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Abstract. We discuss the ultrasimplicial property of lattice-ordered abelian groups and
their associated MV-algebras. We give a constructive proof of the fact that every lattice-ordered
abelian group generated by three elements is ultrasimplicial.

1. Preliminaries. The infinite-valued calculus of  Lukasiewicz stands to MV-algebras

as the classical two-valued calculus stands to boolean algebras. Indeed, as proved by

Chang [Cha58], the latter coincide with the subclass of MV-algebras satisfying the equa-

tion x ⊕ x = x. The ultrasimplicial property of MV-algebras is a generalization of the

fundamental fact that every boolean algebra is generated by the limit of the direct system

of its finite partitions. Accordingly, this property is a prerequisite for such results as the

joint refinability of MV-algebraic partitions, or even—assuming the appropriate σ-closure

conditions—for the definition of an MV-algebraic notion of entropy.

Using the categorical equivalence between MV-algebras and abelian lattice-ordered

groups with strong unit (see [Mun86]), one has a natural counterpart of the ultrasimplicial
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property for any such group G—with or without strong unit—to the effect that every

finite set of positive elements of G is positively generated by an independent set B of

positive elements (see [Ell79] and [Han83]).

In [Mun88], from the algebraic analysis of disjunctive normal forms in the infinite-

valued calculus, it is proved that every free abelian lattice-group is ultrasimplicial. Thus,

since Handelman proved that the ultrasimplicial property is preserved under formation

of quotients by order-ideals [Han83, Theorem 3(ii)], it follows that every abelian lattice-

group, as well as every MV-algebra, is ultrasimplicial. However, Handelman’s proof is

nonconstructive, and gives no hint on how to construct the independent set B.

Aim of this paper is to give a constructive proof, for the case of 3-generated lattice-

groups, corresponding to 2-generated MV-algebras. We shall work throughout in the

framework of partially ordered groups.

2. Definitions. A partially ordered abelian group is an abelian groupG, together with

a submonoid G+ of G, such that G+ generates G as a group and G+ ∩ (−G+) = {0}. A

lattice-ordered abelian group (`-group, for short) is a partially ordered abelian group in

which the order induced by

a ≤ b iff b− a ∈ G+

is a lattice order. Equivalently, an `-group is a structure (G,+,−, 0,∨,∧) such that

(G,+,−, 0) is an abelian group, (G,∨,∧) is a lattice, and + distributes over ∨ and

∧. The words `-subgroup and `-homomorphism have their standard universal algebraic

meaning, with respect to the signature (+,−, 0,∨,∧). An `-ideal is an `-subgroup J of G

which is convex in G (i.e., a ≤ b ≤ c in G and a, c ∈ J imply b ∈ J). Thus, `-ideals are

precisely the same as kernels of `-homomorphisms.

An `-group is simplicially ordered iff it is isomorphic to a finite power Zm of the inte-

gers, with componentwise order. A partially ordered abelian group G is ultrasimplicially

ordered iff it can be expressed as the union of an increasing chain

G0 ⊆ G1 ⊆ G2 ⊆ · · ·

of simplicially ordered groups, satisfying G+
i ⊆ G+

i+1 for every i. As shown in [Han83,

Proposition 1], the ultrasimplicial property has the following equivalent reformulation:

(U) for every a1, . . . , ar ∈ G+ there exist b1, . . . , bs ∈ G+ that are linearly independent

over Z and span a1, . . . , ar with integer coefficients ≥ 0.

It is well known that the free `-group over n generators is the `-subgroup F`(n) of R(Rn)

generated by the projection functions xi : Rn → R, for i = 1, . . . , n. Equivalently, F`(n) is

the `-group of all homogeneous piecewise-linear functions with integer coefficients. These

are defined as follows: a homogeneous piecewise-linear function with integer coefficients

(a hpli function, for short) is a continuous function f : Rn → R for which there exist

finitely many elements f1, . . . , fm of Hom(Zn,Z) such that, for every u ∈ Rn, there exists

an index i with f(u) = fi(u).

