
LOGIC, ALGEBRA, AND COMPUTER SCIENCE
BANACH CENTER PUBLICATIONS, VOLUME 46

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1999

BETA-REDUCTION AS UNIFICATION

A. J. KFOURY

Department of Computer Science, Boston University
Boston, MA 02215, U.S.A.

E-mail: kfoury@fiddle.bu.edu

Dedicated to the memory of Professor Helena Rasiowa

Abstract. We define a new unification problem, which we call β-unification and which can
be used to characterize the β-strong normalization of terms in the λ-calculus. We prove the
undecidability of β-unification, its connection with the system of intersection types, and several
of its basic properties.

1. Introduction. In the λ-calculus, β-reduction is the basic mechanism for evaluat-

ing terms. As a rewrite rule, which we identify as (β), it has a very simple definition:

(β) (λx M)N −→β M [x := N]

In words, the term N is substituted for every free occurrence of the variable x in the

term M .1 In sharp contrast to the simplicity of its definition, (β) gives rise to a very rich

theory that has been extensively researched over more than half a century. In this paper,

we wish to examine one particular aspect of (β) which has not been considered in any

depth so far. We start with a little background.

Let U be a unification problem. The reader may wish to specify U further, by taking

it to be any of the familiar unification problems in the literature, such as first-order,

or second-order, or semi-unification, etc., with or without restrictions imposed on it.

One is usually interested in such questions as: Is U decidable? If it is, what are efficient

algorithms to solve U? If it is not, what are restrictions under which U becomes decidable?

In either case, does U satisfy a “principality property” (the existence of appropriately

defined “most general solutions”)? In the investigation of U , a standard approach is to

devise a finite set R of rewrite rules with the property that, given an arbitrary instance ∆

1991 Mathematics Subject Classification: Primary 46C20; Secondary 32G81.
Partly supported by NSF grant CCR–9417382.

The paper is in final form and no version of it will be published elsewhere.
1Here and throughout, we follow the notation and conventions of Barendregt’s book [2].

[137]

138 A. J. KFOURY

of U , the process of applying the rules of R to ∆ (or to some convenient representation of

∆) will terminate iff ∆ has a solution. Sometimes an order is prescribed in which the rules

of R are applied, but not always. Let us call such a set R a rewrite characterization of

U . In general, R is not unique and there are several convenient rewrite characterizations

R′, R′′, . . . for the same U .

Returning to β-reduction, we consider the set R = {(β)} with just one rewrite rule,

and ask:

(A) Is there a way of taking R = {(β)} as the rewrite characterization of an appropri-

ately defined unification problem U?

At first blush, the answer to Question (A) is “no”. While (β) can be applied to any term

M of the λ-calculus, it is not clear how M is itself a unification instance or how M can

even represent one (which is typically a finite set of constraints, each between two formal

expressions). We thus modify Question (A), and ask instead:

(B) What is a unification problem U such that, given a term M , we can systematically

transform M into an instance ∆ of U , in the form of a finite set of constraints,

which has a solution iff M is β-strongly normalizable?

The “only-if” part (the left-to-right direction) of Question (B) is relatively easy. In fact,

it was considered repeatedly in past investigations and given a satisfactory answer. For

example, we can take U to be standard first-order unification, as there are well-known

techniques to transform a term M of the λ-calculus into an instance ∆ of first-order

unification such that, if ∆ has a solution, then M is β-strongly normalizable.2 In this

case, U has several pleasant properties: It is decidable in low polynomial time, there are

several efficient algorithms to solve it, and it satisfies a “principality property”.

It is the “if” part of Question (B) which is more difficult and has not been considered

in the past. This paper provides an answer to Question (B), for both of its parts simul-

taneously. Quite apart from the new light it sheds on β-reduction, the required analysis

turns out to have several other benefits, as we outline below.

2. Organization and contributions of the paper. Section 4 defines our unifi-

cation problem which we call β-unification, for lack of a better name, and denote βU.

This is a higher-order unification problem, with many similarities with other well-known

forms of unification, in particular with second-order unification. But there are also many

differences. The peculiarities of βU are dictated by results of later sections. The reader

is invited to pay close attention to expansion variables and the way expansion substitu-

tions act on them (Definition 9), which are the most distinctive features of βU. A good

understanding of these will dispel whatever may appear contrived in βU.

Section 5 makes a detour through the system of intersection types. Our interest in

this system is in that it can be used to characterize the β-strong normalization of terms

2The usual statement is slightly different: “If ∆ has a solution, then M is simply-typable”.

We use here the additional non-trivial fact that if M is simply-typable, then M is β-strongly

normalizable. There are many proofs for this result in the literature; see [2, Appendix A], [9,

Chapter 3] and [17, Chapter 8], among other places.

BETA UNIFICATION 139

in the λ-calculus; specifically, a term M is β-strong normalizable iff M is typable in a

lean fragment of the system of intersection types (where we omit, among other features,

a “top” type that can be assigned to every term). In this paper, we define our own lean

fragment of the system, which we call λ→,∧. The key result of this section is Theorem 17,

stating that M is β-strong normalizable iff M is typable in λ→,∧. As there are many

different proofs in the literature for what is essentially the same result, we omit the details

of our own proof and refer the reader instead to our technical report [11]. Section 4 and

Section 5 are largely independent of each other.

Section 6 presents the main results of the paper, by connecting the analyses of the

two preceding sections. We develop a procedure Γ which, when applied to a term M ,

returns a instance Γ(M) of βU such that M is typable in λ→,∧ iff Γ(M) has a solution

(Theorem 22). Put differently, βU is an appropriate unification problem to characterize

typability in λ→,∧ (in just the same sense that first-order unification can be used to

characterize typability in the system of simple types). From this result, we draw several

consequences, one of which is a direct answer to Question (B) above (Corollary 23). For a

better exposition, we found it appropriate to delay the long technical proof of Theorem 22

to the Appendix.

Section 7 concludes the paper by proposing several open problems. This paper is far

from giving a complete examination of βU. For example, nothing is said anywhere about

a “principality property”. More pressing are perhaps the possible connections between

βU and other forms of unification, which we list in this last section.

3. Nomenclature and conventions. The notational overhead in this paper is rel-

atively heavy. The following lists collect in one place frequently used names and symbols.

• A list of often used sets:

N = the set of natural numbers.

P = the set of positive integers.

P+ = P∗ − {ε} = the set of non-empty strings of positive integers.

λ-Var = the set of λ-variables.

Λ = the set of λ-terms over λ-Var.

TVar = the set of type variables.

TVar(σ) = the set of type variables in σ.

EVar = the set of expansion variables.

EVar(σ) = the set of expansion variables in σ.

T , T (TVar), and T (TVar,EVar) are various sets of type expressions.

E = the set of expansions.

• A list of often used metavariables, which can be further decorated (with a subscript,

a superscript, a prime, a double prime, a tilde, etc.):

i, j, k, `,m, n range over N .

p,q, r range over P+.

v, w, x, y, z range over λ-Var.

L,M,N, P,Q,R range over Λ.

140 A. J. KFOURY

α, β range over TVar.

F,G range over EVar.

F ,G range over (EVar)∗.

e ranges over E.

ρ, σ, τ range over types and type schemes.

∆ ranges over constraint sets.

• A list of dedicated function names:

〈 〉j and 〈〈 〉〉j are renaming functions.

Γ and Γ? are functions generating constraint sets.

(ϕ,ψ) ranges over solutions (pairs of substitutions) of constraint sets.

• Conventions for strings of integers:

A string of positive integers is for example: 36 2 101, three numbers separated

by blanks. We may write instead: 36,2,101. If the entries in the string are single-

digit numbers, we may omit both blanks and commas so that, for example,

3623 may be a string consisting of a single 4-digit number or a string consisting

of 4 single-digit numbers (the context will make clear which is the case). We

do not stick to a single convention and use whichever is convenient, as long as

there is no ambiguity.

• Other conventions:

M ≡ N means “M and N are syntactically identical” (up to α-conversion).

