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Some special problems arise if we use such an approach. In the paper we discuss some of the
problems.

We show that there exists a recursive domain with decidable theory in which (1) there is no
recursive syntax for finite queries, and in which (2) the state-safety problem is undecidable.

We provide very general conditions on the FO theory of an ordered domain that ensure
collapse of order-generic extended FO queries to pure order queries over this domain: the Pseudo-
finite Homogeneity Property and a stronger Isolation Property. We further distinguish one broad
class of ordered domains satisfying the Isolation Property, the so-called quasi-o-minimal domains.
This class includes all o -minimal domains, but also the ordered group of integer numbers and
the ordered semigroup of natural numbers, and some other domains.

We generalize all the notions to the case of finitely representable database states — as
opposed to finite states — and develop a general lifting technique that, essentially, allows us to
extend any result of the kind we are interested in, from finite to finitely-representable states. We
show, however, that these results cannot be transferred to arbitrary infinite states.

We prove that safe Datalog¬,<z -programs do not have any effective syntax.

1. Introduction

1.1. Infinite domains. In the relational model of databases introduced by E.F. Codd

[Cod70, Cod72] a database state is thought of as a finite collection of relations between

elements. For example, the father – son relation can be represented in the form of one

binary relation (or a two-column table). Names of the relations and their arities (numbers

of argument places) are fixed and called a database scheme. Particular information stored

in the relations of a given scheme is called a database state.

For instance, as we acquire more and more information about fathers and sons, the

database states change, but the scheme (one binary relation) does not.

Database relations (tables) are always going to be finite.

Although relational databases were invented for finite collections of data, it is often

convenient to assume that there is an infinite domain — for example, the integer or

rational numbers or the strings — such that the data elements are chosen from this

domain. Functions and relations defined over the entire domain, like < and +, may also

be used in querying, for example, if the language of first-order logic FO is used as the

query language, its formulas may use database relations as well as the domain relations,

while variables range over the entire domain.

These domain functions/relations are fixed (do not depend on a state, have the same

meaning for any state) and are infinite by their nature. When we refer to a domain,

we mean the domain together with the set of domain functions and relations that we

consider.

1.2. Finitely representable relations. In the traditional relational database theory,

the database relations are finite. The trouble with this is, answers yielded by rela-

tional queries may or may not be finite. This makes the traditional relational model

not closed, in the sense that the output of queries is of a different nature than input.

Kanellakis et al. [KKR90, KKR95] concentrated on the ordered domains of real, and

rational numbers, and observed that, since the first order theories of these admit elimina-

tion of quantifiers, the answers to first order queries can be represented as quantifier-free
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first order formulas, and then, if we allow database relations to be arbitrary relations

representable by quantifier-free first order formulas to begin with, the so modified rela-

tional model becomes closed in the above sense. Such relations are called finitely repre-

sentable (for short, f.r.).

These finitely representable databases are a logical choice, because finitely repre-

sentable relations appear as results of queries dealing with finite relations anyway, and it

is also a natural choice in many applications, say, in geographical databases (cf. [KKR90,

KKR95]).

1.3. Safe queries. In formulating queries to our database, we use a query language.

The basic query language is the language of first-order logic (see [End72]). It uses domain

functions/relations as well as the relations from the database scheme.

For example, consider the above database about fathers and sons. This database can

be organized over the infinite domain of strings, and we throw in the equality =. Let F

be the father – son relation. Then the formula M(x):

∃y, z(y 6= z ∧ F (x, y) ∧ F (x, z))

results in the unary relation (one-column table) that consists of those x’s that have more

than one son. While G(x, z):

∃y(F (x, y) ∧ F (y, z))

produces the table of “grandfather – son of his son”.

Now we want the resulting relations (the answers to our queries) to be finite relations.

The trouble with this is that often first-order formulas give infinite answers. Obviously,

¬F (x, y) is such a formula. But worse than that, M(x) ∨ G(x, z) may give an infinite

answer too, because M(x) does not bound z at all.

The formulas (that may give infinite answers) are called infinite, or unsafe, as opposed

to finite, or safe, formulas that always produce finite answers1.

The situation was well understood in [Ull82] where J.D. Ullman raised the question

of whether it is possible to tell safe formulas from unsafe. This has become known as

the safety problem. This question was answered negatively by R.A. Di Paola [Di 69],

M.Y. Vardi [Var81], and independently in [AGSS86]. The answer is negative for any

infinite domain provided the database scheme contains at least one relation of arity > 1.

Although the formula that you use may be infinite, in a given state the answer may

be finite. In this case, it would be desirable to get this finite answer. If the answer is

infinite, it would be desirable to get this information, that the answer is infinite, from

the database. Technically, the problem is, is it possible, for a fixed database state, to

tell formulas with finite answers from those with infinite? This has become known as the

state-safety problem [AGSS86]. By its very formulation this problem is domain-specific.

[AGSS86] and [AH91] showed that, unlike the safety problem, the state-safety problem

is decidable for many domains.

1Observe that the formula M(x)∨G(x, z) only gives an infinite answer if there is a man who

parented two or more sons.
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It had remained unknown whether the state-safety problem is decidable for each

domain with decidable FO theory.

Although the set of safe formulas is unsolvable (and not even enumerable), it may be

possible to impose certain syntactical restrictions on the class of formulas that we are

going to use such that the safe queries are exactly those ones which can be formulated

with these restrictions.

In other words, the problem can be put as follows. Does there exist a recursive

subclass of safe formulas such that every safe formula is equivalent to one in this sub-

class?

We will call such a subclass a recursive syntax. One may consider recursively enu-

merable (r.e.) subclasses as well. As usual, for this kind of problems, the existence of

an r.e. syntax implies the existence of a recursive syntax, so we are going to henceforth

concentrate on the existence of a recursive syntax.

This approach is due to M.Y. Vardi [Var81] and J.D. Ullman [Ull82], and since then

it has been developed in many publications, including [Ull88], [Van91], and [Hir91].

J.D. Ullman in [Ull82] (and somewhat more clearly in [Ull88]) shows that a recursive

syntax for domain-independent queries does exist. A. Van Gelder and R. Topor [Van91]

address the issue of efficiency of syntax.

For some primitive domains, for instance, for the domain with only the equality predi-

cate, the classes of finite and domain-independent queries coincide, so the syntax actually

work for both the classes. For some more developed domains, these classes differ, however,

it is not hard to develop a syntax for finite queries for most of the domains considered in

the literature.

This syntactical approach has definite advantages over the state-safety one, especially

as in more and more cases the actual queries to databases are formulated by software

rather than people. Thus, naturality of query languages becomes perhaps less important,

while stability becomes more important.

On the other hand, it may be that the unsafety of a formula is due to a rather rare

situation, and then it may be useful to be able to use this formula for as long as the

actual state-unsafety does not happen.

Again, it had remained unknown whether a recursive syntax for finite formulas exists

for every domain.

In [ST95a] it is shown that there exists a recursive domain with decidable theory in

which (1) there is no recursive syntax for finite queries, and in which (2) the state-safety

problem is undecidable.

1.4. Ordered domains and generic queries. For example, consider the ordered set of

rational numbers. A FO query, then, is a mapping that maps every finitely representable

database state into a new finitely representable relation. Observe that, if we take any such

pair — an f.r. database state and the f.r. state which is the answer to the query in this

state — and uniformly change some of the constants used in the finite representations

while preserving order between different constants, then the new pair agrees with the

mapping. In this sense, all the queries that can be expressed in the first order language

FO are generic.
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There are some rather simple generic queries, however, that are not expressible. For

example, the Boolean query that says that the cardinality of a finite set — a unary relation

— is even is not FO expressible. More examples can be found in [KKR90, KKR95, KG94].

The problem we are interested in is to try to increase the expressive power of FO, while

preserving the genericity.

Let us consider an arbitrary ordered domain. The original notion of generic query

[CH80] referred to the =-generic queries over finite database states, that is, the queries

(over finite states) which are preserved under arbitrary (not necessarily <-preserving)

permutations of the domain. Some practically interesting queries, say, graph properties,

are indeed =-generic.

The first order queries expressible without using the order relation (the pure FO

queries) over the domain are generic (see [CH80]), meaning that they are preserved

under arbitrary permutations of the domain.

The expressive power of the pure FO with respect to generic queries is, however,

severely limited — a classical example is inexpressibility of the parity query asserting

that the cardinality of a finite relation in the database scheme is even. One of the ways to

try to enhance the expressive power of the query language is by allowing certain domain

functions/relations, or givens to be used in the queries. The simplest example is the

relation < of linear order. These givens are considered to be a part of the domain —

rather than of the database scheme — and to have a fixed meaning. Throwing in such

givens does obviously increase the expressive power of FO, but what is often not obvious

is whether any new generic queries become expressible.

Yu. Gurevich [Gur90] showed that there are =-generic queries that are FO expressible

with < over finite states, but not without <. Here is a version of his example.

Let K be the class of all finite Boolean algebras with an even number of atoms. This

class cannot be axiomatized within the class of finite structures by a first order sentence

because otherwise, by compactness, there would exist infinite atomic Boolean algebras

B and B′ such that the sentence holds in B but fails in B′, in contradiction with the

completeness of the theory of infinite atomic Boolean algebras (see e.g. [CK90] for the

latter fact). However, K<, the class of expansions of algebras in K by linear orders, is

axiomatizable in the class of finite structures by a first order sentence ψ which is the

conjunction of the axioms for Boolean algebras, the axioms for linear orderings, and a

sentence expressing that there is an element containing exactly atoms at an even position

(in the ordering induced on the atoms) and containing the last atom. It follows that,

over any infinite ordered universe U , the FO query obviously corresponding to ψ is not

equivalent to a pure FO query for finite states, even though it is =-generic.

Note that although the language FO(<) of first order logic with a relation of linear

order does indeed express more generic queries than the pure FO, the parity continues

to be inexpressible.

Naturally, we may ask whether, over a certain domain, it is possible to express even

more =-generic queries using extended signatures. We observe however that, because

each =-generic query being <-generic, the collapse results like the ones established in

this paper are automatically transferred to the case of =-genericity.



28 O. V. BELEGRADEK ET AL.

So the natural question has been, whether allowing certain other givens, in specific

situations, enhances the expressive power of generic FO(<) even more. And while in

some situations the answer is trivially affirmative — for example, allowing + and × over

integer (or rational) numbers makes it possible to express all computable queries — in

others the question may be hard.

Let N, Z, Q, and R be the sets of all natural, integer, rational, and real numbers,

respectively. Practically, the most interesting cases have been:

• (Q, <,+) and (R, <,+),

• (Z, <,+) and (N, <,+),

• (R, <,+,×).