By [Mun88], every free `-group is ultrasimplicial. In [Han83, Theorem 3(ii)], it is

claimed that the ultrasimplicial property is preserved under quotients, but the proof

is—to say the least—nonconstructive. Let us note that Elliott’s proof [Ell79] that every
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totally ordered group is ultrasimplicial provides also a recipe for constructing, given

a1, . . . , ar ∈ G+, elements b1, . . . , bs satisfying property (U). The same holds for the proof

in [Mun88], which can also be extended to finitely presented `-groups (i.e., quotients

of F`(n) by congruences generated by finitely many equations of the form f = g, for

f ,g ∈ F`(n)); details of this extension are spelled out in [MP93].

In this paper we give a direct, effective proof that every `-group generated by three

elements is ultrasimplicial.

3. The main result. We need some preliminaries in piecewise-linear topology. Let

v1, . . . , vm ∈ Zn; the polyhedral cone σ generated by v1, . . . , vm is their positive hull.

Explicitly:

σ = 〈v1, . . . , vm〉 = {r1v1 + · · ·+ rmvm : r1, . . . , rm ∈ R+},

where R+ is the set of real numbers ≥ 0. We say that σ is k-dimensional iff the linear

space spanned by σ is k-dimensional. We set

σ∨ = {f ∈ Hom(Rn,R) : f(u) ≥ 0, for every u ∈ σ}.

A face τ of σ is any set of the form τ = σ ∩ ker f , for some f ∈ σ∨. Equivalently, a face

of σ is a nonempty convex subset τ of σ such that every line segment in σ which has an

interior point in τ lies entirely in τ . The relative interior rel intσ of σ is the topological

interior of σ relative to the R-vector space generated by σ. If σ is k-dimensional, then

u ∈ rel intσ iff there exist vectors v1, . . . , vk ∈ σ that are linearly independent over R and

such that u = a1v1 + · · ·+ akvk, with a1, . . . , ak ∈ R+ \ {0} (see, e.g., [Ful93, §1.2]).

A simplicial cone is a polyhedral cone of the form 〈v1, . . . , vm〉, with v1, . . . , vm linearly

independent over R. A nonzero point v ∈ Zn is primitive iff its coordinates are relatively

prime. The vertices of a simplicial cone σ are the uniquely determined primitive points

v1, . . . , vm such that σ = 〈v1, . . . , vm〉.
A unimodular cone is a simplicial cone of the form 〈v1, . . . , vm〉, where v1, . . . , vm ∈ Zn

and there exist vm+1, . . . , vn ∈ Zn such that v1, . . . , vm, vm+1, . . . , vn constitute a free

basis for Zn. A fan is a finite set Σ of polyhedral cones such that:

(i) every face of every cone of Σ belongs to Σ;

(ii) any two cones of Σ intersect in a common face.

The union of all cones of Σ is denoted by |Σ|; Σ is a complete fan iff |Σ| = Rn. If all

cones of Σ are unimodular, then Σ is said to be unimodular. Complete unimodular fans

correspond to nonsingular projective toric varieties [Oda88], [Ful93], [Ewa96].

If Σ, ∆ are fans, |Σ| = |∆|, and every cone of ∆ is contained in some cone of Σ, then

we say that ∆ is a subdivision of Σ, and we write ∆ ≤ Σ. In this case every cone of Σ is

a union of cones of ∆. Any vertex of any cone of Σ is a vertex of Σ.

Lemma 3.1. Let Σ be a fan, u ∈ |Σ|. Then there exists σ ∈ Σ such that u ∈ rel intσ

and, for every σ 6= σ′ ∈ Σ, we have u 6∈ rel intσ′.