We write P ⊂ M to mean “P is a proper subterm occurrence in M”. This

goes against the usual practice of writing “P ⊂ M” to mean “P is a proper

subterm in M”, without reference to one of its occurrences. We write P ⊆M
for “P ⊂M or P ≡M”.

Acknowledgements. The final version of this paper is based on detailed comments

and criticisms which the author received from Pawe l Urzyczyn for an earlier technical

report with the same title ([11]). Special thanks are due to Pawe l for all his help.

4. A unification problem. We define a unification problem, called β-unification

(for want of a better name) and denoted βU, which gives an appropriate algebraic char-

acterization of β-strong normalization. The result is proved in Section 6. Formally, the

set of basic type variables or basic T-variables is TVar1 = {αji | i ∈ P , j ∈ P ∪{ε} }, and

the set of basic expansion variables or basic E-variables is EVar1 = {Fi | i ∈ P}. The set

of type variables or T-variables, properly extending the basic T-variables, is

TVar = {αji,p | i ∈ P , j ∈ P ∪ {ε}, p ∈ P∗}
and the set of expansion variables or E-variables, properly extending the set of basic

E-variables, is

EVar = {Fi,p | i ∈ P , p ∈ P∗}.
We abuse notation and use α (appropriately decorated) to denote both actual members of

TVar and metavariables ranging over TVar, and similarly for F (appropriately decorated).

Instead of αji,p (resp. Fi,p), we may write αjq (resp. Fq) where q = i,p.

BETA UNIFICATION 141

In what follows, the reader will notice many similarities between “expansion” variables

in β-unification and “function” variables in second-order unification; but the two are not

quite the same, and the relationship between the two is one of the questions we leave

open for future examination.

Definition 1. Let ∗ be a type constant, and → and ∧ binary type constructors.

The set T of types is defined by induction:

1. ∗ ∈ T .

2. If σ, τ ∈ T then (σ → τ) ∈ T .

3. If σ, τ ∈ T then (σ ∧ τ) ∈ T .

The set T is the set of usual intersection types over the single type constant ∗. For later

purposes, we identify a particular subset T → of T :

T → = { ∗ } ∪ { (σ → τ) | σ, τ ∈ T }

consisting of all types not of the form (σ∧τ), i.e. types where the binary type constructor

∧ is not allowed to appear in outermost position but, of course, it is allowed to appear

in σ and τ .

Definition 2. Let X ⊆ TVar and Y ⊆ EVar. The set T (X,Y) of type schemes over

X and Y is defined by induction:

1. X ⊂ T (X,Y).

2. If σ, τ ∈ T (X,Y) then (σ → τ) ∈ T (X,Y).

3. If σ, τ ∈ T (X,Y) then (σ ∧ τ) ∈ T (X,Y).

4. If σ ∈ T (X,Y) and F ∈ Y then Fσ ∈ T (X,Y).

A particular case of this definition is when we set X = TVar and Y = EVar. For

σ ∈ T (TVar,EVar) we denote the set of T-variables occurring in σ by TVar(σ), and the

set of E-variables by EVar(σ). We identify an appropriate subset of T (TVar,EVar):

T (TVar) = T (TVar, ∅) = { σ ∈ T (TVar,EVar) | EVar(σ) = ∅ }

Conventions 3.

1. Other studies take the binary constructor ∧ commutative and associative, and some-

times also idempotent (e.g. see [4, 22]). Here, ∧ has none of the 3 properties: It is

neither associative, nor commutative, nor idempotent.

2. Parentheses are omitted in formal type expressions whenever convenient, provided

no ambiguity is introduced:

(a) As usual, → associates to the right,

so that τ1 → τ2 → τ3 is shorthand for (τ1 → (τ2 → τ3)).

(b) We also take ∧ to be right-associative,

so that τ1 ∧ τ2 ∧ τ3 is shorthand for (τ1 ∧ (τ2 ∧ τ3)).

(c) ∧ binds more strongly than →,

so that τ1 ∧ τ2 → τ3 is shorthand for (τ1 ∧ τ2)→ τ3, not τ1 ∧ (τ2 → τ3).

3. τ1 ≡ τ2 means “τ1 and τ2 are syntactically identical” modulo the preceding conven-

tions.

142 A. J. KFOURY

Definitions 4 and 5 introduce appropriate restrictions satisfied by type schemes derived

from λ-terms (Section 6).

Definition 4. The set of E-paths is (EVar)∗. Every E-path G is therefore an arbitrary

sequence Fp1
Fp2
· · ·Fpn

of E-variables, for some n ≥ 0 . We define a function E-path from

(TVar∪EVar)×T (TVar,EVar) to finite subsets of (EVar)∗. We first define E-path(α, τ)

for every α ∈ TVar and τ ∈ T (TVar,EVar), by induction:

1. E-path(α, β) =

{
{ε}, if α ≡ β,

∅, if α 6≡ β.
2. E-path(α, σ → τ) = E-path(α, σ) ∪ E-path(α, τ).

3. E-path(α, σ ∧ τ) = E-path(α, σ) ∪ E-path(α, τ).

4. E-path(α, Fσ) = {FG | G ∈ E-path(α, σ)}.

We next define E-path(F, τ) for every F ∈ EVar and τ ∈ T (TVar,EVar), by induction:

1. E-path(F, α) = ∅.
2. E-path(F, σ → τ) = E-path(F, σ) ∪ E-path(F, τ).

3. E-path(F, σ ∧ τ) = E-path(F, σ) ∪ E-path(F, τ).

4. E-path(F, F ′σ) =

{
{F ′G | G ∈ E-path(F, σ)}, if F 6≡ F ′,
{ε} ∪ {F ′G | G ∈ E-path(F, σ)}, if F ≡ F ′.

Definition 5. We say that a type scheme τ ∈ T (TVar,EVar) is well-behaved if it

satisfies 4 conditions:

1. For every α ∈ TVar(τ), E-path(α, τ) is a singleton set.

2. For every F ∈ EVar(τ), E-path(F, τ) is a singleton set.

3. For all αip, α
j
q ∈ TVar(τ), if p 6= q then neither p nor q is a prefix of the other.

4. For all Fp, Fq ∈ EVar(τ), if p 6= q then neither p nor q is a prefix of the other.

In words, conditions 1 and 2 require that the E-path of every T-variable and the

E-path of every E-variable be uniquely defined; put differently still, in a well-behaved

type scheme, the sequence of E-variables encountered as we go from the root of the type

scheme to an occurrence of an E- or T-variable is always the same, for all occurrences of

this variable. (A similar property defines the so-called “stratified terms” in second-order

unification [16, 19].) None of these 4 conditions is implied by the others. This is clear for

conditions 3 and 4. The next example shows the independence of conditions 1 and 2.

Example 6. Let σ ≡ FF ′α∧F ′α′ → β. Then E-path(α, σ) = {FF ′}, E-path(α′, σ) =

{F ′} and E-path(β, σ) = {ε}. Thus σ satisfies condition 1 in Definition 5, but does not

satisfy condition 2, because E-path(F ′, σ) = {ε, F}. Now let τ ≡ α ∧ Fα ∧ FF ′α → β.

Then E-path(F, τ) = {ε} and E-path(F ′, τ) = {F}, which implies that τ satisfies condition

2 in Definition 5. But τ does not satisfy condition 1, because E-path(α, τ) = {ε, F, FF ′}.

Definition 7. A renaming function has two disjoint parts: an injection from TVar

to TVar, and an injection from EVar to EVar, extended by induction to an injection

from T (TVar,EVar) to T (TVar,EVar). A particular kind of renaming functions is now

defined, others are considered later. For every j ∈ P , define the renaming function

〈 〉j : T (TVar,EVar)→ T (TVar,EVar), by induction:

BETA UNIFICATION 143

1. 〈αip〉j = αip,j .

2. 〈σ → τ〉j = 〈σ〉j → 〈τ〉j .
3. 〈σ ∧ τ〉j = 〈σ〉j ∧ 〈τ〉j .
4. 〈Fp σ〉j = Fp,j 〈σ〉j .
Definition 8. The symbol 2 denotes a “hole”. The set E of expansions is defined

by induction:

1. 2 ∈ E.

