s element. For any

aspherical M , it is known that π1(MM , 1M ) ∼= Zπ, the center of π. Hence, this central

element corresponds to an α̂ and the derivation λ corresponds to the associated λα̂.
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Proof 2 then shows that the S1-action given by the central element is not Hamiltonian

(since λα̂(ω) = z 6= 0), but α∗ = 0 (where α∗ is the homomorphism on homology induced

by the orbit map α : S1 →M). As mentioned in Proof 1, the following equivalences hold

when any M (i.e. not necessarily aspherical) has Lefschetz type (see [LO2, §3]):

λα̂(ω) = 0⇔ λα̂(ωn) = 0⇔ λα̂(H1(M)) = 0⇔ h(α) = 0

where h(α) is the Hurewicz homomorphism applied to the orbit map. So, the central el-

ement, being zero on homology, would imply that the action is Hamiltonian. But Hamil-

tonian actions, as we have seen, have fixed points, while the action is free. This Theorem

3.7 is truly a result where geometry is reflected clearly in algebraic structure. Because

of this, a result such as Theorem 3.7 may be generalized. For such a generalization, see

[LO2, Corollary 4.6].

4. One more comparison. As a final comparison of the geometric and algebraic

approaches to the subject of circle actions on symplectic manifolds, we shall consider the

following (see [On2] and [LO2])

Theorem 4.1 [On2]. If ω|π2(M) = 0, then any symplectic circle action on M has no

fixed points (and , so, is not Hamiltonian).

Here we think of the symplectic cohomology class ω as a dual element of degree 2

homology, ω ∈ Hom(H2(M),R). The Hurewicz map h : π2(M) → H2(M) has image in

degree 2 homology and the notation ω|π2(M) = 0 simply means that ω is zero on this

image. We shall present two sketches of proofs of this result, one geometric and the other

algebraic. Let A : S1 ×M → M be a symplectic circle action on a symplectic manifold

(M,ω) with ω|π2(M) = 0. (Without loss of generality we assume the action is effective.)

P r o o f 1 (sketch) [On2]. Choose a path γ : [0, 1]→M with γ(0), γ(1) ∈ Fix(A) and

iXω(γ̇) > 0 for each t ∈ [0, 1]. (Note that the existence of such a γ requires some proof.)

Define a 2-cycle C : S1× [0, 1]→M by C(s, t) = A(s, γ(t)). The homology class [C] is in

the image of the Hurewicz homomorphism and, by hypothesis, 〈ω, [C]〉 = 0. But,

〈ω, [C]〉 =
\

C

ω =
\

γ

iXω =

1\

0

iXω(γ̇) dt > 0.

This contradiction then shows that no fixed points can exist.

P r o o f 2 [LO2]. We have the following facts:

(1) For π1(M) = π, there is a classifying map f : M → K(π, 1) such that

H1(M ;Z) ∼= H1(π;Z) and H2(M ;Z)/Image(h) ∼= H2(π;Z)

where the homology of π is that of K(π, 1) and h is the degree 2 Hurewicz homomorphism.

This is a result due to Hopf and is easily proved.

(2) The condition ω|π2(M) = 0 translates into the condition that there exists an

element ωπ ∈ H2(π) with f∗ωπ = ω. This follows from (1). (Here, as usual, cohomology

with no explicit coefficients denotes real cohomology.)

(3) Let α : S1 → M denote the orbit map of the action A and let π′ = π/〈α〉. A

special case of a theorem of Browder and Hsiang [BH] asserts that there is a commutative

diagram
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H∗(M)
f∗

← H∗(K(π, 1))

q∗ ↑ ↑ p∗

H∗(M/S1)
g← H∗(K(π′, 1)).

where q : M →M/S1 is the orbit space quotient. (As noted in [BH], the homomorphism

g may not be induced by a map of spaces.)

To complete the proof using these facts, first note that, if there exist fixed points,

then 〈α〉 = 0, so π′ = π. Therefore, the diagram above becomes

H∗(M)
f∗

← H∗(K(π, 1))

q∗ ↑ ↙g

H∗(M/S1)

with q∗(g(ωπ)) = f∗(ωπ). Now, g(ωnπ) = 0 since dim(M/S1) < 2n, so 0 = q∗(g(ωnπ)) =

f∗(ωnπ) = ωn 6= 0 since M is symplectic. This contradiction then shows that there are no

fixed points.