Proof. Let σ =
⋂
{τ ∈ Σ : u ∈ τ}. Any polyhedral cone is the disjoint union of the

relative interior of its faces [Oda88, Appendix]. This applies to σ, and hence u ∈ rel intσ.
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Let σ = 〈u, v, w1, . . . , wr〉 be an (r+2)-dimensional unimodular cone. Then τ = 〈u, v〉
is a face of σ; we call w = u + v the Farey mediant of τ . Let σ′ = 〈w, v, w1, . . . , wr〉,
σ′′ = 〈u,w,w1, . . . , wr〉. Assume that Σ is a unimodular fan, with σ ∈ Σ. Define a

subdivision Σ′ of Σ by replacing each cone σ ∈ Σ of which τ is a face by the two cones

σ′, σ′′ obtained as above, along with all their faces. Then Σ′ is a unimodular fan, and we

say that Σ′ is obtained by starring Σ along τ (see [Oda88, Proposition 1.26], or [Ewa96,

Definition 6.1]).

Let u be a vertex of the complete unimodular fan Σ. The Schauder hat u (or uΣ, if

we need to make explicit the dependence upon Σ) of Σ at u is the unique homogeneous

piecewise-linear function u : Rn → R such that

(i) u(u) = 1;

(ii) u(v) = 0, for every vertex v 6= u of Σ;

(iii) u is homogeneous linear on each cone of Σ.

Schauder hats exist for arbitrary vertices of Σ; indeed, the unimodularity of the cones of

Σ automatically ensures that the coefficients of every linear piece of u are integers (see

[Mun88, Proposition 1.3] for details). Hence u is a hpli function, and an element of F`(n).

Let Σ be a complete unimodular fan in Rn; let u1, . . . , ut display all vertices of Σ. Then

the Schauder hats u1, . . . ,ut are linearly independent over Z; let HΣ be the subgroup of

F`(n) generated —using the group operations only— by u1, . . . ,ut. Note that HΣ, with

the order inherited from F`(n), is `-isomorphic to Zt as a simplicial group, but it is not

an `-subgroup of F`(n), since the lattice operations are different in the two structures.

The zero-set of f ∈ F`(n) is Zf = {v ∈ Rn : f(v) = 0}. Let a fixed `-ideal J of F`(n) be

given; define

ZΣ =
⋂
{Zf : f ∈ HΣ ∩ J}.

The dependence of ZΣ on J is tacitly understood.

Lemma 3.2. For any f ∈ HΣ, we have f ∈ J iff Zf ⊇ ZΣ.

Proof. For the nontrivial direction, suppose Zf ⊇ ZΣ. Since HΣ ∩ J is a subgroup

of the finitely generated free Z-module HΣ, we can find generators g1, . . . ,gh of HΣ ∩ J .

Then

ZΣ = Zg1 ∩ · · · ∩ Zgh ⊆ Zf .

Let g = |g1|+ · · ·+ |gh| ∈ J . Since Zg ⊆ Z|f |, we have by compactness 0 ≤ |f | ≤ mg in

F`(n), for some multiple mg of g. Since J is convex, |f | ∈ J , and since −|f | ≤ f ≤ |f |, we

have f ∈ J .

Lemma 3.3. Let σ be a k-dimensional cone of Σ, and let v1, . . . , vp ∈ σ ∩ ZΣ. Let V

denote the R-vector space spanned by v1, . . . , vp. Then σ ∩ ZΣ ⊇ σ ∩ V .

Proof. Every f ∈ HΣ is homogeneous linear on σ.

Lemma 3.4. If ∆ is a unimodular subdivision of Σ, then Z∆ ⊆ ZΣ.

Proof. HΣ ⊆ H∆, and hence HΣ ∩ J ⊆ H∆ ∩ J .
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Lemma 3.5. Let Σ be such that ZΣ is a union of cones of Σ. Then the set

{u/J : u is a Schauder hat of Σ and u 6∈ J}

is linearly independent over Z in F`(n)/J .

Proof. Let f = a1u1 + · · ·+ atut, where a1, . . . , at ∈ Z and u1, . . . ,ut are Schauder

hats of Σ at distinct vertices of Σ. Assume a1 6= 0, u1 6∈ J : we will show that f 6∈ J . Since

u1 6∈ J , by Lemma 3.2 there exists v ∈ ZΣ\Zu1. Let σ be the cone of Σ to whose relative

interior v belongs; as v ∈ ZΣ, and ZΣ is a union of cones of Σ, we have σ ⊆ ZΣ. Since

u1 is not identically 0 on σ, u1 must be a vertex of σ. Since f(u1) = a1u1(u1) = a1 6= 0,

then Zf + ZΣ, and hence f 6∈ J .