2. If e, e′ ∈ E then (e ∧ e′) ∈ E.

In words, an expansion e is a non-empty binary tree, where every internal node is “∧”

and every leaf node is “2”. If e has n holes, n ≥ 1, we may write 2(1),2(2), . . . ,2(n),

to denote these n holes in their order of occurrence in e from left to right. If τ1, . . . , τn
are n types (or type schemes, respectively), we write e[τ1, . . . , τn] to denote the result of

placing τi in hole 2(i) for every i ∈ {1, . . . , n}. The resulting expression e[τ1, . . . , τn] is a

type (or a type scheme, respectively).3

Definition 9. An expansion substitution or, more simply, an E-substitution is a map

ϕ : EVar → E such that ϕ(F) = 2 for almost all F ∈ EVar. Such a substitution is

extended to ϕ : T (TVar,EVar)→ T (TVar) by induction on T (TVar,EVar):

1. ϕ(α) = α.

2. ϕ(σ → τ) = ϕ(σ)→ ϕ(τ).

3. ϕ(σ ∧ τ) = ϕ(σ) ∧ ϕ(τ).

4. ϕ(Fσ) = e[ϕ(〈σ〉1), . . . , ϕ(〈σ〉n)] where e = ϕ(F) and e has n ≥ 1 holes.

There are several subtleties connected with the 4th clause. First, observe that if

ϕ(F) = 2 and σ does not mention any E-variables, then ϕ(Fσ) is not σ, but rather

〈σ〉1 which is σ with all T-variables uniformly renamed. Moreover, observe that ϕ is ap-

plied in “outside-in” fashion. If ϕ were applied “inside-out”, then we would write instead

ϕ(Fσ) = e[〈ϕ(σ)〉1, . . . , 〈ϕ(σ)〉n)] and the result would be very different. For example,

let σ ≡ F (Gα → α′) → α′′ and ϕ(F) = ϕ(G) = 2 and ϕ(G1) = 2 ∧2. Applying ϕ to

σ “outside-in” in this case produces (α11 ∧ α12 → α′1) → α′′, whereas applying ϕ to σ

“inside-out” produces (α11 → α′1)→ α′′.

Proposition 10.

1. If σ ∈ T (TVar,EVar) is well-behaved, then so is 〈σ〉j, for every j ∈ P.

2. If σ ∈ T (TVar,EVar) is well-behaved and ϕ : EVar→ E, then ϕ(σ) is well-behaved.

Proof. Part 1 is clear from Definitions 5 and 7. A formal proof is by induction on

T (TVar,EVar). Part 2 is by induction on T (TVar,EVar), using part 1 also.

Definition 11. A type substitution or, more simply, a T-substitution is a function

ψ : TVar→ T → such that ψ(α) = ∗ for almost all α ∈ TVar, extended in the usual way

to ψ : T (TVar)→ T by induction on T (TVar):

3“Expansions” in this paper are unrelated to “expansions” as defined in various articles by

researchers at the University of Turin, see [6] and [7, Definition 2.10] and some of the references

cited therein.

144 A. J. KFOURY

1. ψ(σ → τ) = ψ(σ)→ ψ(τ).

2. ψ(σ ∧ τ) = ψ(σ) ∧ ψ(τ).

Note the basis of the preceding induction is a function ψ : TVar → T → rather than

ψ : TVar→ T . These are not equivalent choices, as illustrated by Example 13.

Definition 12. We define a constraint to be an equation of the form σ = τ where

σ, τ ∈ T (TVar,EVar). The constraint σ = τ is well-behaved if the type scheme σ ∧ τ is

well-behaved. An instance ∆ of βU is a well-behaved finite set of constraints, i.e.

∆ = {σ1 = τ1, σ2 = τ2, . . . , σn = τn}

such that the type scheme σ1 ∧ τ1 ∧ σ2 ∧ τ2 ∧ · · · ∧ σn ∧ τn is well-behaved. A solution

for ∆ is a pair (ϕ,ψ) where ϕ is an E-substitution and ψ is a T-substitution, such that

ψ(ϕ(σi)) ≡ ψ(ϕ(τi)) for i = 1, . . . , n, in which case we write (ϕ,ψ) |= ∆. A particular

case is ∆ = ∅, the empty set of constraints, which always has a solution.

If ∆ is the constraint set above, then ∧∧∆ is a shorthand notation:

∧∧∆ = σ1 ∧ τ1 ∧ σ2 ∧ τ2 ∧ · · · ∧ σn ∧ τn.

Notions and functions defined earlier in this section for type schemes are extended to

constraint sets in the obvious way. For example, if ∆ is a constraint set, then TVar(∆) =

TVar(∧∧∆). The sets EVar(∆), E-path(α,∆), E-path(F,∆), etc., are defined similarly.

Example 13. The constraint set ∆ = {α1 = α2 ∧ α3} has no solution, in our sense

above. However, there is an extended sense of E-substitution, according to which it is a

function ψ from TVar to T rather than to T →. In the extended sense, not considered in

the rest of the paper, ∆ has a solution (ϕ,ψ) such that: ϕ(F) = 2 for all F ∈ EVar,

ψ(α1) = ∗ ∧∗ and ψ(α) = ∗ for all α ∈ TVar− {α1}.

We point out a peculiarity of βU, which distinguishes it from other forms of unifi-

cation. Finding a solution (ϕ,ψ) for a constraint set ∆ generally requires that ϕ and ψ

explicitly assign values to, not only (the finitely many) E-variables and T-variables occur-

ring in ∆, but also (finitely many) other E-variables and T-variables not occurring in ∆.

Moreover, if a solution must assign a value to, say, E-variable Fi,p then it does not have

to assign a value to its “parent” Fi which explicitly appears in ∆; thus, such a variable

Fi in ∆ can be viewed as a “representative” of a number of its offsets Fi,p1
, . . . , Fi,pn

,

where the number n ≥ 1 is determined by a solution for ∆. This is illustrated by the next

example and, again, by Example 20 in Section 6.

Example 14. Consider the constraint set ∆ = {α = Fβ → β′, Fα′ = F (Gα′′ → β)}.
For notational convenience, we use α, α′, β, etc., instead of formal T-variables of the form

αji , and F and G instead of formal E-variables of the form Fi. It is readily checked that

∆ is well-behaved. Moreover, ∆ has infinitely many solutions, and here is a particular

one (ϕ,ψ). Let

ϕ(F) = ϕ(G1) = ϕ(G2) = 2 ∧2,
ψ(α) = β1 ∧ β2 → β′, ψ(α′1) = α′′1,1 ∧ α′′1,2 → β1, ψ(α′2) = α′′2,1 ∧ α′′2,2 → β2.

Given the above assignment of values to F,G1 and G2, all other E-variables (in particular

the “parent” G) need not be assigned any values — or they can all be assigned the default

BETA UNIFICATION 145

value 2. Similarly, given the above assignment of values to α, α′1 and α′2, all other T-

variables (in particular the “parent” α′) need not be assigned any values — or they can

all be assigned the default value ∗.

We also note that, although some of the restrictions imposed on βU may now seem

arbitrary, they were entirely dictated by the needs to prove the equivalence between β-SN

and βU, as expressed by Corollary 23. Among such restrictions are: applying E-substitu-

tions in “outside-in” fashion (Definition 9), restricting the range of T-substitutions to

T → (Definition 11), and requiring that instances of βU be well-behaved (Definition 12).

5. The system of intersection types. The two conditions in the next definition

are standard in the literature (see, for example, [17, Chapter 11]), whenever constraints

are formulated in relation to typability of λ-terms in a type inference system.

Definition 15. A λ-term M ∈ Λ is well-named if it satisfies two conditions:

1. No variable in M has more than one binding occurrence.

2. The bound and free variables in M are disjoint sets.

Proposition 16. For every λ-term M ∈ Λ, we can effectively define a well-named

λ-term N ∈ Λ such that M ≡ N .

Proof. By induction on the definition of M .