Remark 4.2. Note that the second proof above works for M only being c-symplectic

and A being any action.

Remark 4.3. Note also that the first proof uses the assumption of a nontrivial fixed

set and geometry to create a class in the image of Hurewicz which violates the condition

on ω. The second proof recognizes that the condition on ω somehow reduces the problem

to one involving the K(π, 1) associated to M and then uses what is known about this

association when a circle acts to obtain a contradiction. It would be interesting if these

proofs could be understood in a unified way.

5. Extensions of the method

5.1. Fibre number. The ideas presented above may be extended beyond the cases of

symplectic and c-symplectic manifolds. To do this, we require a result of Gottlieb [G2].

Suppose M
i→ E

p→ B is a fibration and M is a space (such as a closed N -manifold) with

Hr(M ;Z) = 0, for r > N and HN (M ;Z) = Z. Then i∗ : HN (E;Z) → HN (M ;Z) has

image kZ for some k. The number k is called the fibre number of the fibration p and is

denoted by Φ(p).

Theorem 5.1.1 [G2]. If the fibration is the Borel fibration associated to a smooth

compact connected Lie group action on an orientable manifold , M → MG → BG, then

the the fibre number , now denoted Φ(G,M), is nonzero if and only if some isotropy group

contains a maximal torus of G. Thus, if G is a torus T k, then Φ(T k,M) 6= 0 if and only

if there exist fixed points for the action.

Note that real coefficients suffice in the determination of the vanishing or nonvanishing

of the fibre number.

5.2. A result of Yau. First, let us generalize a result of Yau by a very simple application

of the λα̂-invariant. (Note that we only need an element α̂ ∈ π1(MM , 1M ), which may or

may not come from a circle action, to obtain the theorem.)
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Theorem 5.2.1. Let M2n be a closed manifold and suppose α̂∈π1(MM , 1M ). If there

exist xi ∈ Ker
(
λα̂ : H2(M)→ H1(M)

)
, i = 1 . . . n with x1 · x2 · · ·xn 6= 0, then the fibre

number of the Wang fibration associated to α̂ is nonzero.

P r o o f. Let M
i→ E

p→ S2 be the fibration induced from α̂ ∈ π1(MM , 1M ) ∼=
π2(Baut(M)). The Wang sequence associated to the fibration is

. . .→ H2(E)
i∗→ H2(M)

λα̂→ H1(M)→ . . .

and λα̂(xj) = 0 implies that there is some x̄j ∈ H2(E) with i∗(x̄j) = xj . But this means

that i∗(x̄1 · · · x̄n) = x1 · · ·xn 6= 0. Hence, Φ(p) 6= 0.

We now get two immediate corollaries of this approach. The first follows from the

second part of Theorem 5.1.1 and Theorem 5.2.1. The second (Yau’s result) is then a

special case of the first (i.e. when Ker
(
λα̂ : H2(M)→ H1(M)

)
is all of H2(M)).

Corollary 5.2.2. Suppose that S1 acts effectively on M2n and suppose α̂ ∈
π1(MM , 1M ) is the element associated to the circle action. If there exist elements xi ∈
Ker

(
λα̂ : H2(M)→ H1(M)

)
, i = 1 . . . n with x1 ·x2 · · ·xn 6= 0, then there are fixed points

for the action.

P r o o f. By Lemma 2.6 and the proof of Theorem 5.2.1, we see that there are elements

x̃k with j∗(x̃k) = xk for each k, where j : M → MS1 is the inclusion of M in the total

space of the Borel fibration. Hence, Φ(S1,M) 6= 0. By Theorem 5.1.1, there are fixed

points.

Corollary 5.2.3 [Yau]. Suppose S1 acts effectively on M2n and H1(M)=0. If there

exist xi ∈ H2(M), i = 1 . . . n with x1 · x2 · · ·xn 6= 0, then there exist fixed points for the

action.

5.3. Actions on almost complex manifolds. The property that some product is non-

trivial in the top dimension leads to other results which connect with symplectic topology.