For example, in the papers of Grumbach et al. [GST95, GS95] extended queries over

(Q, <,+) were considered. Clearly, x + x = x defines 0, which is not definable without

+; on the other hand, queries like x + x = x are not about order at all, as they are not

preserved under order automorphisms. To level the playing field, they consider locally

generic extended queries only, that is the queries preserved under partial <-isomorphisms

of the universe. To put it another way, while arithmetical computations can be carried

out inside the query, the input-output relation defined by this query may rely only on

the order properties of its input.

Over rational numbers, the FO queries that only use < were shown to have the uniform

data complexity AC 0 [KG94]. Attempts to distinguish the resulting extended queries from

order queries in this domain using specific combinatorial or spatial queries not in AC 0

— like parity, Eulerian traversal, or region connectivity — have been unsuccessful, and,

finally, [GST95, GS95] proved the AC 0 uniform data complexity for the extended queries

over finitely representable inputs with integer constants only. However, the question of

whether or not extended queries are more expressive than order queries, has remained

open, and as Grumbach and Su [GS94] pointed out, “. . . there is a serious lack of proof

techniques. . . ” in this area.

This very problem can be considered in a general form. Consider a list Ω of relational

names. Consider two signatures L0 = {<}, and L = {<}
⋃

Ω. For a database scheme

SC = {R1, . . . , Rn}, denote L+
0 = L0

⋃
SC and L+ = L

⋃
SC. Call the first order

language in L+
0 restricted, and the first order language in L+ extended. The general

problem is then, under which conditions on the domain are generic extended queries

reducible to restricted queries?

Notice that this problem admits several interpretations:

• “generic” may be understood as “locally generic”, or a different notion of generic-

ity may be used; for instance, preservation under order automorphisms is simply

referred to in this paper as “genericity”. While for many domains (for the rational

numbers with +, for the real numbers with +,×, and, generally, for an arbitrary

doubly-transitive domain) it does not make a difference, for some other domains it

may;

• “reducible” may mean that the two languages are equivalent, or that a recursive

translation exists;



DATABASES OVER A FIXED INFINITE UNIVERSE 29

• the problem may be formulated for either all, finite or infinite, database states, or

for f.r. states only, or for finite states only.

In [ST96, BST97a, BST97b, BST96] it was shown that, if all possible states were

considered no translation would be possible even in such simple an example as the additive

group of rational numbers.

But of course the really interesting cases are those of finite and of finitely representable

database states. In [ST96, BST97a, BST97b, BST96] it was shown that these two cases

can be treated uniformly. One of the main results of the papers is that, over every ordered

domain, finitely representable states can be uniformly represented as finite states of an-

other database scheme, with the additional property that these finite database states are

FO expressible (in the restricted language) in the old database scheme, and vice versa.

This technique, in effect, allows us to lift any result on translatability of extended queries

into restricted queries over finite database states, to the finitely representable states. The

recursiveness of translation is preserved as well.

This technique can also be used to expand applicability of several other results for

finite database states to the case of finitely representable states.

1.5. Recursive translation. Paradaens et al. [PVV95] considered real numbers with +,

and showed that, over finite database states, generic extended queries can be recursively2

translated into restricted (pure order) queries. Due to our lifting result, the same is

automatically true for all finitely representable states.

In [ST96], Stolboushkin and Taitslin proved a more general result on recursive trans-

lation of generic extended into restricted FO queries over an arbitrary ordered divisible

Abelian group, thus answering, for example, the question from [GST95, GS95] of the role

of addition in databases over rational numbers (in the non-effective sense, this problem

was independently solved in [BDLW96]).

Although recursive, this translation is highly inefficient computationally. The size

of the pure order formula generated by our algorithm is multi-exponential in the size

of the original generic formula with addition. We feel this is a natural phenomenon,

in the sense that no efficient (say, polynomial-size) translation is possible. This offers

yet another angle of looking at the relative expressive power of extended and restricted

queries. Indeed, using an extended language may be beneficial in that it may offer a

compact way of expressing generic queries.

Notice also, the set of generic extended queries is undecidable. Our translation algo-

rithm assumes genericity, and, if applied to a non-generic query, gives a non-equivalent

formula of the restricted language.

1.6. Non-recursive translation. Benedikt et al. [BDLW96] showed that the generic

extended, and restricted queries have the same expressive power over every o -minimal

domain,3 the notion introduced in [PS86, KPS86, PS88]. Examples of o -minimal struc-

tures include, for instance, the real numbers with +, ×, the exponentiation and <, as

2Although the algorithm is not explicit in their paper.
3Again, they considered finite states only, but this can be lifted to finitely representable

states using our technique in this paper.
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well as many other structures. Since every ordered divisible Abelian group is o -minimal,

this, in one sense, covers the results discussed in Subsection 1.5.

Notice, however, that in another sense, this result is of a different nature. First, the

proof in [BDLW96] is not constructive and does not give an algorithm for translation.

Further, this proof cannot be made constructive. Indeed, take an o -minimal structure

whose first order theory is undecidable, while the first order theory of < alone is decidable,

for example, the structure (R,+,×, <, c), where c is a non-computable real number. If a

recursive translation existed, this would lead to a contradiction.

In [BST97a, BST97b, BST96], we suggested an approach that gives substantially

stronger results of this sort. The approach is based on the observation that the express-

ibility of a locally order-generic extended query over finite states over a universe as a

restricted query is a property of the complete first order theory of the universe rather

than the universe itself. Therefore we can use the known model-theoretic technique of

saturated models to study this property of the theory of the universe.

Firstly, we give a necessary and sufficient condition for an extended query to be

equivalent to a restricted query.

Secondly, this technique is developed especially for locally generic queries.

Thirdly, we formulate a very general condition on the domain — the so-called Pseudo-

finite Homogeneity Property — that ensures collapse of locally order-generic FO queries

over this domain to pure order queries. However, proving the Pseudo-finite Homogeneity

Property for a specific domain may be a bit technical. We introduce a condition on the

domain, the Isolation Property, which ensures the Pseudo-finite Homogeneity Property.

Fourthly, we identify a broad class of domains — the so-called quasi-o -minimal do-

mains — which all satisfy the Isolation Property. Examples of the quasi o -minimal do-

mains include the following:

• all o -minimal domains,

• the integer or natural numbers with +, <,

• the ordered set of real numbers with the distinguished subset of rational numbers,

• ordered unions of o -minimal domains.

The Isolation Property is broader than the quasi-o -minimality: for example, every

structure of the form (A,<,E), where < is a dense linear ordering on the set A, and E is

an equivalense relation on A with two dense classes, satisfies the Isolation Property but

is not quasi-o -minimal.

The Pseudo-finite Homogeneity Property is broader than the Isolation Property: we

prove that for the structure (R,+, <,Q) the Pseudo-finite Homogeneity Property holds

but the Isolation Property fails. In particular, for this structure every generic extended

query over finite states is equivalent to a restricted query. This immediately implies

the analogous collapse result for any structure of the form (A,<,E), where (A,<) is a

dense linearly ordered set without endpoints, and E is an equivalence relation on A with

infinitely many classes all of which are dense.

The general setting we consider really gives some other concrete examples of collapse

results. For instance, the collapse result holds for any structure of the form (R,+, <,
F, fα)α∈F , where F is a subfield of R, and fα is a name for the unary operation of
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multiplication by the scalar α. However, it is easy to see that for the structure (R,+,×, <,
Q) the collapse result fails. So we are really standing near a boundary.

1.7. Safe Datalog¬,<z -programs. Although the domain Z does not admit elimination

of quantifiers, its definitional expansion by the so-called gap-orders <g for all natural

numbers g already admits elimination of quantifiers. x <g y means x+ g < y.

Thus, this expanded domain admits effective bottom-up evaluation of first-order quer-

ies in closed form with respect to f.r. states. “The closed form” means that whenever you

start from an f.r. state, you end up having an f.r. answer that can therefore be stored in the

database and used in future queries as an extensional predicate. “Bottom-up evaluation”

refers to the process of evaluating queries according to their structure, from inside-out,

by constructing for each sub-formula a finite representation of its value. This process is

much more efficient than the tuple-based evaluation.

However, the expressive power of first-order queries in this domain is severely lim-

ited. This motivated research into using constraint logic programs (see [JL87, JM94]) for

querying finitely representable databases over the integer order. Logic programs without

negation, when they terminate, result in f.r. answers too. This means that the result of

one program, or its negation, can be used as input for another program. This leads to

the notion of Datalog with stratified negation, or Datalog¬,<z , where negations are al-

lowed, but only w.r.t. the intensional predicates whose computation already terminated

(cf. [CH82]).

This machinery only works well, however, if the Datalog program terminates. If it

does not, the construction collapses. One remedy is to consider only those Datalog¬,<z -

programs whose termination is guaranteed for all inputs. Such programs often are called

safe. Notice that this definition is semantical in nature.4

Revesz [Rev95] introduced a syntactical notion of safety for Datalog¬,<z -programs,

which guarantees semantical safety. The syntax is remarkably powerful — queries ex-

pressible in this syntax may have non-elementary complexity — and yet easy (=PTime)

to check. As a matter of fact, it was not clear what kind of (semantically) safe queries, if

any, could not be expressed in this syntax.

In [ST95c], this problem was ultimately settled by showing that no syntax exists

for all semantically safe queries of Datalog¬,<z . In particular, the syntax introduced

in [Rev95] is incomplete. Formally, it was shown that any recursively enumerable set

of Datalog¬,<z -programs either contains infinitely many unsafe programs, or does not

contain any program for infinitely many safe Datalog¬,<z -definable queries.

Of course, the result implies undecidability of safety for Datalog¬,<z as a whole,

i.e., that one cannot decide for a program R whether it is safe. However, the result

hits deeper in that we show impossibility of any syntactical safety restriction on the

Datalog¬,<z -programs that would not simultaneously be semantical. As a matter of fact,

oftener than not an effective syntax for an undecidable class of programs does exist. By

way of example, consider the ever popular class PTIME. Again, one cannot generally say

4To be sure, the notion of safety only makes sense when a specific query evaluation algorithm

is fixed. Within this paper, we concentrate on the bottom-up evaluation algorithm.
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whether a given program is in PTIME. However, it is easy to come up with a syntactical

class of programs that consists of PTIME programs and covers the whole class PTIME

function-wise.5

On the technical side, one of the main results of [ST95c] is that, under the bottom-up

semantics, for any Turing machine one can effectively construct a Datalog¬,<z -program

that computes the same function and is safe whenever the machine is total. Although by

appearance, the result looks similar to the one by P. Revesz (Proposition 2.3 in [Rev93])

that any Turing-computable function is expressible by a query of Datalog¬,<z , a closer

look reveals that the the two results are altogether different. To emphasize only one

distinction, the programs that express (total) Turing-computable functions in [Rev93]

need not terminate under the bottom-up semantics, hence, they may not be safe.