System λ→,∧ is our lean version of the system of intersection types. The type-inference

rules of λ→,∧ are collected together in the table at the end of Section 5. (Similar but

not quite identical restrictions of the system of intersection types are extensively studied

in [22] and [23], and also in earlier studies, e.g. [5].) In the definition of λ→,∧ below, A is

a type assignment, i.e. a partial function from λ-Var to T with finite domain of definition,

written as a finite list of pairs, as in

x1 : τ1, . . . , xk : τk

for some distinct x1, . . . , xk ∈ λ-Var, some τ1, . . . , τk ∈ T and some k ≥ 0. If A and B

are type assignments defined over the same finite subset X ⊂ λ-Var, then A∧B is a new

type assignment given by:

(A ∧B)(x) = A(x) ∧B(x)

for every x ∈ X. If A and B have distinct domains of definition, we do not need to

define A ∧ B. We take ∧ non-associative, non-commutative and non-idempotent (Con-

ventions 3). More generally, if e ∈ E is an expansion with n holes and B1, . . . , Bn are

type assignments all defined over the same finite subset X ⊂ λ-Var, then e[B1, . . . , Bn] is

the type assignment given by

e[B1, . . . , Bn](x) = e[B1(x), . . . , Bn(x)]

for every x ∈ X. Observe that, in our system λ→,∧, the rule ABS-K is not a special case

of the rule ABS-I. This is because there is no “weakening” rule in our system (which

allows to add redundant type assumptions to a type assignment) and, moreover, if there

is a proof for the sequent A ` M : τ in λ→,∧ where M is well-named and x 6∈ FV(M),

then A(x) is not defined.

146 A. J. KFOURY

On the other hand, if M is well-named, x ∈ FV(M) and there is a proof in λ→,∧ for

the sequent A `M : τ , then A(x) is necessarily defined. If there are n ≥ 1 invocations of

rule VAR in this proof to derive n types for x, then

A(x) = e[σ1, σ2, . . . , σn]

for some e ∈ E, an expansion with n holes, and some σi ∈ T → for i = 1, . . . , n. In general,

if m is the number of occurrences of x in M , then n ≥ m, i.e. it is not necessarily the

case that n = m.

To illustrate this last point, consider the subterm N ≡ (v(1)(v(2)(v(3)x))) of M in

Example 20 below. There is a proof of the sequent ∅ `M : τ in λ→,∧ for some τ ∈ T →.

This proof contains therefore a subderivation for a sequent A ` N : σ for some type

assignment A and type σ ∈ T →. It is not difficult to verify that A(z) is undefined

for all z ∈ λ-Var − {v, x}, with A(v) = e[σ1, . . . , σ7] and A(x) = e′[σ′1, . . . , σ
′
8] where

σ1, . . . , σ7, σ
′
1, . . . , σ

′
8 ∈ T

→.

Theorem 17. For every well-named M ∈ Λ, the term M is β-SN iff M is typable in

the system λ→,∧.

Proof. Although our system λ→,∧ is slightly different from other systems of inter-

section types, this theorem is no surprise for the reader familiar with intersection types.

Nevertheless, what is interesting is that there are several very different approaches to

prove what is essentially the same result. For some of these approaches, we refer the

reader to [13, 15, 18, 21, 22, 23] as well as to some of the references cited therein. Yet

another approach is based on the results of [10] after appropriate adjustments (mostly

required by the fact that ∧ is an associative binary constructor in [10], which it is not

here). Details of this last approach are included in the technical report version of this

paper [11].

In this report we do not pursue the study of system λ→,∧ further. Let us point out

at least one peculiarity of λ→,∧: It does not satisfy the property of subject reduction, i.e.

types in λ→,∧ are not always preserved by β-reduction and we may have the following

situation:

`M : σ and M −→β N but 6` N : σ

(We take M to be a closed λ-term, for simplicity, so that the type assignment to the left

of “`” is empty.) For this to happen, for example, we may take M ≡ (λx.((λy.P)Q))

where x and y do not occur in P and x occurs twice in Q. In particular, ((λy.P)Q) is a

K-redex. In this case, if ` M : σ, it must be that σ = τ1 ∧ τ2 → ρ, where τ1, τ2, ρ ∈ T →

and τ1 and τ2 are the types assigned to the two occurrences of x in Q. We then have:

` (λx.((λy.P)Q)) : τ1 ∧ τ2 → ρ and (λx.((λy.P)Q)) −→β (λx.P)

but 6` (λx.P) : τ1 ∧ τ2 → ρ

because x does not occur in P . On the other hand, λ→,∧ does satisfy a weaker form of

subject reduction: Typability (as opposed to types) in λ→,∧ is preserved by β-reduction.

This is so because:

1. Typability in λ→,∧ is equivalent to β-SN.

BETA UNIFICATION 147

2. If M is β-SN and M −→β N then N is also β-SN.

In the preceding example, even though 6` (λx.P) : τ1 ∧ τ2 → ρ, it is still the case that

` (λx.P) : τ → ρ for some τ ∈ T →.

Clearly, the peculiarity described above is due to the presence of K-redexes. In fact,

when restricted to λI-terms, system λ→,∧ does satisfy the subject-reduction property

(proof omitted). Let us also point out that λ→,∧ can be adjusted in order to satisfy

subject-reduction in general.

The peculiarities of system λ→,∧ were dictated by the needs of the results of the next

section, connecting βU and β-SN. Specifically, λ→,∧ was defined and adjusted in order

to push the proof of Theorem 22 through.

System λ→,∧

VAR x : τ ` x : τ τ ∈ T →

ABS-I
A, x : σ ` M : τ x ∈ FV(M)

A ` (λx.M) : (σ → τ)

ABS-K
A ` M : τ x 6∈ FV(M) σ ∈ T →

A ` (λx.M) : (σ → τ)

APP
A ` M : (e[σ1, . . . , σn]→ τ) B1 ` N : σ1 · · · Bn ` N : σn

A ∧ e[B1, . . . , Bn] ` (MN) : τ

τ, σ1, . . . , σn ∈ T → with n ≥ 1 and e ∈ E

6. Typability in the system of intersection types. Let M ∈ Λ. Formally, the

set of λ-variables is λ-Var = {xi | i ∈ P}. For the same variable xi, the occurrences

of xi (free or bound but not binding) in M are uniquely identified by their occurrence

numbers, as

x
(j1)
i , x

(j2)
i , . . . , x

(jn)
i

for some j1, j2, . . . , jn ∈ P . Subscripts are part of the variable name, superscripts are not.

For simplicity of notation, we often assign occurrence numbers consecutively, starting with

1, as M is scanned from left-to-right, as

x
(1)
i , x

(2)
i , . . . , x

(n)
i

but our analysis is independent of this numbering scheme. All that matters is that an

occurrence of xi in M is uniquely identified by an occurrence number.

We define a procedure which, given a well-named λ-term M , generates a finite set

Γ(M) of constraints. If ∆ is a set of constraints and F ∈ EVar, we write F∆ to denote

148 A. J. KFOURY

the set of constraints:

F∆ = {Fσ = Fτ | σ = τ is a constraint in ∆}

The constraints in Γ(M) are written over the sets of basic T-variables and basic E-

variables:

TVar1 = {αji | i ∈ P , j ∈ P ∪ {ε}} and EVar1 = {Fi | i ∈ P}

For a fixed i ∈ P , all type variables of the form αji correspond to λ-variable xi. For

convenience, distinguish a subset TVaraux of TVar1 whose members do not correspond

to λ-variables in M :

TVaraux = {αi | i ∈ P , xi does not occur in M}

We reserve β (possibly decorated) as a metavariable ranging over TVaraux (“aux” is for

“auxiliary”).

Definition 18 (Procedure Γ to generate constraints). LetM ∈ Λ be well-named. Si-

multaneously with a set of constraints Γ(M), we define a type scheme τ(M) and, for every

λ-variable x occurring free in M , a type scheme ρ(M,x). By induction on well-named

λ-terms:

1. Variables x
(j)
i :

• Γ(x
(j)
i) = ∅.

• τ(x
(j)
i) = αji .

• ρ(x
(j)
i , xi) = αji .

2. Applications (NP):

• Γ(NP) = Γ(N) ∪ FΓ(P) ∪ {τ(N) = Fτ(P)→ β},
for a fresh F ∈ EVar1 and a fresh β ∈ TVaraux.