With this in mind, let M2n be an almost complex manifold; that is, a manifold with an

almost complex structure J : TM → TM (which, however, does not necessarily come

from a symplectic structure). Suppose S1 acts (smoothly) on M so as to preserve the

almost complex structure J . For a complex structure J on a vector space V of dimension

2n, GL(R, 2n) acts by g · J = gJg−1. If the structure is preserved, then g · J = J ,

so gJ = Jg. For an almost complex structure J on a manifold M with S1-action, the

preservation of J translates into the condition g∗J = Jg∗ for each g ∈ S1, where g∗ is

the action induced on TM from the action on M .

Theorem 5.3.1. Suppose the circle acts on an almost complex manifold (M2n, J) so

as to preserve the almost complex structure. If M has a nonzero Chern number , then the

action has fixed points.

Remark 5.3.2. Of course, this result applies to symplectic circle actions since, by

Theorem 1.5, any symplectic circle action has an invariant almost complex structure in

the homotopy class of structures determined by the symplectic form. Keeping this in

mind, recall Theorem 2.10: if c1(M) = r · ω for r > 0, then any symplectic S1 action on

M is Hamiltonian. An important consequence of being Hamiltonian is the existence of
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fixed points. Theorem 5.3.1 also shows the existence of fixed points under the hypothesis

c1(M) = r · ω. Namely, since ωn 6= 0, the hypothesis provides a nonzero Chern number

cn1 (M)[M ]. In fact, the approach to Theorem 5.3.1 given below also provides an alternative

proof of Theorem 2.10. Namely, below we shall show that the hypothesis of c1(M) = r ·ω
implies the existence of an element ω̃ = c1(θ) ∈ H2(MS1) as in Theorem 2.7. Hence, an

S1-action on such a symplectic manifold is Hamiltonian.

In order to prove Theorem 5.3.1, we employ an old trick which (at least) goes back to

Borel-Hirzebruch [BoHi] and which has more recently been revived by Gottlieb [G2]. (In

fact, Gottlieb alludes to a result analogous to Theorem 5.3.1 for complex manifolds and

holomorphic actions.) The trick we refer to is the construction of the so-called (tangent)

bundle along the fibres. Although the construction may be carried through in general, we

shall confine ourselves to the following situation.

Let M
j→ MS1 → BS1 be the Borel fibration associated to a (smooth) circle action

and let TM denote M ’s tangent bundle. The circle acts on TM as we have previously

noted by derivative maps, so form

θ = (ES1 × TM)/S1 = ES1 ×S1 TM.

Now, MS1 = ES1 ×S1 M , so clearly θ is a vector bundle over MS1 and there is a

commutative diagram
TM

ε→ θ
↓ ↓
M

j→ MS1

of bundles where ε is the natural inclusion (m, v) 7→ [e0, (m, v)] for a chosen basepoint of

ES1, e0. Also, note that we have

θ|M = j∗θ = TM.

The bundle θ is called the bundle along the fibres of the Borel fibration.

Lemma 5.3.3. If M has an S1-invariant almost complex structure J , then the bundle

along the fibres θ has a complex structure J̃ extending J and ε is a mapping of complex

vector bundles.

P r o o f. Define J̃ : θ → θ by J̃([e, (m, v)]) = [e, (m,Jv)], where (m, v) ∈ TM and

e ∈ ES1. We must show this definition is well defined, so let [e, (m, v)] = [f, (x,w)]. This

means that there is some g ∈ S1 such that eg−1 = f , g ·m = x and g∗(v) = w. Then

J̃([f, (x,w)]) = [f, (x, Jw)] = [eg−1, (g ·m,J(g∗(v))] = [eg−1, (g ·m, g∗J(v))]

= [e, (m,J(v))] = J̃([e, (m, v)]

where we have used the S1-invariance of J , Jg∗ = g∗J , in the third line. Clearly, J̃2 = −I
since J has this property and ε is a map of complex structures.

Proof of Theorem 5.3.1. Form the bundle along the fibres of the Borel fibration θ as

above. From Lemma 5.3.3, we know that TM is the pullback of the complex bundle θ

by j. By the pullback property of Chern classes

c(TM) = c(j∗θ) = j∗c(θ).
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By hypothesis, some Chern number ci1(M) · · · cik(M)[M ] 6= 0 (where 2
∑k
s=1 is = 2n).

But then, in the top dimension of M , we have

j∗(ci1(θ) · · · cik(θ))[M ] = ci1(M) · · · cik(M)[M ] 6= 0

so that the fibre number Φ(S1,M) is nonzero. By Theorem 5.1.1, there exist fixed

points.