Theorem 3.6. Let Σ be a complete unimodular fan, |Σ| = R3. Let J be an `-ideal of

F`(3). Then there exists a subdivision ∆ of Σ with the following two properties:

(i) ∆ can be obtained from Σ via a finite sequence of starrings along 2-dimensional

cones;

(ii) Z∆ is a union of cones of ∆.

4. Proof of Theorem 3.6. Let σ ∈ Σ, k ∈ {2, 3}, 1 ≤ j ≤ k. We say that σ is of

type (k, j) with respect to Σ iff the following hold:

(1) σ is k-dimensional;

(2) σ ∩ ZΣ is j-dimensional;

(3) rel intσ ∩ ZΣ 6= ∅.

If either rel intσ ∩ ZΣ = ∅, or σ is 0- or 1-dimensional, then σ is of no type. Note that

(3) is equivalent to:

(3′) σ ∩ ZΣ is not contained in a proper face of Σ.

Indeed, (3) clearly implies (3′), while the reverse direction follows from Lemma 3.3.

Definition 4.1. For every σ ∈ Σ of type (k, j), and every unordered pair u, v of

distinct vertices of σ, we define the badness of (σ, u, v), denoted by badΣ(σ, u, v), as

follows:

(a) if k = j = 3, or k = j = 2, then badΣ(σ, u, v) =∞.

(b) if k = 3 and j = 2, then there exists a unique (up to multiplication by −1) primitive

linear functional f ∈ Hom(Z3,Z) such that σ ∩ Zf = σ ∩ ZΣ. Set

badΣ(σ, u, v) =

{
0, if f(u) · f(v) ≥ 0;

|f(u)|+ |f(v)|, otherwise.

(c) if j = 1, then there exists a unique primitive w ∈ Z3 such that σ ∩ ZΣ = 〈w〉.
w ∈ rel intσ, and can be written uniquely as a linear combination of the vertices

of σ with integer coefficients > 0. Set badΣ(σ, u, v) = a + b, where a, b are the

coefficients of u, v in the above expression for w.

We shall use induction on eight parameters, ordered lexicographically from left to

right as follows:

s0(3, 3), s1(3, 2), s0(3, 2), s1(3, 1), s0(3, 1), s0(2, 2), s1(2, 1), s0(2, 1).
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These parameters are defined by:

• s0(k, k) = number of cones of type (k, k);

• for j < k, s1(k, j) = sup{badΣ(σ, u, v) : σ is of type (k, j)};
• for j < k, s0(k, j) = number of triples (σ, u, v) such that σ is of type (k, j) and

badΣ(σ, u, v) = s1(k, j) (triples are unordered, so (σ, u, v) = (σ, v, u)).

Note that, for j < k, we have s1(k, j) = 0 iff s0(k, j) = 0 iff Σ contains no cones of type

(k, j).

Lemma 4.2. If, for every 1 ≤ j < k ∈ {2, 3}, Σ contains no cones of type (k, j), then

ZΣ is a union of cones of Σ.

Proof. Let u ∈ ZΣ, and let σ be the cone of Σ to whose relative interior u belongs.

If σ is k-dimensional, then by our assumption σ ∩ ZΣ must be k-dimensional, too. By

Lemma 3.3, σ ⊆ ZΣ.

We equip types with the following order:

(3, 3) � (3, 2) � (3, 1) � (2, 2) � (2, 1) � no type.

Lemma 4.3. Let Σ,∆ be complete unimodular fans, and assume that ∆ is a subdi-

vision of Σ. Let δ ∈ ∆, and let σ =
⋂
{τ ∈ Σ : δ ⊆ τ}. Then the type of δ in ∆ is

less than or equal to the type of σ in Σ. If δ = σ and the two types are equal, then

bad∆(σ) = badΣ(σ).

Proof. Clear from the definitions.