• τ(NP) = β.

• ρ((NP), x) =


ρ(N, x), if x ∈ FV(N) and x 6∈ FV(P),

Fρ(P, x), if x 6∈ FV(N) and x ∈ FV(P),

(ρ(N, x) ∧ Fρ(P, x)), if x ∈ FV(N) and x ∈ FV(P),

undefined, if x 6∈ FV(N) and x 6∈ FV(P).

3. Abstractions (λxi N), where the free occurrences of xi in N are x
(1)
i , . . . , x

(m)
i as N

is scanned from left to right, for some m ≥ 0:

• Γ(λxi N) = Γ(N).

• τ(λxi N) =

{
ρ(N, xi)→ τ(N), if m ≥ 1,

αi → τ(N), if m = 0.
• ρ((λxi N), x) = ρ(N, x) (note that x 6≡ xi necessarily).

Given a fixed numbering of the occurrences of the same λ-variable in M , for every λ-

variable in M , the process of going from M to Γ(M) is uniquely determined up to the

choice of auxiliary type variables.

Proposition 19. For every well-named M ∈ Λ, the set Γ(M) is a well-behaved set

of constraints.

BETA UNIFICATION 149

Proof. Because TVar(Γ(M)) ⊂ TVar1 and EVar(Γ(M)) ⊂ EVar1, conditions 3 and

4 in Definition 5 are automatically satisfied. We only need to show that:

1. For every α ∈ TVar(Γ(M)), E-path(α,∧∧Γ(M)) is uniquely defined.

2. For every F ∈ EVar(Γ(M)), E-path(F,∧∧Γ(M)) is uniquely defined.

These two properties are shown simultaneously by a straightforward induction on M .

Define

Γ?(M) = ∧∧Γ(M) ∧ ∧∧{ ρ(M,x) | x free in M } ∧ τ(M)

To push the induction through, we prove a slight generalization of the two preceding prop-

erties, where Γ(M) is replaced by ∧∧Γ?(M) throughout, together with two additional

properties (below). Let {N1, . . . , N`} = {N |N ⊆M}. The two additional properties are,

for all i, j ∈ {1, . . . , `}:

3. If Ni ∩Nj = ∅ then TVar(Γ?(Ni)) ∩ TVar(Γ?(Nj)) = ∅.
4. If Ni ∩Nj = ∅ then EVar(Γ?(Ni)) ∩ EVar(Γ?(Nj)) = ∅.

The only non-trivial case of the induction is when Nk ≡ (NiNj). Properties 1 to 4 for

this case are satisfied using the induction hypothesis for Ni and Nj , together with the

fact that a fresh β ∈ TVaraux and a fresh F ∈ EVar1 are introduced. We omit the

straightforward details.

Example 20. Let M ≡ (λv.λx.v(1) (v(2) (v(3)x))) (λw.λy.w(1) (w(2)y)). (For better

readability, instead of the formal λ-variables x1, x2, x3, and x4, we use x, y, v, and w;

instead of the formal T-variables αj1, α
j
2, etc., we use αjx, α

j
y, etc.; instead of the formal

E-variables F1, F2, F3, etc., we use F,G,H, etc.) The set Γ(M) contains 6 constraints:

lrlllHGα3
v = HG(Fαx → β1)(1)

Hα2
v = H(Gβ1 → β2)(2)

α1
v = Hβ2 → β3(3)

KJα2
w = KJ(Iαy → β4)(4)

Kα1
w = K(Jβ4 → β5)(5)

(6) α1
v ∧ H(α2

v ∧Gα3
v) → (HGFαx → β3)

= K(α1
w ∧ Jα2

w → (JIαy → β5)) → β6

These 6 constraints are produced by applying the inductive procedure given in Defini-

tion 18 to the term M . We do not give the details, except for the last step, which is

an application. Let N ≡ (λv.λx.v(1) (v(2) (v(3)x))) and P ≡ (λw.λy.w(1) (w(2)y)). Then

Γ(N) is the set of constraints {(1), (2), (3)} and Γ(P) contains 2 constraints:

(4′) Jα2
w = J(Iαy → β4)

(5′) α1
w = Jβ4 → β5

Observe that (4′) and (5′) are (4) and (5), respectively, with the outermost E-variable K

crossed out. Moreover,

τ(N) ≡ α1
v ∧ H(α2

v ∧Gα3
v) → (HGFαx → β3)

τ(P) ≡ α1
w ∧ Jα2

w → (JIαy → β5)

150 A. J. KFOURY

Hence,

Γ(M) = Γ(NP) = Γ(N) ∪ KΓ(P) ∪ {τ(N) = Kτ(P)→ β6}

where K and β6 are fresh. A solution (not unique) for Γ(M) is given by a pair (ϕ,ψ)

where (for convenience we write F11 instead of F1,1, F12 instead of F1,2, etc.):

• ϕ(F ′) = 2 for all F ′ ∈ EVar− {F11, F12, F21, F22, G1, G2, H,K} .

• ϕ(F11) = ϕ(F12) = ϕ(F21) = ϕ(F22) = ϕ(G1) = ϕ(G2) = ϕ(H) = 2 ∧2.

• ϕ(K) = 2 ∧ ((2 ∧ (2 ∧2)) ∧ (2 ∧ (2 ∧2))) .

We omit the details of ψ, easily obtained by inspecting the constraints in ϕ(Γ(M)). The

existence of a solution (ϕ,ψ) for Γ(M) implies that M is typable in λ→,∧, by Theorem 22

below. Of course, the typability of M in λ→,∧ is simple enough to be checked directly.

More interesting is the relationship between solutions (ϕ,ψ) for Γ(M) and proofs of a

sequent ∅ `M : τ in λ→,∧. We do not investigate this relationship in this paper, but here

is a glimpse for the interested reader. For the particular solution (ϕ,ψ) defined above,

the corresponding proof of the sequent ∅ ` M : τ is such that, if ρ and ρ′ are the types

of the bindings “λv” and “λx”, then ρ ≡ e[σ1, . . . , σ7] and ρ′ ≡ e′[σ′1, . . . , σ
′
8], for some

σ1, . . . , σ7, σ
′
1, . . . , σ

′
8 ∈ T

→, where e ≡ ϕ(K) and

e′ ≡ ϕ(HGF) = (ϕ(F11) ∧ ϕ(F12)) ∧ (ϕ(F21) ∧ ϕ(F22))

Complementary comments are in the paragraph preceding Theorem 17.

Example 21. Let N ≡ (λx.x(1)x(2)) (λy.y(1)y(2)). Γ(N) is the following set of con-

straints:

α1
x = Fα2

x → β1(1)

Hα1
y = H(Gα2

y → β2)(2)

α1
x ∧ Fα2

x → β1 = H(α1
y ∧Gα2

y → β2)→ β3(3)

The set Γ(M) does not have a solution, corresponding to the fact that M is not typable

in λ→,∧, by Theorem 22.

Theorem 22. For every well-named M ∈ Λ, M is typable in λ→,∧ iff Γ(M) has a

solution.

Proof. This is a long technical induction, delayed to the Appendix.

The next result is our promised characterization of β-SN via the unification prob-

lem βU.

Corollary 23. For every well-named M ∈ Λ, the term M is β-SN iff Γ(M) has a

solution.

Proof. Immediate from Theorem 17 and Theorem 22.

Corollary 24. There is no algorithm which, given an arbitrary well-named M ∈ Λ,

can decide whether the set of constraints Γ(M) has a solution.

Proof. Immediate from Corollary 23, using the fact that it is undecidable whether an

arbitrary λ-term is β-SN. This is a “folk” result, which is not explicitly stated in [2], but

here is a simple proof for it, based on a similar proof in [15]. The partial recursive functions

BETA UNIFICATION 151

are λI-definable [2, Theorem 9.2.16], which implies it is undecidable whether an arbitrary

λI-term has a β-nf [2, Definition 9.2.3], by the undecidability of the Halting Problem. But

a λI-term has a β-nf iff it is β-SN [2, Corollary 11.3.5]. Hence, it is undecidable whether

an arbitrary λI-term is β-SN and, more generally, it is undecidable whether an arbitrary

λ-term is β-SN.