1.8. Notation. Notation is usual. denotes either the end of the proof or that the

proof of the statement is omitted.

2. A recursive domain with decidable FO theory which has no recursive

syntax for safe queries. The goal of this section is to present a recursive domain with

decidable FO theory where there is no recursive syntax for finite queries, and where the

state-safety problem is undecidable.

In quest for a decidable theory with this property the authors thoroughly reviewed

many theories considered in [Rab77] and [ELTT65], however, were unable to find an

appropriate theory.

In [ST95a], it was proposed a new domain specially coined to serve the needs. The

naturality of this domain can be further argued upon.

A reader with a background in Recursion Theory may notice in our design certain

similarities to Kleene’s predicate. However, throwing in the full Kleene’s predicate would

make the theory undecidable. So what we actually are doing, is we are weakening Kleene’s

predicate to the extent that the first-order theory becomes decidable.

Now finiteness of a query implicitly involves a second-order property, and we manage

to use this peculiar second-order property in conjunction with our predicate to express

totality of recursive functions.

So much for the underlying informal ideas.

Now, formally, let us define the domain as follows.

The domain is the set of all possible words (or strings) in the alphabet {1, ∗,#,−}.
The signature contains the only ternary predicate symbol P , as well as all the constant

words in the alphabet. Also, we consider the language with equality =.

Let us consider the standard single-tape Turing machines in the alphabet {1,−}.
As usual, the machines use − as a white-space marker. Initially, an input word w ∈
{1,−}∗ written on the tape is surrounded by infinitely many − from both sides, and

machines always start from reading the leftmost character of the word w. Internally,

Turing machines use the two-character alphabet {1,−} and throughout the computation,

5Say, take only the programs that track their own execution time and terminate when a

target polynomial is reached.
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modify characters written on the tape. A machine can run forever, but if it stops, it

leaves a finite word written on the tape. If at this moment the tape only contains − in

all positions, the result of the computation is defined as the empty word ε. Otherwise,

the result is the leftmost word in the alphabet {1} written on the tape and surrounded

by −. A Turing machine is called total iff it stops for any input.

The Turing machines themselves can be represented as strings in the alphabet

{1,−,#} with # being a delimiter (we require that every machine contains at least

one #). The details of a particular representation are not otherwise important.

Let a word w ∈ {1,−}∗ and a Turing machine M ∈ {1,−,#}+ be given. We now

define a trace of M in w as a sequence of “snapshots” of a partial computation of M in

w separated with ∗. A trace starts with M∗ and then, for each step in the computation,

contains the internal state of the machine M , the tape (the minimal part of it that covers

all non-− characters), and the position of the head in the tape, all separated with ∗. For

instance, the first snapshot always is 1 ∗ w∗.
Thus, if M does not stop in w, there are infinitely many different traces of M in w.

However, if it does stop in w, then the number of different traces is finite.

A trace therefore is a word in the alphabet {1, ∗,#,−}.
Note that the machines, the input words, and the traces, being all written in different

alphabets, do not intersect. Also, there are words that are of neither of these three types,

which we will call “other words”.

Now the only (ternary) signature predicate P is defined as follows.

P (M,w, p) iff M,w, p are a machine, an input word, and a trace, respectively, and p

is a trace of M in w. The equality is also allowed. Let us denote this domain T.

By the Theory of Traces we mean the set of true first-order pure domain sentences

of T.

Theorem 2.1 ( [ST95a]). The Theory of Traces is decidable.

Theorem 2.2. The set of finite formulas of the domain T does not have an effective

syntax.

Proof. Consider a database scheme that consists of one constant symbol6 c.

Given a Turing machine M , consider the following formula ψM (x):

P (M, c, x).

Observe that the formula ψM (x) is finite iff M is total. Indeed, if M is total, then,

for any c, only finitely many x’s may satisfy P (M, c, x).

If, on the other hand, M is not total, there exists c such that infinitely many traces

x satisfy P (M, c, x). Then, obviously, ψM (x) is infinite.

Now suppose that the theorem does not hold. Then there exists a recursive enumer-

ation φ1(x), φ2(x), . . . of finite formulas (that use c in addition to the domain constants

and to the predicate P ) with one free variable such that any finite formula with one free

variable is equivalent to one in this list.

6Of course this formally is not a database scheme, but this technicality will be taken care of

later.
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Without loss of generality, we may assume that a variable, say z, is not used in the

formulas of this list.

Consider a recursive enumeration of all, total or not, Turing machines, M1,M2, . . ..

Given a machine Mk and a formula φr(x), consider the formula

(∀z)(∀x)
(
ψMk

(x)
[z
c

]
←→ φr(x)

[z
c

])
,

where
[
z
c

]
is the operation of substituting the variable z for the constant symbol c in a

formula.

This last formula is therefore a pure domain formula, and because the decidability of

the theory, we can check whether it is true or not.

Now if it happens to be true, we know, that Mk is a total machine, because the truth

of this sentence implies that ψMk
(x) is finite.

On the other hand, if Mk is total, then ψMk
is finite, and, therefore, for some r, the

above sentence is going to be true, for φ1(x), φ2(x), . . . include all finite queries with one

variable.

Hence, by continuously analyzing all pairs of k and r, we can establish a recursive

enumeration of all total Turing machines.

But this is known to be impossible. A straightforward proof of this fact can be obtained

by a simple diagonalization.

Hence, a contradiction.

Finally, notice that we do not need to stick with the constant c. A database scheme

may contain, say, one unary relation R instead of the constant symbol, and then we will

define the totality formula ψM (x) as follows:

(∀x, y)(R(x) ∧R(y) =⇒ x = y) ∧ (∃y)(R(y) ∧ P (M,y, x)).

The same proof can be carried out here with minor adjustments.

Corollary 2.3. For no extension T′ of T that has a decidable theory, a recursive

syntax exists for finite queries.

Proof. The proof of Theorem 2.2 continues to work.

The situation is no better with the state-safety:

Theorem 2.4. The state-safety problem is undecidable for T.

Proof. In the notation of Theorem 2.2, notice that ψM (x) is finite in the state c

iff M stops starting from the value of c. While it is undecidable to determine whether a

Turing machine stops in an input.

3. Locally order-generic queries. In the section we represent results from

[BST96]. Omitted proofs can be found in [BST96]. The paper is available as ps-file for

anybody using ftp address ftp.tversu.ac.ru (directory /pub/Taitslin, file last2.ps).

3.1. Preliminaries. A structure of a relational signature L is a non-empty set with a

mapping that assigns to every relational symbol in L a relation of the same arity over

the set. Let U be an infinite structure over the signature L. This structure is called

the universe. In this section, we always consider ordered universes. This means that L
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includes a binary relational symbol < whose interpretation in U satisfies the axioms of

linear order. Let us denote L0 = {<}, and Ω = L \ L0.

Databases operating over U use non-signature relational symbols as well. A database

scheme SC is a finite collection of relational symbols of fixed arities. A database state

(over U) for the database scheme is an assignment to these relational symbols of concrete

relations of corresponding arities over U . These relations are called database relations. A

database state is called a finite database state if all the relations are finite. The set of all

elements of the universe that occur in some tuple in some relation of a database state s

is called the active domain of s; we denote it by ad(s). We denote AD(x) a first order

formula of the signature SC which says that x is an element of the active domain. It

means that for a database state s and a ∈ U , AD(x) is true in (U, s, a) iff a ∈ ad(s).

We fix a database scheme SC and denote L+
0 = L0

⋃
SC, and L+ = L

⋃
SC.

A database query can formally be defined as a mapping that takes in a database

state (of a fixed database scheme), and produces a new relation, of a fixed arity, over U .

Thus, every query has an arity. Specifically, queries of arity 0 are called Boolean queries.

A Boolean query defines a mapping from database states to {0, 1}, or, in other words,

subsets of all possible database states of a given database scheme.

Queries can be formulated using query languages, the simplest being the language of

first-order logic FO. Formulas (queries) of this language use =, as well as the relational

symbols of the signature and of the database scheme. Thus, a database state essentially

defines a structure of a larger signature with U as the domain; then a formula with n

free variables defines an n-ary relation over U .

Generally, an FO query may yield an infinite answer even in a finite database state.

[KKR90] introduced the notion of finitely representable database state as a database state

where every relation corresponding to a relation name from SC is defined (independently

of the others) by a quantifier-free formula using =, <, and constants for the elements of

U . The formula is a finite representation of the relation.

We consider two languages for querying. Queries of the first one are FO formulas

of the signature L+
0 — we call them restricted. Queries of the second language are FO

formulas of the signature L+ — we call them extended.

A query is said to be generic, iff they are preserved under order-preserving permu-

tations of U .7 It is easy to see that the restricted queries are generic. In other words,

if φ : U → U is an automorphism of 〈U,<〉, and a restricted query Q transforms a

database state s into a relation R, then Q transforms φ(s) into φ(R); in other words,

Q(φ(s)) = φ(Q(s)). The problem with extended queries is, they may be not generic.

We will also use a stronger notion of locally generic query. A k-ary query Q is said

to be locally generic over finite states if ā ∈ Q(s) iff φ(ā) ∈ Q(φ(s)), for any partial

<-isomorphism φ : X → U with X ⊆ U , for any finite state s over X, and for any k-tuple

ā in X.

For any finite representation σ over a subset X of U and for any partial <-isomorphism

φ : X → U , a finite representation φ(σ) can be naturally defined, by replacing any

7As discussed in Introduction, the term “generic” is sometimes understood in a more restric-

tive sense.
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parameter a that occurs in σ with the parameter φ(a). So, for finitely representable

states, the notion of local genericity can be defined as follows. A k-ary query Q is said

to be locally generic over finitely representable states if ā ∈ Q(σ) iff φ(ā) ∈ Q(φ(σ)), for

any partial <-isomorphism φ : X → U with X ⊆ U , for any finite representation σ over

X, and for any k-tuple ā in X. Here we denote by Q(σ) the state into which the query

Q transforms the state finitely represented by σ.

Since a finite n-ary relation {ā1, . . . , ān}, where āi = (ai1, . . . , ain), can be finitely

represented by the formula
∨m
i=1

∧n
j=1 xj = aij , every query which is locally generic over

finitely representable states is locally generic over finite states, too. On the other hand, a

query which is locally generic even over all states can be not locally generic over finitely

representable states: an example is the Boolean query ‘P 6= ∅’; it is obviously locally

generic over all states over Z, but 0 < x < 1 defines in Z the empty set, even though the

set defined by 0 < x < 2 in Z is not empty.