Lemma 4.4. Suppose Σ contains a cone of type (k, j), with 1 ≤ j < k ∈ {2, 3};
let s0(3, 3), . . . , s0(2, 1) be the parameters associated to Σ. Then there exists a star-

ring of Σ along a 2-dimensional cone such that—letting Σ′ be the resulting fan and

s′0(3, 3), . . . , s′0(2, 1) its associated parameters—the 8-tuple (s′0(3, 3), . . . , s′0(2, 1)) is strict-

ly smaller than (s0(3, 3), . . . , s0(2, 1)) in the lexicographic ordering.

Proof. Let (k, j) be the largest type (with respect to �) such that s1(k, j) 6= 0. Let

σ ∈ Σ be of type (k, j), and let u, v be vertices of σ with badΣ(σ, u, v) = s1(k, j). We

star Σ along τ = 〈u, v〉, obtaining Σ′; let w = u+ v. τ is the intersection of two uniquely

determined 3-dimensional cones λ, µ ∈ Σ. If k = 2, then σ = τ , while if k = 3, we assume

σ = λ. Upon taking a section of these cones by a suitable plane we obtain the following

picture:
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The starring replaces:

• λ with λ′ = 〈u,w, r〉, λ′′ = 〈w, v, r〉, and 〈w, r〉;
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• τ with τ ′ = 〈u,w〉, τ ′′ = 〈w, v〉, and 〈w〉;
• µ with µ′ = 〈u,w, s〉, µ′′ = 〈w, v, s〉, and 〈w, s〉.

We proceed arguing by cases:

Case 1. k = 3, j = 2, σ = λ. Then σ∩ZΣ = σ∩Zf , for some primitive f ∈ Hom(Z3,Z).

Without loss of generality, f(u) < 0. Also, τ ∩ ZΣ = τ ∩ Zf = 〈p〉, with p ∈ rel int τ ;

by Lemmas 3.3 and 4.3, each of µ, λ′, λ′′, µ′, µ′′ is of type � (3, 2). By Lemma 4.3, the

parameter s0(3, 3) cannot increase. If it decreases, we are through. Otherwise, it suffices

to prove that, for every ρ ∈ {λ′, λ′′, µ′, µ′′}, if ρ is of type (3, 2), u′, v′ are vertices of ρ,

and 〈u′, v′〉 is not a cone of Σ, then badΣ′(ρ, u′, v′) < badΣ(σ, u, v). To this purpose, we

again distinguish:

Subcase 1.1. ρ = λ′, u′ = u, v′ = w. By Lemma 4.3, together with the assumption

that λ′ is of type (3, 2), in Σ′, we have λ′ ∩ ZΣ′ = λ′ ∩ Zf . If p 6∈ rel int〈u,w〉, then

badΣ′(ρ, u′, v′) = 0. Otherwise, f(u) < 0 < f(w) < f(v), and badΣ′(ρ, u′, v′) = |f(u)| +
|f(w)| < |f(u)|+ |f(v)| = badΣ(σ, u, v).

Subcase 1.2. ρ = λ′, u′ = r, v′ = w. Again, λ′ ∩ ZΣ′ = λ′ ∩ Zf . We may assume

f(r) · f(w) < 0 for, otherwise, badΣ′(λ′, r, w) = 0. Either f(u) < 0 < f(w) < f(v), or

f(u) < f(w) < 0 < f(v). In the first case, badΣ′(λ′, r, w) = |f(r)|+|f(w)| < |f(r)|+|f(v)| =
badΣ(σ, r, v) ≤ badΣ(σ, u, v). In the second case, badΣ′(λ′, r, w) = |f(r)| + |f(w)| <
|f(r)|+ |f(u)| = badΣ(σ, r, u) ≤ badΣ(σ, u, v).

Subcase 1.3. ρ = µ′, u′ = u, v′ = w. Then µ is of type (3, 2) in Σ. Let g ∈ Hom(Z3,Z)

be primitive satisfying µ ∩ Zg = µ ∩ ZΣ; then µ′ ∩ Zg = µ′ ∩ ZΣ′ and g(p) = 0. If

p 6∈ rel int〈u,w〉, then badΣ′(µ′, u, w) = 0. Otherwise, without loss of generality, g(u) <

0 < g(w) < g(v), and badΣ′(µ′, u, w) = |g(u)|+|g(w)| < |g(u)|+|g(v)| = badΣ(µ, u, v) ≤
s1(3, 2).