Theorem 25. There is a semi-decision procedure which, given an arbitrary well-

named M ∈ Λ, terminates iff the set of constraints Γ(M) has a solution. Moreover,

if and when the procedure terminates, it returns a solution (ϕ,ψ) for Γ(M).

Proof. We can effectively generate all E-substitutions ϕ : EVar → E such that

ϕ(F) = 2 for almost all F ∈ EVar, and all T-substitutions ψ : TVar → T → such that

ψ(α) = ∗ for almost all α ∈ TVar. We systematically generate all such pairs (ϕ,ψ), and

we stop the procedure if and when we find one which is a solution for Γ(M).

7. Relationships with other forms of unification. We use the expression 1U to

denote first-order unification over a single binary function symbol “→”, a single constant

symbol ∗, and a countably infinite set of ground variables TVar.

Proposition 26. 1U is a special case of βU.

Proof. Let ∆ be an instance of 1U, i.e.

∆ = {σ1 = τ1, . . . , σn = τn}
where EVar(∆) = ∅ and “∧” appears nowhere in ∆. With no loss of generality, we require

that ∆ be well-behaved; only condition 3 in Definition 5 applies to ∆ here. Clearly,

1. ∆ is also an instance of βU.

2. Every solution ψ of ∆ in the sense of 1U induces a solution (ϕ,ψ) of ∆ in the sense

of βU, where ϕ(F) = 2 for every F ∈ EVar.

The details are straightforward and therefore omitted.

Let 2U refer to second-order unification, and SU to semi-unification. If 2U and SU

are over a signature containing at least one function symbol of arity ≥ 2, it is well-known

that both 2U and SU are, in general, undecidable problems. To date, there is only one

rather complicated proof for the undecidability of SU, by a reduction from the mortality

problem for Turing machines [12]. After the initial proof for the undecidabilty of 2U,

by a reduction from the diophantine problem (or Hilbert’s tenth problem) [8], alternative

simpler proofs were discovered [3, 14, 20]. The relationship between 2U and SU has been

an open problem for several years. A new, hopefully simpler, proof for the undecidability

of SU will be a welcome addition to the literature.

Open Problem 27. The relationship between βU and 2U. In particular, define a

direct reduction from βU to 2U and/or vice-versa.

Open Problem 28. The relationship between βU and SU. In particular, define a

direct reduction from βU to SU and/or vice-versa.

There are other forms of higher-order unification besides 2U and SU, such as “second-

order unification with partial substitution” [1] and “unification of stratified second-order

152 A. J. KFOURY

terms” [19], for which there may exist reductions from and/or to βU. These are all very

interesting questions for unification theory, and we leave their investigation for others to

pursue.

A. Remaining proofs for Section 4. The following lemma is a technical result we

need for the proof of Theorem 22.

Lemma 29. Let X ⊆ TVar1 and Y ⊆ EVar1. Suppose that either (A) or (B) holds.

In both cases, n is a fixed positive integer and p ranges over P∗.

(A) Let ϕ1, . . . , ϕn : EVar → E and ψ1, . . . , ψn : TVar → T → be given. Define a new

E-substitution ϕ and a new T-substitution ψ:

ϕ(〈F 〉p) =

{
ϕk(〈F 〉q), if F ∈ Y and p = kq for some k ∈ {1, . . . , n} ,

2, otherwise.

ψ(〈α〉p) =

{
ψk(〈α〉q), if α ∈ X and p = kq for some k ∈ {1, . . . , n} ,

∗, otherwise.
(B) Let ϕ : EVar→ E and ψ : TVar→ T → be given. For every k ∈ {1, . . . , n}, define a

new E-substitution ϕk and a new T-substitution ψk:

ϕk(〈F 〉p) =

{
ϕ(〈F 〉kp), if F ∈ Y ,

2, otherwise.

ψk(〈α〉p) =

{
ψ(〈α〉kp), if α ∈ X ,

∗, otherwise.

Conclusion: For every k ∈ {1, . . . , n} and every type scheme σ ∈ T (X,Y), we have

ψϕ(〈σ〉k) = ψkϕk(σ).4

Proof. Let k be a fixed integer in {1, . . . , n} throughout the proof. We first define

a particular renaming function 〈〈 〉〉k : T (TVar) → T (TVar). By induction on T (TVar),

where p ∈ P∗ and i, j, ` ∈ P :

1. 〈〈αjip〉〉k = αjikp.

2. 〈〈σ → τ〉〉k = 〈〈σ〉〉k → 〈〈τ〉〉k.

3. 〈〈σ ∧ τ〉〉k = 〈〈σ〉〉k ∧ 〈〈τ〉〉k.

Using either hypothesis (A) or hypothesis (B) in the lemma statement, we first prove

ϕ(〈σ〉kq) = 〈〈ϕk(〈σ〉q)〉〉k(1)

for every σ ∈ T (X,Y) and q ∈ P∗. To understand what equation (1) says, first note that

what ϕ does to 〈F 〉kq is the same as what ϕk does to 〈F 〉q. But the variables in 〈σ〉kq all

have the additional “k” which is not present in 〈σ〉q, and this is why we need the outer

〈〈 〉〉k. We prove (1) by induction on σ. We omit the easy case when σ ≡ αji (T-variable),

σ ≡ τ1 → τ2 (→-type scheme) or σ ≡ τ1 ∧ τ2 (∧-type scheme). For the interested reader,

4This lemma is actually two distinct lemmas sharing the same conclusion. The hypothesis

of one lemma is (A) and the hypothesis of the other is (B). It is possible to condense these two

hypotheses, or even to merge them, but at the price of making the formalism more difficult to

decipher. Although unusually long, we prefer to leave the statement of Lemma 29 in its present

form.

BETA UNIFICATION 153

the details are available in the technical report version of this paper [11]. We only consider

here the case when σ ≡ Fiτ in the induction. For this case:

ϕ(〈Fiτ〉kq) = ϕ(Fikq〈τ〉kq)

= e[ϕ(〈τ〉kq1), . . . , ϕ(〈τ〉kq`)]
where e = ϕ(Fikq) = ϕk(Fiq) has ` holes

= e[〈〈ϕk(〈τ〉q1)〉〉k, . . . , 〈〈ϕk(〈τ〉q`)〉〉k]

by the induction hypothesis

= 〈〈e[ϕk(〈τ〉q1), . . . , ϕk(〈τ〉q`)]〉〉k
= 〈〈ϕk(Fiq〈τ〉q)〉〉k
= 〈〈ϕk(〈Fiτ〉q)〉〉k

This concludes the proof of (1). Let X̃ = {〈α〉p|α ∈ X, p ∈ P∗}. Observe that ϕ(〈σ〉kq) =

〈〈ϕk(〈σ〉q)〉〉k ∈ T (X̃, ∅) for every σ ∈ T (X,Y) and q ∈ P∗. We next prove

ψ(〈〈σ〉〉k) = ψk(σ)(2)

for every σ ∈ T (X̃, ∅). The proof of (2) is by induction on σ. We include all the details

of this easy induction — there are only 3 cases, because σ does not mention E-variables:

1. ψ(〈〈αjiq〉〉k) = ψ(αjikq) = ψ(〈αji 〉kq) = ψk(〈αji 〉q) = ψk(αjiq)

2. ψ(〈〈σ → τ〉〉k) = ψ(〈〈σ〉〉k → 〈〈τ〉〉k)

= ψ(〈〈σ〉〉k)→ ψ(〈〈τ〉〉k)

= ψk(σ)→ ψk(τ)

by the induction hypothesis

= ψk(σ → τ)

3. ψ(〈〈σ ∧ τ〉〉k) = ψ(〈〈σ〉〉k ∧ 〈〈τ〉〉k)

= ψ(〈〈σ〉〉k) ∧ ψ(〈〈τ〉〉k)

= ψk(σ) ∧ ψk(τ)

by the induction hypothesis

= ψk(σ ∧ τ)

This concludes the induction for the proof of (2). By (1) and (2) together, we now have:

ψϕ(〈σ〉kq) = ψ〈〈ϕk(〈σ〉q)〉〉k = ψkϕk(〈σ〉q)

for every σ ∈ T (X,Y) and q ∈ P∗. In particular, ψϕ(〈σ〉k) = ψkϕk(σ), as desired.