5.4. S3-Actions on quaternion-Kähler manifolds

Definition 5.4.1. A (closed) manifold M4n is cohomologically quaternion-Kähler or

c-QK if there exists a class ω ∈ H4(M) such that ωn 6= 0.

Manifolds fitting the description of Definition 5.4.1 are the topological analogue of

the quaternion-Kähler manifolds of geometry. Recall that a manifold M4n is quaternion-

Kähler if M has a metric such that there is a covering of M by open sets Ui which each

have two almost complex structures I and J obeying:

i. I and J are isometries for the metric.

ii. IJ=−JI. IJ is denoted by K and the three almost complex structures I, J and

K then represent the quaternions.

iii. The Levi-Civita derivatives of I and J are linear combinations of I, J and K.

iv. For x ∈ Ui ∩ Uj , the vector space of endomorphisms of TxM generated by the

almost complex structures is the same for those structures associated to Ui and Uj .

This definition is equivalent to saying that the holonomy group of M is contained in

Sp(n)Sp(1). For more information on these manifolds, see [Bes] for example.

Example 5.4.2. (1) Quaternionic projective space HPn is a quaternion-Kähler man-

ifold. Indeed, its holonomy coincides with its isotropy subgroup Sp(n)Sp(1). Note that

HPn cannot have an almost complex structure for topological reasons [Mas], so that the

I’s, J ’s and K’s given by the quaternion-Kähler structure can never be global.

(2) In [Kr] (also see [Bes, Proposition 14.92]), it was shown that a quaternion-Kähler

manifold M4n has a closed nondegenerate 4-form Ω with Ωn 6= 0 and [Ω] = 8πp1(E) ∈
H4(M), where p1(E) is the first Pontryagin class of the subbundle E ⊂ End(TM) de-

termined by the I, J and K of M . Hence, a compact quaternion-Kähler manifold is

c-QK.

(3) A closed c-symplectic manifold of dimension 4n, (M4n, ω) is c-QK since (ω2)n 6= 0.

Now, for (M4n, ω) c-QK, suppose A : S3 ×M → M is a smooth action. The expo-

nential law provides an element

α̂ ∈ π3(MM , 1M ) ∼= π4(Baut(M))

corresponding to the action A. As before, we have S4 → BS3 → Baut(M) and a conse-

quent induced fibration

M
i→ E → S4.

Again, as in the circle action case, we have a map of this fibration into the Borel fibration
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associated to the S3-action,

S3 → M
j→ MS3 → BS3

↑ || ↑ φ ↑
ΩS4 → M

i→ E → S4.

Again we may consider S4 as the 4-skeleton of the classifying space BS3 so that the

composition S4 → BS3 → Baut(M) is α̂. Indeed, since H∗(BS3;Z) is a polynomial

algebra over Z on a degree 4 generator, the map S4 → BS3 induces an isomorphism

in (integral) homology through degree 7. By the Hurewicz theorem, we have πi(S
4) ∼=

πi(BS
3) for i ≤ 6 and π7(S4)→ π7(BS3) surjective. A diagram chase through the ladder

of exact homotopy sequences

· · · → πi(M) → πi(MS3) → πi(BS
3) → πi−1(M) → · · ·

|| ↑ ↑ ||
· · · → πi(M) → πi(E) → πi(S

4) → πi−1(M) → · · · .

then shows that the map πi(E)→ πi(MS3) is an isomorphism for i ≤ 6 and is surjective

for i = 7. Hence, again by Hurewicz,

Lemma 5.4.3. Hi(E) ∼= Hi(MS3) for i ≤ 6 and Hi(E) ∼= Hi(MS3) for i ≤ 6.

Now, the Wang sequence for M → E → S4 is

· · · → Hq(E)
i∗→ Hq(M)

λα̂→ Hq−3(M)→ Hq+1(E)→ · · ·

with a derivation λα̂ as before. If (M4n, ω) is c-QK, then λα̂(ω) ∈ H1(M) and we can

make the

Definition 5.4.4. A smooth action A : S3 ×M →M on a c-QK manifold (M4n, ω)

is S3-c-Hamiltonian if λα̂(ω) = 0.

There is then an analogue to Proposition 2.3 and Theorem 2.7.