Of course, every locally generic query is generic. Conversely, for some domains, every

generic query is locally generic. A sufficient condition for this is the so-called double

transitivity of the domain: a domain is called doubly transitive if for any a1 < b1 and

a2 < b2 in the domain, there exists a <-automorphism of the domain mapping a1 to a2,

and b1 to b2. For instance, the real and rational numbers are doubly transitive, while the

integer numbers are not. The Boolean query ‘there are even and odd numbers in P ’ is

an example of a query which is generic but not locally generic over finite states over Z.

Moreover, even a restricted query can be not locally generic: for example, the restricted

Boolean query ‘P is convex’ is not locally generic over finite states over Z.

3.2. Impossibility of translation over arbitrary states. The goal of this subsection is to

compare restricted and generic extended queries from the viewpoint of their expressive

power over all possible states, whether finitely representable or not. We show that, in

general, extended generic querying is more expressive than restricted, even in very simple

situations.

Theorem 3.1. There is an extended Boolean query Q over (Z,+, <), the ordered

group of integer numbers, such that

1. Q is generic over all database states; in particular, Q is generic over all finite states;

2. Q is not equivalent, over finite database states, to a restricted query; in particular,

Q is not equivalent, over all database states, to a restricted query.

Proof. Let Q be the query ‘there are even and odd numbers in P ’. The query Q is

generic over all possible database states.

Clearly, there is an extended FO query that expresses Q, for all possible database

states.

But Q cannot be expressed as a FO restricted query, for finite database states.

Note that Q constructed in Theorem 3.1 is obviously not locally generic. Moreover, it

will be shown that every FO extended query, which is locally generic over finite states over

(Z, <,+), is equivalent, for finite database states, to an FO restricted query. A similar

result will be proved for (Q, <,+), the ordered group of rational numbers.
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By the way, the mentioned result concerning Z has a curious corollary: the query

‘|P | is even’ cannot be expressed as an extended FO query for finite database states

over (Z, <,+), as opposed to the query ‘there are even and odd numbers in P ’. Indeed,

the query ‘|P | is even’ is obviously locally generic, even over all database states, and

essentially the same arguments, as in the proof of Theorem 3.1, show that the query is

not equivalent, for finite database states, to an FO extended query over (Z, <,+). Note,

by contrast, that the query ‘|P | is finite’ can be expressed as a restricted FO query over

(Z, <,+), because a set of integers is finite iff it is bounded.

It is natural to ask whether Theorem 3.1 holds for Q instead of Z. In this situation, in

contrast to the case of (Z, <,+), the notions of genericity and local genericity coincide.

However, for (Q, <,+), we will give an example of an extended query which is generic

over all database states, but not equivalent, over all database states, to a restricted one.

That example draws a line between finite and finitely representable database states, on

one side, and essentially infinite states, on the other.

In fact, we will prove a more general result:

Theorem 3.2. The extended querying is more expressive than the restricted one with

respect to generic Boolean queries over any divisible Archimedean ordered Abelian group

not isomorphic to the ordered group of reals.

Classical examples of divisible Archimedean ordered Abelian groups are the ordered

groups of rational and real numbers. It is known that, up to isomorphism, Archimedean

ordered groups are exactly the subgroups of the ordered group of reals. The following is an

example of a uncountable divisible Archimedean ordered Abelian group not isomorphic

to the ordered group of reals.

Let b be an irrational number. Consider a basis B of R over Q, containing b; clearly

B is of power of continuum. Let G be a Q-subspace of R generated by B \ {b}. Then G

is a required group. Indeed, clearly it is Archimedian and divisible. The orders on G and

R are not isomorphic: the order on G is not complete as b is not in G.

We don’t know whether the result of Theorem 3.2 holds for the ordered group of reals.

To prove Theorem 3.2, it suffices to prove the following two results.

Theorem 3.3. Let (A,+, <) be an Archimedean ordered Abelian group. Then the

finiteness of database states over A is expressible by an extended FO query.

Theorem 3.4. Let A be a set of reals containing Q. Then the finiteness of database

states over A is expressible by a restricted FO query iff A = R.

Note, by contrast, that in (Z, <) the finiteness is expressible by a restricted FO query

because a set of integers is finite iff it is bounded.

In the special case when A is countable, Theorem 3.4 admits an especially simple proof.

If ϕ expressed the finiteness of R in (A,<,R) then, by compactness and the Löwenheim-

Skolem theorem, there would be an infinite subset in a countable dense ordered set

without endpoints, for which ϕ holds. As every countable dense ordered set without

endpoints is isomorphic to (A,<), we would have a contradiction with the choice of ϕ.
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3.3. Canonical representation of finitely representable relations. The goal of this sub-

section is to show that finite and finitely representable states can be treated uniformly.

To achieve this goal, we show that finitely representable relations can be represented

uniformly by finite relations, of a different signature, such that these f.r. states and their

finite “codes” can be mapped to each other by restricted queries.

We begin with a simple example. Consider the following finitely represented unary

relation P0 on Q:

(1 < x 6 2) ∨ (3 6 x < 4) ∨ (5 < x).

To reconstruct P0, it suffices to know:

• the set of constants B0 used in the representation — in our case it is {1, 2, 3, 4, 5},
and, moreover,

• which of the singletons and the open intervals

(−∞, 1), {1}, (1, 2), {2}, (2, 3), {3}, (3, 4), {4}, (4, 5), (5,∞)

are contained in P0.

The latter sets can be characterized as minimal open intervals and singletons which can

be defined using constants from B0; we will call them B0-minimal 1-cells. Clearly, P0 is

the union of all B0-minimal 1-cells which are contained in P0.

The set of constants over which P0 can be defined is not uniquely determined by P0;

for example, P0 can be represented over the set {0, 1, 2, 3, 4, 5} by the formula

((0 < x 6 2) ∨ (3 6 x < 4) ∨ (5 < x)) ∧ (1 < x).

However, the constant 0 is oviously irrelevant here as it is shadowed by the second con-

junct. In fact, the constants which are really relevant are just the boundary points of P0.

Clearly, there is a unary restricted FO query δ which, for any subset P of Q as an input,

yields its boundary as an answer.

We show that the information which is contained in the second item can be obtained

from P0 by means of several FO restricted queries (which can be uniformly applied to

any finitely represented subset of Q).

Let B be a boundary set of such a P ; it is a finite set. There are 5 types of B-minimal

1-cells:

(0) Q; (1) {b}; (2) (−∞, b); (3) (b,∞); (4) (b, b′);

here b, b′ ∈ B, and in all the cases except (1) the 1-cells do not contain any point from B.

Consider the following 5 relations Si on B (i < 5). The relation S0 is 0-ary; the

relations S1, S2 and S3 are unary, and the relation S4 is binary. We put

• S0 = true iff Q = P ,

• S1(b) holds iff b ∈ B,

• S2(b) holds iff b is the least element of B and P contains (−∞, b),
• S3(b) holds iff b is the greatest element of B and P contains (b,∞),

• S4(b, b′) holds iff b, b′ are subsequent elements of B, and P contains the interval

(b, b′).
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In other words, Si contains the information which of the B-minimal 1-cells of type (i) are

contained in P .

It is easy to write down a FO query σi which, for every finitely represented subset P

of Q as an input, yields the finite relation Si as the answer. Clearly, P can be recovered

from the finite relations B and Si’s by means of a FO query π, because P is the union of

all B-minimal 1-cells which are contained in P .

So, we have shown that, for any finitely representable subset P of Q, we can find,

uniformly in P by means of FO queries, a finite collection of finite relations on Q, from

which P can be uniformly recovered by means of a FO query.

Our goal is to prove an analogous result for finitely represented relations of arbitrary

arity. Here the idea is essentially the same, but some new important points appears. We

illustrate this for the case of arity 2.

Consider a binary finitely represented relation P on Q. We may assume that P is

contained in one of the three relations

{(a, b) : a < b}, {(a, b) : a > b}, {(a, b) : a = b},

because P is the disjoint union of the intersections of P with these three relations, and

the intersections are finitely representable. Assume, for example, that P ⊆ {(a, b) : a <

b} = D.

It can be proven (it is not obvious!) that among the finite subsets of Q, over which P

can be finitely represented, there is a least one; we call it the set of boundary points for

P and denote it by ∂P . For example, if P is the relation

(0 < x < y < 1) ∨ (1 < x < y < 2)

then ∂P = {0, 1, 2}. Moreover, it turns out that ∂P can be obtained from P by means

of a FO query, uniformly in P .

For a finite subset B of Q, we define a simple binary relation on Q over B to be a

finite union of “rectangulars” defined over B; that is, the simple binary relations over B

are those which can be finitely represented by disjunctions of conjunctions of formulas of

the forms

x = b, x < b, x > b, y = b, y < b, y > b,

where the parameters b are taken from B. It is easy to show that simple binary relations

on Q can be characterized as the binary relations that are invariant under all order

automorphisms of Q which pointwise stabilize B.

We will show that there is a least simple binary relation on Q over ∂P containing P ;

we denote it by Inv(P ). For the P from the example above, Inv(P ) is the union of two

squares, (0, 1) × (0, 1) and (1, 2) × (1, 2). It is easy to see that Inv(P ) can be uniformly

obtained from P by means of a binary first order query. It can be shown — it is the

crucial point — that it always the case that P = Inv(P ) ∩D.

We call a set of the form I × J , where I and J are B-minimal 1-cells, a B-minimal

2-cell. It is easy to see that any simple binary relation over B can be uniquely decomposed

into a disjoint union of B-minimal 2-cells. For instance, in the example above Inv(P ) is

the disjoint union of two {0, 1, 2}-cells (0, 1)× (0, 1) and (1, 2)× (1, 2). Clearly, there are

finitely many B-minimal 2-cells, for any finite B.
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If we know ∂P , to reconstruct Inv(P ), we need only to know which of the ∂P -minimal

2-cells are contained in Inv(P ).

As there are 5 types of ∂P -minimal 1-cells, there are 25 types of ∂P -minimal 2-cells.

With every type τ ∈ 52 of ∂P -minimal 2-cells we associate a relation Sτ on the finite set

∂P with the information which of the ∂P -minimal 2-cells are contained in Inv(P ). The

arity of Sτ depends on τ and is equal to the number of the b’s involved in representations

of 2-cells of type τ .

Say, with the 2-cells I × J , where I is of type (1) and J is of type (4), we associate

the following ternary relation S14 on ∂P . For a, b, c ∈ ∂P , we consider S14(a, b, c) to be

true iff {a} × (b, c) is a ∂P -minimal 2-cell and is contained in Inv(P ).

For P in the example above, S44 = {(0, 1, 0, 1), (1, 2, 1, 2)}, S00 = false, and Sτ = ∅
for all remaining τ ∈ 52.