Proof of Theorem 22. For the left to right implication of Theorem 22, we prove a more

general fact, namely if there is a derivation D in λ→,∧ whose last sequent is A ` M : σ,

then there is a pair (ϕ,ψ) where ϕ : EVar→ E and ψ : TVar→ T → such that:

1. (ϕ,ψ) |= Γ(M).

2. A(x) = ψϕ(ρ(M,x)) for every λ-variable x occurring free in M .

3. σ = ψϕ(τ(M)).

The proof is by induction on derivations D in λ→,∧. The induction hypothesis for D,

denoted IH(D), asserts the existence of (ϕ,ψ) satisfying the preceding 3 points.

154 A. J. KFOURY

For the base case, the derivation D consists of a single sequent, x(j) : σ ` x(j) : σ

where σ ∈ T →. Define ϕ(F) = 2 for every F ∈ EVar, ψ(αjx) = σ and ψ(α) = ∗ for

every α ∈ TVar − {αjx}. For this case, Γ(x(j)) = ∅, and τ(x(j)) = ρ(x(j), x) = αjx. It

immediately follows that (ϕ,ψ) satisfies IH(D).

Proceeding inductively, suppose there is a derivation D0 whose last sequent is A, y :

σ1 ` N : σ2 and a derivation D obtained from D0 according to:

A, y : σ1 ` N : σ2
A ` (λy.N) : σ1 → σ2

where σ1 ∈ T and σ2 ∈ T →. Here, y occurs m ≥ 1 times free in N . We assume there

is (ϕ0, ψ0) satisfying the 3 parts of IH(D0). If we define (ϕ,ψ) = (ϕ0, ψ0), it is easy to

check that (ϕ,ψ) satisfies the 3 parts of IH(D).

Suppose there is a derivation D0 whose last sequent is A ` N : σ2 and a derivation D
obtained from D0 according to:

A ` N : σ2
A ` (λy.N) : σ1 → σ2

where σ1, σ2 ∈ T →. Here, y occurs m = 0 times free in N . Let (ϕ0, ψ0) satisfy the 3 parts

of IH(D0). We define ϕ = ϕ0 and

ψ(α) =

{
σ1, if α = αy ,

ψ0(α), if α 6= αy .

It is again easy to check that (ϕ,ψ) satisfies the 3 parts of IH(D).

For the last case of the induction, suppose there is a derivation D which ends with

A0 ` N : (e[σ1, . . . , σn]→ σn+1) A1 ` P : σ1 · · · An ` P : σn
A0 ∧ e[A1, . . . , An] ` (NP) : σn+1

The subderivation corresponding to N is D0, and the n ≥ 1 subderivations corresponding

to P are D1, . . . ,Dn from left to right. We assume there is (ϕ0, ψ0) satisfying IH(D0) and

(ϕk, ψk) satisfying IH(Dk) for k = 1, . . . , n. We have

Γ(NP) = Γ(N) ∪ FΓ(P) ∪ {τ(N) = Fτ(P)→ β}

for some fresh F ∈ EVar1 and fresh β ∈ TVaraux. For every G ∈ EVar1 and p ∈ P∗,
define:

ϕ(〈G〉p) =


e, if G = F and p = ε ,

ϕ0(〈G〉p), if G ∈ EVar(Γ(N)) ,

ϕk(〈G〉q), if G ∈ EVar(Γ(P))

and p = kq for some k ∈ {1, . . . , n} ,

2, otherwise.

The function ϕ is well-defined because EVar(Γ(N)) ∩ EVar(Γ(P)) = ∅. For every α ∈
TVar1 and p ∈ P∗, define:

ψ(〈α〉p) =


σn+1, if α = β and p = ε ,

ψ0(〈α〉p), if α ∈ TVar(Γ(N)) ,

ψk(〈α〉q), if α ∈ TVar(Γ(P))

and p = kq for some k ∈ {1, . . . , n} ,

∗, otherwise.

BETA UNIFICATION 155

The function ψ is well-defined because TVar(Γ(N)) ∩ TVar(Γ(P)) = ∅. It remains to

check that (ϕ,ψ) satisfies the 3 parts of IH(D). We omit parts 1 and 3 of IH(D), which

are simpler to prove, and consider part 2 only. Posing A = A0∧e[A1, . . . , An], we have to

show that A(x) = ψϕ(ρ(NP, x)) for every λ-variable x occurring free in (NP). With no

loss of generality, assume x occurs free in both N and P , so that ρ(NP, x) = (ρ(N, x) ∧
Fρ(NP, x)). By IH(D0), we have A0(x) = ψ0ϕ0(ρ(N, x)). By IH(Dk), we have Ak(x) =

ψkϕk(ρ(P, x)) for every k ∈ {1, . . . , n}. Hence,

A(x) = ψ0ϕ0(ρ(N, x)) ∧ e[ψ1ϕ1(ρ(P, x)), . . . , ψnϕn(ρ(P, x))]

= ψϕ(ρ(N, x)) ∧ e[ψϕ(〈ρ(P, x)〉1), . . . , ψϕ(〈ρ(P, x)〉n)]

by Lemma 29 with hypothesis (1)

= ψ(ϕ(ρ(N, x)) ∧ e[ϕ(〈ρ(P, x)〉1), . . . , ϕ(〈ρ(P, x)〉n)])

= ψ(ϕ(ρ(N, x)) ∧ ϕ(Fρ(P, x)))

because ϕ(F) = e

= ψϕ(ρ(N, x) ∧ Fρ(P, x))

This concludes the induction for the proof of the left to right implication of the theorem.

For the right to left implication of Theorem 22, we prove if there is a solution (ϕ,ψ)

for Γ(M), then there is a derivation in λ→,∧ whose last sequent is A `M : σ such that:

1. A(x) = ψϕ(ρ(M,x)) for every λ-variable x occurring free in M .

2. σ = ψϕ(τ(M)).

The proof is by induction on M . The induction hypothesis for M , denoted ĨH(M), asserts

that if (ϕ,ψ) |= Γ(M) then there is a derivation whose last sequent is A ` M : σ such

that the preceding 2 points hold.

For the base case, M ≡ x(j), Γ(M) = ∅, and τ(M) = ρ(M,x) = αjx. Suppose (ϕ,ψ) |=
Γ(M). The desired derivation consists of a single sequent x(j) : σ ` x(j) : σ where

σ = ψϕ(αjx) = ψ(αjx). It is clear that ĨH(x(j)) is true.

Proceeding inductively, M ≡ (λy.N) where y occurs m ≥ 0 times free in N , and there

is (ϕ,ψ) |= Γ(M). In this case, Γ(M) = Γ(N), so that (ϕ,ψ) |= Γ(N). By ĨH(N), there

is a derivation whose last sequent is:

• A, y : σ1 ` N : σ2 where σ1 = ψϕ(ρ(N, y)) and σ2 = ψϕ(τ(N)), if m ≥ 1.

• A ` N : σ2 where σ2 = ψϕ(τ(N)), if m = 0.

We can form a new derivation whose last sequent is A ` (λy.N) : σ1 → σ2, where:

• ψϕ(τ(M)) = ψϕ(ρ(N, y))→ ψϕ(τ(N)) = σ1 → σ2, if m ≥ 1.

• ψϕ(τ(M)) = ψϕ(αy → τ(N)) = ψϕ(αy)→ ψϕ(τ(N)) = σ1 → σ2,

if m ≥ 0, where we pose σ1 = ψϕ(αy).

Moreover, ψϕ(ρ(M,x)) = ψϕ(ρ(N, x)) if x 6≡ y. We have thus verified that ĨH(M) is true

for the case M ≡ (λy.N) .

For the last case of the induction, suppose M ≡ (NP) and there is (ϕ,ψ) |= Γ(M).