Subcase 1.4. ρ = µ′, u′ = s, v′ = w. Then arguing as for Subcase 1.2 one gets the

desired conclusion.

Subcase 1.5. ρ = λ′′, or ρ = µ′′. The proof is the same as for the previous subcases.

Case 2. k = 3, j = 1, σ = λ. By our choice of (k, j), Σ contains no cones of type (3, 2);

by Lemmas 3.3 and 4.3, each of µ, λ′, λ′′, µ′, µ′′ is either of type (3, 1), or of no type. If

either parameter s0(3, 3), s1(3, 2), s0(3, 2) happens to change, then, by Lemma 4.3, s0(3, 3)

must decrease—and we are done. If, on the other hand, none of these parameters changes,

then to obtain the desired conclusion it suffices to prove that, for every ρ ∈ {λ′, λ′′, µ′, µ′′},
if ρ is of type (3, 1), u′, v′ are vertices of ρ, and 〈u′, v′〉 6∈ Σ, then badΣ′(ρ, u′, v′) <

badΣ(σ, u, v). We only consider the case ρ = λ′, the other cases being similar. If ρ = λ′,

then σ ∩ ZΣ = λ′ ∩ ZΣ′ = 〈p〉, for a uniquely determined primitive p ∈ Z3. We have

p = au+ bv + cr, for uniquely determined a, b, c ∈ Z+ \ {0}. Since p ∈ rel intλ′, we have

a > b. Also, p = (a− b)u+ bw + cr, uniquely. Since 〈u′, v′〉 6∈ Σ, we may assume v′ = w.

If u′ = u, then badΣ′(λ′, u′, v′) = (a − b) + b < a + b = badΣ(σ, u, v). If u′ = r, then

badΣ′(λ′, u′, v′) = b+ c < a+ c = badΣ(σ, u, r) ≤ badΣ(σ, u, v).

Case 3. k = 2, j = 1, σ = τ . This is even simpler than Case 2. It suffices to observe

that, by our choice of (k, j), Σ contains no cones of either type (3, 2) or (3, 1). Also,

each of λ, µ, λ′, λ′′, µ′, µ′′ is of no type. In case one of the parameters � s1(2, 1) happens
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to change, then, by Lemma 4.3, the greatest such changing parameter must actually

decrease. If, on the other hand, no parameter � s1(2, 1) does change, then the same

argument as in Case 2 yields the desired conclusion.

The proof of Theorem 3.6 is now complete: as a matter of fact, let a complete uni-

modular fan Σ be given, |Σ| = R3. If ZΣ is not a union of cones of Σ, then, by Lemma

4.2, Σ contains a cone of type (k, j), for some j < k. Using Lemma 4.4, we have a chain

of starrings Σ > Σ′ > Σ′′ > · · ·, which must terminate, since the set of 8-tuples of pa-

rameters is well ordered; say it stops at ∆. Then ∆ contains no cones of type (k, j) for

k > j, and Lemma 4.2 yields the desired conclusion.

5. Conclusion

Theorem 5.1. Every `-group G with three generators is ultrasimplicial.

Proof. We can safely identify G with the quotient `-group F`(3)/J , for some `-

ideal J . Let f1/J, . . . , fr/J ∈ (F`(3)/J)+. Replacing each fi by fi ∨ 0, and deleting all

elements annihilated by the quotient map, we may assume f1, . . . , fr ∈ F`(3)+ \ J . Each

fi is of the form

fi =
∨
s∈S

∧
t∈T

gi
st

where S, T are finite index sets, and each gi
st is in Hom(Z3,Z). Let g1, . . . ,gk display all

gi
st, for 1 ≤ i ≤ r. For every permutation ϕ of {1, . . . , k}, let

σϕ = {x ∈ R3 : gϕ(1)(x) ≤ gϕ(2)(x) ≤ · · · ≤ gϕ(k)(x)}.