For any τ ∈ 52, we can uniformly obtain the finite relation Sτ on ∂P from Inv(P )

and ∂P (and so from P ) by means of a FO query.

On the other hand, if we know the finite relations ∂P and all Sτ ’s, we can uniformly

recover Inv(P ) from them, by means of a FO query. As P = Inv(P )∩D, the same is true

for P . So in the binary case we have the result we need.

Actually, the arguments above work not only for Q but for an arbitrary dense or-

dered set. However, we will prove the result not only in the dense case, but for an ar-

bitrary linearly ordered set. In that case some extra technical problems with the def-

inition of ∂P arise, because in general for a finitely representable relation the least

set over which the relation can be defined does not exist: for example, in Z the rela-

tion x > 0 can be represented not only over {0} but also over {1}, because x > 0 iff

x ≥ 1. Nevertheless, even in the general case it turns out to be possible to define for

any finitely represented relation P a certain canonical finite set of parameters ∂P , over

which P can be defined and which can be uniformly obtained from P by means of a FO

query.

Now we pass to the general case. We work over an arbitrary (but fixed) linearly

ordered set U .

Our aim is to find for finitely representable relations on U , in a sense, a canonical

finite representation. We begin with a special case of the so called simple relations.

A relation R on U is said to be simple if it can be finitely represented by a disjunction

of conjunctions of formulas of the forms x < c, x > c, or x = c, where x is a variable and

c is a name of an element of U .

For k > 1, we call sets of the form I1× . . .×Ik, where each Ij is a singleton or an open

interval in U k-cells in U . Here an open interval in U is a set defined by a formula of one of

the following forms: x = x; a < x < b; x < a; a < x. Geometrically, simple k-ary relations

over a set B can be described as unions of finitely many k-cells such that all parameters

involved in their representations belongs to B. Of course, neither the k-cells nor the set

of parameters B are uniquely determined by the simple relation. Simple relations can be

characterized as follows.

Lemma 3.5. For a finite set B, a relation P on U is a simple relation over B iff P

is B-invariant.
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Here P is said to be B-invariant if ā ∈ P iff b̄ ∈ P , for any tuples ā and b̄ such that

ai and bi are positioned the same way with respect to the elements of B, for all i. The

proof of the lemma is obvious.

Consider the following binary relation Ek(x̄, ȳ) on Uk: xi < xj iff yi < yj , for 1 6
i, j 6 k. It is an equivalence relation with finitely many classes. Fix such a class D. For

ā ∈ D, the relation {(i, j) : ai = aj} is an equivalence relation on {1, . . . , k}; let J1, . . . , Js
be its classes. The relation does not depend on ā ∈ D.

As usual, for P ⊆ Uk, we consider P as a relation of arity k on U . So P (ā) is equivalent

to ā ∈ P . For P ⊆ D and u, v ∈ U , we say that u and v are P -inseparable if for any ā, b̄

in D and any i ∈ {1, . . . , s}( ∧
j 6∈Ji

aj = bj ∧
∧
j∈Ji

(aj = u ∧ bj = v)
)
→ (P (ā) ≡ P (b̄)).

Hence, this relation of inseparability is expressible as a restricted query.

For P ⊆ D, an element x ∈ U is said to be a boundary point of P if either there is an

y such that y < x and for any y < x there is a pair of P -separable elements in [y, x], or

there is an y such that y > x and for any y > x there is a pair of P -separable elements

in [x, y]. Here [u, v] = {z : u 6 z 6 v}. Denote by ∂P the set of boundary points of P . It

will be observed that any boundary point of P is a constant in every definition of P or

is adjacent to such a constant. So the set of the boundary points for each prime relation

P is finite and can be expressed as an restricted query.

In Lemmas 3.6–3.9 below, let S be a simple relation defined over a finite set B, and

P = S ∩D.

Lemma 3.6. If x < y and [x, y] ∩ B = ∅, there is no pair of P -separable elements in

[x, y].

Proof. Let u, v ∈ [x, y]. Let ā, b̄ ∈ D, and 1 6 i 6 s. Suppose aj = bj for j 6∈ Ji, and

aj = u, bj = v for j ∈ Ji. As u and v are positioned in the same way with respect to the

elements of B, we have ā ∈ S iff b̄ ∈ S, and hence ā ∈ P iff b̄ ∈ P .

Lemma 3.7. Any boundary point of P is an element of B or is adjacent to an element

of B. In particular, ∂P is finite.

Proof. If z is neither an element of B nor adjacent to an element of B, there are

x, y such that x < z < y, and [x, y] ∩ B = ∅. Then, by Lemma 3.6, there is no pair of

P -separable elements in [x, y]. Hence z 6∈ ∂P .

The following lemma is crucial in our consideration.

Lemma 3.8. If x < y and x, y are P -separable, [x, y] ∩ ∂P 6= ∅.

Proof. By Lemma 3.6, [x, y] ∩ B 6= ∅. Let [x, y] ∩ B = {b1, . . . , bn}, b1 < . . . < bn.

Since x, y are P -separable, the pair x, b1, or the pair bn, y, or one of the pairs bi, bi+1 is

P -separable. Towards a contradiction, suppose that neither x, y nor the bi’s are boundary

points of P . Then bi and bi+1 are P -inseparable, for all i. Indeed, there are u > bi and

v < bi+1 such that in [bi, u] and [v, bi+1] there are no P -separable pairs of elements. If
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u > bi+1 or v 6 bi, we are done. If bi < v 6 u < bi+1, the pairs bi, v and v, bi+1 are P -

inseparable, and hence the pair bi, bi+1 is P -inseparable, too. In the case bi < u < v < bi+1

the pair u, v is P -inseparable, by Lemma 3.6; since the pairs bi, u and v, bi+1 are P -

inseparable, we have the P -inseparability of the pair bi, bi+1. Analogous arguments show

the P -inseparability of each of the pairs x, bi and bn, y. A contradiction.

Denote by Inv(P ) the least ∂P -invariant relation containing P . Clearly, Inv(P ) con-

sists of all k-tuples b̄ for which there is ā ∈ P such that ai and bi are positioned the same

way with respect to ∂P , for all i. By Lemma 3.5, Inv(P ) is a simple relation over ∂P .

Lemma 3.9. P = Inv(P ) ∩D.

Proof. We need to prove that there are no ā ∈ P and b̄ ∈ D \ P such that ai
and bi are positioned the same way with respect to ∂P , for all i. Suppose there is a

counterexample pair ā, b̄. Let i1 ∈ J1, . . . , is ∈ Js; we can assume that xi1 < . . . < xis
for x̄ ∈ D. As ā 6= b̄, there is m such that aim 6= bim , but ail = bil for 1 6 l < m.

Choose a counterexample pair ā, b̄ with the largest possible m. The points aim and bim
are P -inseparable, by Lemma 3.8, because in the closed interval between them there are

no points in ∂P .

Suppose aim < bim . Let c̄ = (c1, . . . , ck) be the result of replacing in the tuple b̄ the

elements bj with aim , for all j ∈ Jm. Clearly, c̄ ∈ D. Due to the P -inseparability of aim
and bim , we have c̄ 6∈ P . The elements ai and ci are positioned the same way with respect

to ∂P , for all i; so ā, c̄ is a counterexample pair. Since ail = cil for 1 6 l 6 m, we have a

contradiction with the maximality of m.

Now suppose aim > bim . Let c̄ = (c1, . . . , ck) be the result of replacement in the tuple

ā the elements aj with bim , for all j ∈ Jm. Clearly, c̄ ∈ D. Due to the P -inseparability of

aim and bim , we have c̄ ∈ P . The elements ci and bi are positioned the same way with

respect to ∂P , for all i, so c̄, b̄ is a counterexample pair. Since cil = bil for 1 6 l 6 m, we

have a contradiction with the maximality of m.

Any k-ary relation P is the disjoint union of all P ∩D, where D ranges over the set of

Ek-classes. Obviously, if P is finitely representable, every such P ∩D is equal to S ∩D,

for some simple relation S. So Lemma 3.9 implies

Corollary 3.10. Any finitely represented k-ary relation P is the disjoint union of

all Inv(P ∩D) ∩D, where D runs over the set of equivalence classes of Ek.

Let P be a finitely representable k-ary relation. Denote by ∂P the union of all ∂(P∩D).

As Inv(P ∩D) is defined over ∂(P ∩D), we have

Corollary 3.11. Any finitely represented relation P is defined over ∂P .

Thus, with every finitely represented relation P we have associated a certain canonical

finite set of parameters ∂P , over which the relation is defined; the relation P is, in a sense,

reduced to a finite family {Inv(P ∩D)} of simple relations over the set ∂P . Moreover, the

set ∂P and the family {Inv(P ∩D)} can be found uniformly in P (by means of certain FO

queries), and P can be uniformly recovered from the set ∂P and the family {Inv(P ∩D)}
(by means of a certain FO query).
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Now we are going to find a canonical representation for simple relations. Let S be a

simple k-ary relation over a finite set B. For a non-empty B, we call a k-cell I1× . . .× Ik
B-minimal if every Ij can be defined by a formula of one of the following forms:

x = bi; x < b1; bn < x; bi < x < bi+1,

where B = {b1, . . . , bn} and b1 < . . . < bn. The only ∅-minimal k-cell is, by definition, the

cell Uk. Obviously, the set of B-minimal k-cells is finite. Clearly, the B-minimal k-cells

are pairwise disjoint. Moreover, if a k-cell C ′ is defined over B and a k-cell C is B-minimal

then C ⊆ C ′ provided C ∩ C ′ 6= ∅. It follows that S can be decomposed into a disjoint

union of B-minimal k-cells, namely, into the disjoint union of all B-minimal k-cells which

are contained in S. Note that some of the B-minimal k-cells can be empty.

We show how to encode the simple relation S by a finite family of relations on the

finite set B.

Every 1-cell over B is defined by a formula of one of the following forms:

(0) x = x; (1) x = b; (2) x < b; (3) b < x; (4) b < x < b′,

where b, b′ ∈ B. For i < 5, denote by ni the number of constants from B in the formula

(i); so n0 = 0, n1 = n2 = n3 = 1, and n4 = 2.

For any τ = (τ1, . . . , τk) ∈ 5k, we are going to associate with S and B a relation Sτ
on B of arity nτ = nτ1 + . . .+ nτk .

Let an nτ -tuple of variables ȳ = (y1, . . . , ynτ ) is the concatenation of tuples ȳ1, . . . , ȳk,

where the length of ȳi is nτi . For i = 1, . . . , k, denote by φi(x̄i, ȳi) the formula

• xi = xi if nτi = 0,

• xi = v if nτi = 1 and ȳi is v,

• xi < v if nτi = 2 and ȳi is v,

• xi > v if nτi = 3 and ȳi is v,

• u < xi < v if nτi = 4 and ȳi is a pair (u, v).