In this case:

(∗) (ϕ,ψ) |= Γ(N)

(∗∗) (ϕ,ψ) |= FΓ(P)

(∗∗∗) (ϕ,ψ) |= {τ(N) = Fτ(P)→ β}

156 A. J. KFOURY

for some fresh F ∈ EVar1 and β ∈ TVaraux. Suppose ϕ(F) = e and c is a type context

with n ≥ 1 holes. For every G ∈ EVar1, p ∈ P∗ and k ∈ {1, . . . , n}, define:

ϕk(〈G〉p) =

{
ϕ(〈G〉kp), if G ∈ EVar(Γ(P)) ,

2, otherwise.

For every α ∈ TVar1, p ∈ P∗ and k ∈ {1, . . . , n}, define:

ψk(〈α〉p) =

{
ψ(〈α〉kp), if α ∈ TVar(Γ(P)) ,

∗, otherwise.

For an arbitrary σ ∈ T (X,Y) where X = TVar(Γ(P)) and Y = EVar(Γ(P)), we have

ψϕ(Fσ) = ψ(e[ϕ(〈σ〉1), . . . , ϕ(〈σ〉n)])

= e[ψϕ(〈σ〉1), . . . , ψϕ(〈σ〉n)]

= e[ψ1ϕ1(σ), . . . , ψnϕn(σ)]

by Lemma 29 with hypothesis (2)

Hence, by (∗∗), we have that (ϕk, ψk) |= Γ(P) for every k ∈ {1, . . . , n}. Hence, by ĨH(P),

for every k ∈ {1, . . . , n} there is a derivation Dk whose last sequent is Ak ` P : σk where

σk = ψkϕk(τ(P)) and Ak(x) = ψkϕk(ρ(P, x)) for every λ-variable x occurring free in P .

Now, for every G ∈ EVar1 and p ∈ P∗, define:

ϕ0(〈G〉p) =

{
ϕ(〈G〉p), if G ∈ EVar(Γ(N)) ,

2, otherwise.

For every α ∈ TVar1 and p ∈ P∗, define:

ψ0(〈α〉p) =

{
ψ(〈α〉p), if α ∈ TVar(Γ(N)) ,

∗, otherwise.

Hence, by (∗), we have that (ϕ0, ψ0) |= Γ(N). Hence, by ĨH(N), there is a derivation D0

whose last sequent is A0 ` N : σ0 where σ0 = ψ0ϕ0(τ(N)) and A0(x) = ψ0ϕ0(ρ(N, x))

for every λ-variable x occurring free in N . We also have

σ0 = ψ0ϕ0(τ(N)) = ψϕ(τ(N))

= ψϕ(Fτ(P)→ β)

by (∗ ∗ ∗)
= ψϕ(Fτ(P))→ ψϕ(β)

= e[ψϕ(〈τ(P)〉1), . . . , ψϕ(〈τ(P)〉n)]→ ψϕ(β)

because ϕ(F) = e

= e[ψ1ϕ1(τ(P)), . . . , ψnϕn(τ(P))]→ ψϕ(β)

by Lemma 29 with (2)

= e[σ1, . . . , σn]→ σn+1

where we pose σn+1 = ψϕ(β).

Putting all the pieces together, concerning the derivations D0, D1, . . . ,Dn, we can

construct a derivation D ending with

A0 ` N : (e[σ1, . . . , σn]→ σn+1) A1 ` P : σ1 · · · An ` P : σn
A0 ∧ e[A1 ∧ · · · ∧An] ` (NP) : σn+1

BETA UNIFICATION 157

such that the 2 parts of ĨH(NP) hold. This concludes the induction for the right to left

implication of the theorem.

References

[1] S. R. Bass, “The undecidability of k-provability”, Annals of Pure and Applied Logic, Vol
53, pp 75-102, 1991.

[2] H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, revised edition,
North-Holland, Amsterdam, 1984.

[3] W. M. Farmer, “Simple second-order languages for which unification is undecidable”,
Theoretical Computer Science, Vol 87, pp 25-41, 1991.

[4] F. Cardone and M. Coppo, “Two extensions of Curry’s type inference system”, in Logic
and Computer Science, ed. P. Odifreddi, APIC series no. 31, pp 19-75, Academic Press,
1990.

[5] M. Coppo and M. Dezani-Ciancaglini, “An extension of basic functionality theory for
λ-calculus”, Notre Dame Journal of Formal Logic, Vol 21, no. 4, pp 685-693, 1980.

[6] M. Coppo and P. Giannini, “A complete type inference algorithm for simple intersection
types”, in Proceedings of CAAP ’92, 17th Colloquium on Trees in Algebras and Program-
ming, ed. J.-C. Raoult, Rennes, France. LNCS Vol 581, pp 102-123, Springer-Verlag, 1992.

[7] M. Coppo and P. Giannini, “Principal Types and Unification For a Simple Intersection
Type System”, Information and Computation, Vol 122, pp 70-96, 1995.

[8] W. D. Goldfarb, “The undecidability of the second-order unification problem”. Theo-
retical Computer Science, Vol 13, pp 225-230, 1981.

[9] J. R. Hindley, Basic Simple Type Theory, Cambridge Tracts in Theoretical Computer
Science 42, Cambridge University Press, 1997.

[10] A. J. Kfoury, “A linearization of the λ-calculus and an application”. Submitted for
publication.

[11] A. J. Kfoury, “Beta-reduction as unification”. Technical report, Boston University,
96-019, June 1997. Also available at URL: http://www.cs.bu.edu/faculty/kfoury/
research.html

[12] A. J. Kfoury, J. Tiuryn and P. Urzyczyn, “The undecidability of the semi-unification
problem”. Information and Computation, Vol 102, no. 1, pp 83-101, 1993.

[13] A. J. Kfoury and J. B. Wells, “New Notions of Reduction and Non-Semantic Proofs of
Beta Strong Normalization in Typed Lambda Calculi”, Proceedings of Logic in Computer
Science, June 1995.

[14] J. Kraj́ıček and P. Pudlák, “The number of proof lines and the size of proofs in first
order logic”. Archive for Mathematical Logic, Vol 27, pp 69-84, 1988.

[15] D. Leivant, “Polymorphic Type Inference”, Proceedings of Tenth Annual ACM Sympo-
sium on Principles of Programming Languages, pp 88-98, 1983.

[16] J. Levy, “Linear second-order unification”. In Proceedings of RTA, July 1996. Also avail-
able at URL: http://www-lsi.upc.es/ j̃levy

[17] J. C. Mitchell, Foundations for Programming Languages, MIT Press, 1996.
[18] G. Pottinger, “A Type Assignment for the Strongly Normalizable λ-terms”, in To H.B.

Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, J.P. Seldin and
J.R. Hindley, eds., pp 561-577, Academic Press, 1980.

158 A. J. KFOURY

[19] M. Schmidt-Schauß, “Unification of stratified second-order terms”. Technical Report,
Fachbereich Informatik, Johann Wolfgang-Goethe-Universität Frankfurt, 1996. Author’s
e-mail: schauss@informatik.uni-frankfurt.de

[20] A. Schubert, “Second-order unification and type inference for Church-style poly-
morphism”. Technical Report, Institute of Informatics, Warsaw University, January
1997. Available from FTP site: zls.mimuw.edu.pl in files: pub/alx/simple.dvi.tar.gz and
pub/alx/simple.ps.gz. Shorter version in Proceedings of 26th Annual ACM Symposium on
Principles of Programming Languages, 1998.

[21] C. Retoré, “A Note on Intersection Types”, INRIA report RR-2431, 1995, postscript
available at: ftp://ftp.inria.fr/INRIA/publication/publi-ps-gz/RR/RR-2431.ps.gz

[22] S. van Bakel, “Complete restrictions of the intersection type discipline”. Theo. Comp.
Sc., Vol 102, pp 135-163, 1992.

[23] S. van Bakel, Intersection Type Disciplines in Lambda Calculus and Applicative Term
Rewriting Systems. Doctoral dissertation, Catholic University of Nijmegen, also issued by
the Mathematisch Centrum, Amsterdam, 1993.