Then a routine argument shows that each σϕ is a polyhedral cone and that the set Γ of

all faces of all σϕ’s is a complete fan; moreover, every fi is linear on every cone of Γ.

We make three successive refinements. The first two are standard constructions:

• firstly, we refine Γ to a fan Π whose cones are all simplicial. This can be accomplished

without introducing new vertices, following [Ewa96, Theorem 4.2];

• secondly, we refine Π to a complete unimodular fan Σ, as in the proof of [Ewa96,

Theorem 8.5].

Thirdly, in the light of Theorem 3.6,

• we refine Σ to a fan ∆ such that Z∆ (relative to the ideal J) is a union of cones of

∆.

Let u1, . . . , ut be the vertices of ∆, and u1, . . . ,ut their associated Schauder hats.

Since, for every i,

fi = fi(u1) · u1 + · · ·+ fi(ut) · ut,

it follows that the set {u1/J, . . . ,ut/J} \ {0/J} spans f1/J, . . . , fr/J positively and, by

Lemma 3.5, is linearly independent over Z in F`(3)/J . Hence condition (U) is satisfied,

and the proof is complete.

Final remarks. A moment’s reflection shows that a (constructive) proof of the ul-

trasimplicial property of all n-generated `-groups immediately extends to all `-groups.
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Thus it is natural to consider the following question: can the techniques of this paper be

extended to n-generated `-groups ?

Theorem 3.6 is the only step in our proof that cannot be immediately generalized to

higher dimensions. One can reasonably expect that the n-dimensional generalization of

this theorem requires an induction argument over more complicated parameters. As a

working hypothesis, for any j-dimensional cone σ∩ZΣ lying inside a k-dimensional cone

σ ∈ Σ natural badness parameters are provided by the Plücker coordinates of σ∩ZΣ with

respect to the basis given by the j-dimensional faces of σ (see, e.g., [BML67, Chapter XVI]

for background). The attentive reader may have noticed that also the parameters used

in this paper are based on Plücker coordinates, although in a slightly disguised form.

For an instructive example, let σ = 〈v1, . . . , v4〉 be a 4-dimensional cone of a fan Σ,

and suppose the 2-dimensional cone σ ∩ZΣ to be positively spanned by the two linearly

independent vectors p, q ∈ Zn∩σ. Let us construct the exterior algebra
∧2 Z4, with basis

v1 ∧ v2, . . . , v3 ∧ v4, and assume that p∧ q has coordinates ξ12, . . . , ξ34 ∈ Z in
∧2 Z4, with

ξ12, . . . , ξ34 relatively prime. It follows that

s = |ξ12|+ · · ·+ |ξ34|

is a natural badness parameter for σ ∩ ZΣ in σ. Indeed, σ ∩ ZΣ coincides with a face of

σ exactly when s = 1. We must star σ in such a way that s decreases. Starring σ along

one of its faces corresponds to a base change in
∧2 Z4. Now, while in dimension ≤ 3

every base change corresponds to a starring, this does not hold in higher dimensions; for

example, the base change arising from the substitution of v1 ∧ v2 + v3 ∧ v4 for v1 ∧ v2

does not correspond to any starring, because v1 ∧ v2 + v3 ∧ v4 is not reducible in
∧2 Z4.

In algebraic-geometric terms, one has to figure out a path of starrings, leading from the

base points v1 ∧ v2, . . . , v3 ∧ v4 to the point p∧ q, and never leaving the Grassmannian of

lines in P3.

Further complications arise from the requirement that the starrings employed to de-

crease the badness of σ ∩ZΣ in σ should not result in increasing the badness of σ′ ∩ZΣ

in σ′, for any σ′ ∈ Σ.

Closing a circle of ideas, as a final source of complication it might well be the case that

the n-dimensional generalization of the results of this paper requires that the starring

operation should be performed along arbitrary cones of Σ (see [Oda88] or [Ewa96]), rather

than only 2-dimensional cones.
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