This formula just says that xi belongs to the 1-cell of type (i) defined by parameters ȳi.

Denote by φτ (x̄, ȳ) the conjunction of all the φi’s; this formula says that x̄ belongs to the

k-cell Cτ (ȳ) = I1 × . . .× Ik, where Ii is a k-cell of type τi defined by parameters ȳi.

For an nτ -tuple b̄ in U , we define Sτ (b̄) to be true if b̄ is in B, and the k-cell Cτ (b̄) is

B-minimal and is contained in S. Clearly, the B-minimality of the k-cell means exactly

that, for i 6= 1, the interval φi(U, b̄i) has no common points with B.

It is easy to see that the relations Sτ can be uniformly obtained from S and B by

means of certain FO queries στ . As S is the union of all k-cells Cτ (b̄) for which Sτ (b̄)

holds (τ ∈ 5k, b̄ ∈ Bnτ ), one can uniformly recover S from B and the family {Sτ}τ∈5k
by means of a certain FO query π. Namely, π says that, for one of the τ ’s, there is an

nτ -tuple b̄ in B such that both Sτ (b̄) and φτ (x̄, b̄) hold.

Later we will need the following observation concerning the definition of π.

Observation 1. Suppose A = {a1, . . . , am} ⊆ U with a1 < . . . < am, and Rτ are

arbirary finite relations of arity nτ on A. Then it is easy to write down a quantifier-free

formula ρ(x̄, z1, . . . , zm) in the pure order language depending only on the isomorphism
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type of the finite structure

A = (A,Rτ , <, a1, . . . , am)τ∈5k ,

which says that, for one of the τ ’s, there is an nτ -tuple z̄ in the set

{z1, . . . , zm}
such that both Rτ (z̄) and φτ (x̄, z̄) hold. So we can assert not only that the relation

π(A, {Rτ}) is finitely representable over A but, moreover, that there is a certain ‘stan-

dard’ finite representation for it over A which depends only on the isomorphism type

of A.

Based on the analysis above and taking into account Corollary 3.10, it is an easy

exercise to prove

Lemma 3.12. Consider the following two database schemes η and θ. The scheme η

consists of one k-ary symbol P ; the scheme θ consists of a unary symbol B and nτ -ary

symbols SDτ , for τ ∈ 5k and Ek-classes D.

1. There is a unary FO η-query δ which, for any finitely represented k-ary input P ,

yields a finite set ∂P as the answer.

2. For any τ ∈ 5k and any Ek-class D, there is a nτ -ary FO η-query σDτ which, for

any finitely represented k-ary input P , yields the finite relation Inv(P ∩D)τ on ∂P

as the answer.

3. There is a k-ary FO θ-query π which for any finite input

B, {SDτ : τ ∈ 5k, D is a Ek-class},
yields as an answer a relation finitely representable over B.

4. The family of queries δ, {σDτ} is an inverse for the query π in the following sense:

for any finitely represented k-ary input P , we have P = π(δ(P ), {σDτ (P )}).

We summarize the consideration above in the following main results.

Theorem 3.13. For any finite database scheme η = {P1, . . . , Pn} there are:

• a database scheme θ = {B,S1, . . . , Sm}, where B is unary ,

• η-queries δ of arity 1 and σi of arity of Si, for 1 6 i 6 m,

• locally generic θ-queries πj of arity of Pj, for 1 6 j 6 n,

such that

(a) for any finitely representable η-input p, the family of η-queries σ̄ = {δ, σi} yields a

finite θ-state as the answer,

(b) for any finite θ-state s, the family of θ-queries π̄ = {πi} yields as the answer an

η-state finitely representable over B,

(c) for any η-query, which is locally generic over finitely representable states, the result

of replacing of P1, . . . , Pn in it with π1, . . . , πn is locally generic over finite θ-states,

(d) π̄ is an inverse of σ̄ in the following sense: π̄(σ̄(p)) = p, for any finitely representable

η-state p.

Note that (c) here immediately follows from the observation above concerning the

definition of π.
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Theorem 3.14. For any expanded ordered universe U , if

(1) for any finite database scheme ρ, any locally generic over finite states extended

ρ-query is equivalent over finite states over U to a restricted ρ-query

then

(2) for any finite database scheme η, any locally generic over finite representable states

extended η-query is equivalent over finite representable states over U to a restricted

η-query.

Proof. Suppose (1) is true. Fix a finite database scheme η = {P1, . . . , Pn}. Let Φ be

a locally generic over finitely representable states extended η-query.

We use Theorem 3.13. First we replace in Φ the relation names P1, . . . , Pn with the

formulas π1, . . . πn; we obtain a locally generic over finite states extended θ-query Ψ.

By (1), the query Ψ is equivalent over finite states to a restricted θ-query Ψ1. Now we

replace in Ψ1 the relation names B,S1, . . . , Sm with the formulas δ, σ1, . . . , σm. Then we

obtain a restricted η-query Φ1 equivalent over finite representable states to Φ. So we have

proven (2).

3.4. Collapse of extended locally generic queries. In this section, we pursue collapse

results over finite states. However, all the results can be transferred to finitely repre-

sentable states by directly applying Theorem 3.14.

For convenience, consider database schemes that contain not only relation symbols,

but also finitely many constant symbols. A database state over a universe U for such a

scheme is a mapping that assigns to any relation symbol in the scheme a relation on U of

the corresponding arity, and to any constant symbol in the scheme an element in U . In this

case the active domain of a database state is defined to be the union of the active domain

of the relational part of the state and the set of values of all constants of the scheme. For

a relational database scheme SC, denote by SCk the scheme SC ∪ {c1, . . . , ck}, where

the ci are new constant symbols.

Clearly, two k-ary SC-queries

φ(x1, . . . , xk) and ψ(x1, . . . , xk)

are equivalent over finite states over a universe U if the Boolean SCk-queries

φ(c1, . . . , ck) and ψ(c1, . . . , ck)

are equivalent over finite states over U .

The notions of genericity and local genericity for SCk-queries are defined exactly the

same way as for SC-queries. Clearly, a k-ary SC-query φ(x1, . . . , xk) is generic (locally

generic) over U iff the Boolean SCk-query φ(c1, . . . , ck) is generic (locally generic) over U .

Our ultimate goal is to prove that, under certain conditions on the universe U , any

locally generic extended query is equivalent over finite states over U to a restricted query.

Hence, it suffices to prove such a result for Boolean queries (for database schemes with

constant symbols).

For an arbitrary signature L, an L-theory is defined to be a set of first order L-

sentences (that is, formulas of signature L without free variables). For a class K of
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structures of an arbitrary signature L (in symbols, L-structures), the first order L-theory

of K (in symbols, Th(K)) is defined to be the set of all first order L-sentences which hold

in every structure in K. Two L-structures M and N are called elementarily equivalent

(in symbols, M ≡ N), if φ holds in M iff φ holds in N , for any L-sentence φ. An L-theory

T is said to be complete if all its models are elementarily equivalent.

Let ρ be a database scheme {R1, . . . , Rn, c1 . . . , ck}. We denote L ∪ ρ by L(ρ). A

ρ-state s over an L-structure W is said to be pseudo-finite in W if (W, s) is a model of

the first order L(ρ)-theory F (W,ρ) of all (W, r), where r is a finite ρ-state over W .

For a first order L(ρ)-sentence ψ and m < ω, there is a first order L-sentence ψm
such that, for any L-structure V , the sentence ψm holds in V iff ψ holds for all ρ-

states over V , whose active domain has cardinality at most m. Thus, ψ ∈ F (W,ρ) iff

{ψm : m < ω} ⊆ Th(W ). It follows that W ≡ V implies F (V, ρ) = F (W,ρ). For a

complete L-theory T , the first order L(ρ)-theory F (T, ρ) is well-defined to be F (W,ρ),

where W is an arbitrary model of T .

Let ρ′ be a disjoint copy {R′1, . . . , R′n, c′1 . . . , c′k} of ρ. For an L(ρ)-sentence θ denote

by θ(ρ′) its L(ρ′)-copy, that is, the result of replacement of every occurrence of Ri and

cj in θ with R′i and c′j , respectively. Let ρ̄ = ρ ∪ ρ′.
We say that a Boolean extended ρ-query φ is generic for pseudo-finite states in V

if the following holds: for any ρ̄-state (r, r′), if (r, r′) is pseudo-finite in V and r can be

transformed to r′ by an L0-automorphism of V , then φ(ρ) holds in (V, r) iff φ(ρ′) holds

in (V, r′).

As we will use the standard technique of so-called special models, we summarize its

basic definitions and facts (see [CK90] for detail).

For a structure M of an arbitrary signature L and a subset A of M , denote by L(A)

the signature obtained by adjoining to L names for the elements of A. We do not normally

distinguish between elements of A and their names.

We say that M is an elementary substructure of N (in symbols, M � N or N �M),

if M is a substructure of N , and φ holds in M iff φ holds in N , for any L(M)-sentence φ.

A set p of first order L(A)-formulas with one free variable x is said to be a type

over A in M if every finite subset {φ1(x), . . . , φk(x)} of p is realized in M (that is,

(∃x)(φ1(x)& . . .&φk(x)) holds in M), and, for every L(A)-formula φ(x), either φ ∈ p

or ¬φ ∈ p. We say that a subset q of p isolates p if p is the only type over A in M

containing q.

Let A be a subset of M . For any N � M and a ∈ N , the set of all L(A)-formulas

φ(x) such that φ(a) holds in N forms a type over A in M ; denote it by tp(a/A). For any

type p over A in M , there are N � M and a ∈ N such that p = tp(a/A). We denote

tp(A) the set of all L(A)-sentences which hold in M .

For a cardinal λ, a structure M is said to be λ-saturated if any type p over any its

subset A of power < λ is realized in M ; that is, p = tp(a/A), for some a ∈ M . For any

infinite λ > |L|, every two elementarily equivalent λ-saturated structures of power λ are

isomorphic.

A structure M of power λ is called special if M is the union of a family {Mµ :

µ is a cardinal < λ}, where Mµ �Mν �M for µ < ν < λ, and each Mµ is µ+-saturated.
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Here µ+, as usual, denotes the least cardinal greater than µ. Every two elementarily equiv-

alent special structures of the same power are isomorphic. For any infinite L-structure

M and any cardinal λ > |L|, |M | with λ∗ = λ, there exists a special N � M of power

λ. Here ℵ∗α is defined to be
∑
β<α 2ℵβ . It is easy to construct cardinals λ with λ∗ = λ of

arbitrarily large cofinality.