Proposition 5.4.5. An action A : S3 ×M → M on a c-QK manifold (M4n, ω) is

S3-c-Hamiltonian if and only if either of the following two conditions holds:{
∃ ω̄ ∈ H4(E) with i∗(ω̄) = ω.
∃ ω̃ ∈ H4(MS3) with j∗(ω̃) = ω.

Definition 5.4.6. A maxtor point for a compact group action is a point for which

the isotropy group at the point contains a maximal torus.

Of course a fixed point is always maxtor and maxtor means the same as fixed when

the group acting is a torus, but what about other groups acting when we are not assured

of fixed points? In [G2], it was shown that maxtor points always exist when S3 acts on

a manifold having Hi(M ;Z) = 0 for i = 3 mod 4. In a somewhat similar vein, we have

Theorem 5.4.7. An S3-c-Hamiltonian action on a c-QK manifold has maxtor points.

P r o o f. By Proposition 5.4.5, an S3-c-Hamiltonian action A : S3 ×M → M on a

c-QK manifold (M4n, ω) has j∗(ω̃) = ω for some ω̃ ∈ H4(MS3). But (just as for the S1

situation), ωn 6= 0, so j∗(ω̃n) = ωn 6= 0. Thus, the Borel fibration has a nonzero fibre

number and we may apply Theorem 5.1.1.
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Questions and problems for the future 5.4.8. (1) The notion of S3-c-Hamiltonian is not

so clearly related to the usual notion of Hamiltonian as was c-Hamiltonian to Hamiltonian

in the case of S1. So, we may ask if there is a geometric notion of S3-Hamiltonian in

the case of actions on Quaternion-Kähler manifolds which is the geometric analogue of

our topological idea. Does this geometric notion have properties similar to those of

Hamiltonian actions on symplectic manifolds?

(2) With the first item in mind, the problem is to construct S3-actions on Quaternion-

Kähler manifolds.

(3) Finally, are there structure theorems for maxtor points analogous to those for

fixed points?
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Birkhäuser, 1981.

[Has] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106
(1989), 65–71.

[Has] A. Hattor i and T. Yoshida, Lifting compact group actions in fiber bundles,
Japan. J. Math. 2 (1976), 13–25.

[Kr] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122
(1966), 357–367.

[LO1] G. Lupton and J. Oprea, Symplectic manifolds and formality , J. Pure and Appl.
Algebra 91 (1994), 193–207.

[LO2] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and
the Gottlieb group, Trans. Amer. Math. Soc. 347 no. 1 (1995), 261–288.

[Mas] W. Massey, The non-existence of almost complex structures on quaternionic pro-
jective spaces, Pac. J. Math. 12 (1962), 1379–1384.

[Mc1] D. McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent.
Math. 77 (1984), 353–366.

[Mc2] D. McDuff, Examples of simply-connected, symplectic non-Kählerian manifolds,
J. Diff. Geom. 20 (1984), 267–277.

[Mc3] D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom.
Phys. 5 no. 2 (1988), 149–160.

[McS] D. McDuff and D. Salamon, Introduction to Symplectic Topology , Oxford Math.
Monographs, Oxford U. Press, 1995.

[Mo] G. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), 1–27.
[No] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie groups,

Annals of Math. 59 (1954), 531–538.
[On1] K. Ono, Equivariant projective imbedding theorem for symplectic manifolds, J. Fac.

Sci. Univ. Tokyo IA Math. 35 (1988), 381–392.
[On2] K. Ono, Obstruction to circle group actions preserving symplectic structure, Hok-

kaido Math. J. 21 (1992), 99–102.
[On3] K. Ono, Some remarks on group actions in symplectic geometry , J. Fac. Sci. Univ.

Tokyo 35 (1988), 431–437.
[Sp] E. Spanier, Algebraic Topology , McGraw-Hill, 1966.
[Su] D. Sul l ivan, Infinitesimal computations in topology , Publ. IHES 47 (1978), 269–

331.
[Th] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math.

Soc. 55 (1976), 467–468.
[Ti] D. Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds,

J. Diff. Geom. 12 (1977), 229–235.
[TO] A. Tral le and J. Oprea, Symplectic manifolds with no Kähler structure, Lecture

Notes in Math., vol. 1661, Springer-Verlag, 1997.
[Wa] R. Warf ie ld, Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer-Verlag,

1976.
[Yau] S. T. Yau, Remarks on the group of isometries of a riemannian manifold , Topology

16 (1977), 239–247.