Theorem 3.15. For any countable universe U and any Boolean extended ρ-query φ

the following conditions are equivalent:

1. there is a restricted ρ-query ψ which is equivalent to φ over finite database states

over U ,

2. φ is generic for pseudo-finite states over V , for all V ≡ U ,

3. for every uncountable power κ with κ = κ∗, the query φ is generic over pseudo-finite

states over the special model V ≡ U with |V | = κ.

Let I be a subset of a universe V . We say that a Boolean extended ρ-query φ is locally

generic over pseudo-finite states over I in V if the following holds: if an ρ̄-state (r, r′)

over I is pseudo-finite in V and r can be transformed into r′ by a partial L0-isomorphism

in V then φ(ρ) holds in (V, r) iff φ(ρ′) holds in (V, r′).

A linearly ordered subset I of a structure M is said to be an indiscernible sequence

in M if θ(ā) holds in M iff θ(b̄) holds in M , for every first order L-formula θ(x1, . . . , xn)

and any two n-tuples ā and b̄ in I with a1 < . . . < an and b1 < . . . < bn.

Theorem 3.16. Let an extended Boolean ρ-query φ be locally generic for finite states

over U . Suppose, for some uncountable κ with κ = κ∗, there is a special model V ≡ U of

power κ such that, for any infinite indiscernible sequence I in V , the query φ is locally

generic over pseudo-finite states over I in V . Then φ is equivalent over finite states over

U to a restricted ρ-query.

As a side remark, note that this technique implies a result from [BDLW96] and [OV95]

about the so-called active semantics. An FO formula is said to be active if it is obtained

from some formula by relativization of every of its quantifiers with respect to the formula

AD(x).

Theorem 3.17. For finite states, any locally generic active extended query is equiv-

alent to a restricted query.

Proof. By Theorem 3.16, it suffices to show that any active Boolean query is locally

generic over arbitrary states over any indiscernible sequence in any V . We may assume

that the signature L is relational. For a ρ-state r over V , denote by Vr the substructure

of (V, r) with domain ad(r). Clearly, an active ρ-query holds in Vr iff it holds in (V, r).

Since, for any ρ-states r and r′ over an indiscernible sequence I in V , any partial L0-

isomorphism transforming r into r′ induces an L(ρ)-isomorphism between Vr and Vr′ ,

the result follows.

Now our aim is to give a general condition on a complete theory which ensures collapse

of locally order-generic queries to pure order ones, over finite states over models of T .

Let M be an L-structure, and A, B be subsets of M . A bijection h : A→ B is said

to be a partial L-isomorphism (an elementary map) in M if φ(ā) holds in M iff φ(h(ā))
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holds in M , for any atomic L-formula (for any L-formula) φ(x̄) and any tuple ā in A.

Clearly, every elementary map in M is a partial isomorphism in M ; if M admits quantifier

elimination, the converse is also true.

We recall the following well-known result (see [Sac72], [RW81]):

Fact 3.18. Let T be a complete L-theory. Then the following are equivalent:

(1) T admits quantifier elimination;

(2) there is an infinite cardinal λ such that, for every finitely generated L-structure

A, for every models M,N of T with A ⊆M,N , for every a ∈ N \A, if M is λ-saturated,

the quantifier-free type of a is realized in M ;

(3) there is an infinite cardinal λ such that every λ-saturated model M of T is finitely

homogeneous in the following sense: for any partial isomorphism h : A → B in M with

finite A and B, and any a ∈ M there is b ∈ M such that h ∪ {(a, b)} is a partial

isomorphism in M .

Let T be an L-theory, and T ′ be an L′-theory with L ⊆ L′ and T ⊆ T ′. The theory

T ′ is said to be a definitional expansion of T if every L′-formula is equivalent in T ′ to an

L-formula. Every L-theory T has a standard definitional expansion admitting quantifier

elimination: for every L-formula φ(x̄) with n free variables add a new n-ary relation

symbol Pφ to L and a new axiom ∀x̄ (Pφ(x̄)↔ φ(x̄)) to T .

We say that a complete L-theory T has the Pseudo-finite Homogeneity Property if

there exist its definitional expansion T ′ and an infinite cardinal λ such that, whenever A

and B are pseudo-finite sets in a model M ′ of T ′, and h : A→ B is a partial isomorphism

in M ′ with λ-saturated (M ′, A,B, h), for any a ∈M ′ there is b ∈M ′ such that h∪{(a, b)}
is a partial isomorphism in M ′.

Note that, by the Fact above, the theory T ′ here automatically admits quantifier

elimination, because any finite set in M ′ is pseudo-finite, and if M ′ is λ-saturated then

(M ′, A,B, h) is λ-saturated, too, for finite A and B.

Therefore the definition of the Pseudo-finite Homogeneity Property admits the fol-

lowing equivalent formulation: a complete L-theory T has the Pseudo-finite Homogeneity

Property iff there exists an infinite cardinal λ such that, whenever A and B are pseudo-

finite sets in a model M of T , and h : A→ B is an elementary map in M with λ-saturated

(M,A,B, h), for any a ∈ M there is b ∈ M such that h ∪ {(a, b)} is an elementary map

in M .

The Pseudo-finite Homogeneity Property makes sense not only for theories of ordered

universes, and there are obvious examples of theories with this property. For example,

in infinite structures of empty signature the pseudo-finite sets are exactly coinfinite sets;

hence the Pseudo-finite Homogeneity Property for the theory of these structures easily

follows. It turned out that for ordered structures the property is especially interesting

because it gives a sufficient condition for collapse results. Later we will give a series of

examples of ordered universes with this property.

Theorem 3.19. Suppose the first order theory of a universe U has the Pseudo-finite

Homogeneity Property. Let an extended query φ be locally generic over finite states over

U . Then φ is equivalent over finite states over U to a restricted query.
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Proof. It suffices to prove that φ satisfies the condition of Theorem 3.16. Suppose λ

witnesses that T has the Pseudo-finite Homogeneity Property. Let κ = κ∗ > |L|+ℵ0, and

cf(κ) > λ. Let V ≡ U be a special model of power κ. Let I be an infinite L-indiscernible

sequence in V . Suppose ρ̄-state (r, r′) over I is pseudo-finite in V and r can be transformed

to r′ by a partial L0-isomorphism g in V , whose domain is A, the active domain of r, and

whose range is A′, the active domain of r′. We need to show that φ(ρ) holds in (V, r) iff

φ(ρ′) holds in (V, r′). We may assume that (V,A,A′, g) is λ-saturated. (Indeed, consider

a special model (V0, r0, r
′
0, g0, I0) of power κ elementarily equivalent to (V, r, r′, g, I). It

suffices to prove the claim for (V0, r0, r
′
0, g0, I0); but it is λ-saturated as cfκ > λ.) Using

a Fräıssé-Ehrenfeucht game, we will show that g is an L(ρ)-elementary map from (V, r)

to (V, r′). Due to the L-indiscernibility of I, the map g is an L-elementary map, and, in

particular, a partial L(ρ)-isomorphism. Therefore, due to the Pseudo-finite Homogeneity

Property, to complete the proof of the theorem, using Theorem 3.16, it suffices to prove

the following lemmas:

Lemma 3.20. The active domain of any pseudo-finite database state is a pseudo-finite

set.

Lemma 3.21. Let A be a pseudo-finite set in V, and a ∈ V . Then A ∪ {a} is a

pseudo-finite set.

Lemma 3.22. If h : C → D is a partial isomorphism in V , and M = (V,C,D, h) is

λ-saturated, then

M ′ = (V,C ∪ {c}, D ∪ {d}, h ∪ {(c, d)})

is λ-saturated, for any c, d ∈ V .

Proof of Lemma 3.20. Consider the database scheme τ = {P}, where P is a unary

relation name. For any L(τ)-sentence γ, there is an L(ρ)-sentence γ∗ such that (V, s) |=
γ∗ iff (V, ad(s)) |= γ, for any ρ-state s. Suppose a state s is pseudo-finite in V , and

γ ∈ F (V, τ). Since the active domain of any finite state is finite, we have (V, r) |= γ∗ for

all finite ρ-states r. So (V, s) |= γ∗, and hence (V, ad(s)) |= γ.

Proof of Lemma 3.21. Consider the database scheme τ = {P}, where P is a unary

relation name. Let θ ∈ F (V, τ). Let θ∗(x) be the result of replacement of every occurrence

of P (y) in θ with P (y)∨y = x, where x is a new variable. Then ∀xθ∗(x) belongs to F (V, τ)

and so holds in (V,A). Hence θ holds in (V,A ∪ {a}). Thus, A ∪ {a} is pseudo-finite.

Proof of Lemma 3.22. M ′ is definable in the λ-saturated structure M with parameters

c, d.

The collapse result is proved.

Now we introduce a certain property of complete theories which is strictly stronger

than the Pseudo-finite Homogeneity Property, and so ensures the collapse result, too.

We say that a complete theory T has the Isolation Property, if there is a cardinal λ

such that, for any pseudo-finite set A and any element a in a model of T , there is A0 ⊆ A
with |A0| < λ such that tp(a/A0) isolates tp(a/A).
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Theorem 3.23. The Isolation Property implies the Pseudo-finite Homogeneity Prop-

erty.

Proof. We show that λ witnessing that T has the Isolation Property witnesses that

T has the Pseudo-finite Homogeneity Property. Let V be a λ-saturated model of T , and

A,B pseudo-finite sets in V , and a ∈ V . Let h : A → B be an L-elementary map in V .

We show that there is b ∈ B such that h∪ {(a, b)} is an L-elementary map in V . Choose

A0 ⊆ A with |A0| < λ such that p0 = tp(a/A0) isolates p = tp(a/A). Since the map h

is elementary, h(p) is a type over B, and h(p0) isolates h(p). (For a set q(x) of formulas

over A we denote by h(q) the set {θ(x, h(c̄)) : θ(x, c̄) ∈ q}.) As V is λ-saturated, there is

b ∈ V realizing h(p0) and hence h(p). So h ∪ {(a, b)} is an L-elementary map.

It can be shown that any theory with the Isolation Property is unstable (the latter

means that there are n ≥ 1, a formula φ(x̄, ȳ), where x̄, ȳ are n-tuples of free variables,

and an infinite sequence ā0, ā1, . . . of n-tuples in a model of the theory such that φ(āi, āj)

holds iff i < j.) On the other hand, there obvious examples of stable theories with

Pseudo-finite Homogeneity Property (for example, the theory of infinite structures of

empty signature). Later we will give examples of ordered universes which have the Pseudo-

finite Homogeneity Property but do not have the Isolation Property (they are, of course,

unstable). Theorem 3.26 below gives a broad class of theories with the Isolation Property

and provides a lot of examples of collapse results.

A complete L-theory T is said to be o -minimal if in every model of T any definable

set is a finite union of singletons and open intervals. The following characterization of

o -minimal theories is not hard to prove.

Theorem 3.24. A complete L-theory T is o -minimal iff there exists T ′, a definitional

expansion of T in a language L′, such that any L′-formula θ(x, ȳ) is T ′-equivalent to a

disjunction of formulas of the form ψ(ȳ)∧ ρ(x, ȳ), where ρ(x, ȳ) has one of the following

forms, for some L′-terms t and t′ in the variables ȳ:

x = x, x = t, x < t, t < x, t < x < t′.

We call a complete L-theory T quasi-o -minimal iff there exists T ′, a definitional

expansion of T in a language L′, such that any L′-formula θ(x, ȳ) is T ′-equivalent to a

disjunction of formulas of the form φ(x) ∧ ψ(ȳ) ∧ ρ(x, ȳ), where ρ(x, ȳ) has one of the

following forms, for some L′-terms t and t′ in the variables ȳ:

x = x, x = t, x < t, t < x, t < x < t′.

By Theorem 3.24, every o -minimal theory is quasi-o -minimal. Clearly, in every model

of a quasi-o -minimal theory any definable set is a finite union of singletons and sets of

the form I ∩D, where I is an open interval and D is a set definable without parameters.

There exist quasi-o -minimal theories which are not o -minimal. The simplest example

is the theory T of dense ordered sets without endpoints with a distinguished subset which

is dense and codense in the universe. It can be easily shown that T is the theory of the

structure (R, <,Q). The theory is not o -minimal because the distinguished subset is not

a finite union of singletons and open intervals. Standard arguments show that T admits
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quantifier elimination; obviously, we can take T as T ′ from the definition of quasi-o -mini-

mality.

Another example of a quasi-o -minimal theory is the theory T of (Z, <,+). Indeed, by

Presburger’s Theorem, the definitional expansion of the model by the constants 0, 1 and

the unary predicates ‘n divides x’, for all positive integers n, admits quantifier elimination.

For a positive integer n, define the function fn(x) by the condition 0 6 x− nfn(x) < n.

Since ‘n divides x’ iff nfn(x) = x, and nx = t iff x = fn(t), and nx < t iff x < fn(t),

and nx > t iff x > fn(t), the theory T ′ of the definitional expansion of (Z, <,+) by

the constants 0, 1 and all the functions fn(x) satisfies the condition of the definition

of quasi-o -minimality. However, the theory of (Z, <,+) is not o -minimal because the

definable subsets nZ are not finite unions of singletons and open intervals.

Similarly, the theory of (N, <,+) is quasi-o -minimal but not o -minimal.

New examples of quasi-o -minimal structures can be constructed using the ordered

union operation; the operations of this type are popular in database applications. Let Ui
be an Li-structure, where Li contains <, and Ui is linarly ordered by <, for i = 1, 2. We

assume that the universes of U1 and U2 are disjoint. Let L = L1 ∪ L2 ∪ {P1, P2}, where

P1 and P2 are new unary relation names. The ordered union of U1 and U2 is defined to

be the L-structure U , whose universe is the union of the universes of U1 and U2, and

• PUi is defined to be the universe of Ui,

• <U is defined to be <U1 ∪ <U2 ∪(U1 × U2),

• QU = QUi for any Q ∈ Li \ {<}.

A routine induction on the complexity of a formula shows that any L-formula is equivalent

in U to a positive Boolean combination of L-formulas in each of which all variables, free

or bounded, are restricted to P1 or are restricted to P2. It follows, in particular, that the

models of the theory of U are exactly the ordered unions of U ′1 and U ′2, where U1 ≡ U ′1
and U2 ≡ U ′2. So the ordered union of two complete theories of ordered structures can be

well-defined. Another obvious consequence is

Theorem 3.25. The ordered union of any two quasi-o -minimal theories is a quasi-

o -minimal theory.

Note that the ordered union of two o -minimal theories is an o -minimal theory iff any

model of the first of them has a greatest element or any model of the second of them has

a least element. So the construction gives a lot of quasi-o -minimal theories which are not

o -minimal.

Theorem 3.26. Any quasi-o -minimal theory has the Isolation Property.

Now we give a series of examples of ordered structures which show that the Isolation

Property is strictly weaker than quasi-o -minimality and strictly stronger than the Pseudo-

finite Homogeneity Property.

Let L = {<,E} and Tdt be the theory of all the structures of the form (A,<,E),

where < is a dense ordering without endpoints, and E is an equivalence relation with two

class both of which are dense in A. The structure (R, <,E), where E is the equivalence

relation whose classes are Q and R \Q, is a model of Tdt; so Tdt is consistent. Standard



52 O. V. BELEGRADEK ET AL.

back-and-forth arguments show that Tdt is countably categorical and hence complete.

Also, standard arguments show that Tdt admits quantifier elimination.

Theorem 3.27. Tdt is not quasi-o -minimal, but has the Isolation Property.

Consider the structures of the form (A,<,E), where (A,<) is a dense linearly ordered

set without endpoints, and E is an equivalence relation on A with infinitely many classes

all of which are dense. An example of such a structure is (R, <,E), where E(x, y) means

x−y ∈ Q. Standard back-and-forth arguments show that the theory Tde of such structures

is countably categorical and hence complete. Also, standard arguments show that Tde
admits quantifier elimination.

Theorem 3.28. Tde does not have the Isolation Property, but has the Pseudo-finite

Homogeneity Property in the following strong sense: for every model M of Tde, whenever

A and B are pseudo-finite sets in M , and h : A→ B is a partial isomorphism in M , for

any a ∈M there is b ∈M such that h ∪ {(a, b)} is a partial isomorphism in M .

Let F be an ordered division ring, T0 be the first order theory of ordered vector spaces

over F with a distinguished subspace, and Tds be the first order theory of ordered nonzero

vector spaces over F with a distinguished proper dense subspace. Here an ordered vector

space over F is defined to be a vector space V over F whose additive group is linearly

ordered so that αv is positive, for any positive α ∈ F and any positive v ∈ V . We consider

T0 and Tds in the signature {+, <, fα, P}α∈F , where fα is a name for the unary operation

of multiplication by the scalar α, and P is a name for the distinguished subspace. The

theory T0 is obviously consistent. We will show the consistency of Tds in the proof of

Theorem 3.29 below.

A first order theory T is said to be model complete iff for all models A and B of T ,

if A ⊂ B then A � B. Clearly, if a theory admits quantifier elimination, it is model

complete. A theory T ∗ is said to be a model completion of it subtheory T if, firstly, any

model of T can be embedded into a model of T ∗, and, secondly, T ∗ is complete over any

model of T , that is, for any model A of T and any models B,C of T ∗ with A ⊆ B,C, the

structures (B, a)a∈A and (C, a)a∈A are elementarily equivalent.

Theorem 3.29. Tds admits quantifier elimination, is complete, and is a model com-

pletion of T0.

Theorem 3.30. The theory Tds has the Pseudo-finite Homogeneity Property (with

λ = |F |+), but doesn’t have the Isolation Property.

The general setting we considered really gives some concrete examples of collapse

results. For instanse, the collapse result holds for any structure of the form (R,+, <,
F, fα)α∈F , where F is a subfield of R.

Note that for the structure (R,+,×, <,Q) the collapse result fails.

Firstly, the locally generic query “the number of elements of P is even” over M =

(R,+,×, <,Q) is expressible in the first order extended language. For example, the car-

dinality of a subset P of R is even iff (M,P ) satisfies the first order sentence which

says:
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If P 6= ∅, there is a real number α such that the integral parts [x] of

elements x ∈ αP are pairwise distinct, and for some even positive integer n

and some integer m, the remainders when m is divided by n!+1, 2(n!)+1,. . . ,

n(n!) + 1 are pairwise dictinct and form the set {[x] : x ∈ αP}.
(The latter sentence is first order indeed: as Z is first order definable in the field of

the rational numbers without parameters (see [Rob49]), it is definable in M , too.) If

the sentence holds, the cardinality of P is obviously even. Suppose P is not empty, the

cardinality of P is n, and n is even. Choose a nonzero real α so that |x− y| > 1 for any

different x, y ∈ αP . Then [x] are pairwise distinct, for x ∈ αP . Let {[x] : x ∈ αP} =

{r1, . . . , rn}. As n! + 1, 2(n!) + 1,. . . , n(n!) + 1 are pairwise coprime, by the Chinese

remainder theorem, there is an integer m such that for 1 6 i 6 n, the remainder when

m is divided by i(n!) + 1 is ri, and we are done.

Secondly, on the other hand, the sentence cannot be expressed as a restricted query,

otherwise, by compactness, we could construct two elementarily nonequivalent dense

ordering without endpoints with distinguished infinite pseudo-finite subsets; this is im-

possible as shown in the proof of Theorem 3.4.

A modification of the argument above shows that the locally generic query “the car-

dinality of P is even” over the ordered field of rationals is expressible in the first order

extended language, even though we know that it cannot be expressed as a restricted query

— the latter can be shown by the same arguments as above. The cardinality of a set of

rational numbers P is even iff (Q,+,×, <, P ) satisfies the first order sentence which says:

If P 6= ∅, there is a positive integer k such that kP ⊆ Z and, for some

even positive integer n and some integer m, the remainders when m is divided

by n! + 1, 2(n!) + 1,. . . , n(n!) + 1 are pairwise dictinct and form the set kP .

Indeed, if the sentence holds, the cardinality of P is obviously even. Suppose P is not

empty, the cardinality of P is n, and n is even. Let k be the product of the denominators

of members of P ; then kP ⊆ Z. Let kP = {r1, . . . , rn}. There is an integer m such that

for 1 6 i 6 n the remainder when m is divided by i(n!) + 1 is ri, and we are done.

The following picture presents our collapse results.

Pseudo-finite Homogeneity

Tds

Isolation

Tdt

Quasi–o -minimality

Ordered group of integer numbers

Ordered semigroup of natural numbers

o -minimality

Divisible ordered Abelian groups
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4. Stratified Datalog

4.1. Definitions. Throughout this last part of the paper, we deal with the domain

Z of integer numbers together with the relations = of equality, < of the integer linear

order, and <g of the integer gap order, for all natural numbers g. Here x <g y means

that x+g < y. The gap orders are first-order expressible using usual order but the reason

to include them is that the resulting first-order language admits quantifier elimination.

As x < y is equivalent to x <0 y, we are able not to use usual order. Atomic formulas

that use equality, order or gap order only are called pure domain formulas, or atoms. The

truth values of atoms is defined in the usual way.

Datalog¬,<z -programs also use extra (not pure domain) relation names, each of a fixed

arity. The extra names are of two types. The names of the first type are extensional, or

input, names. They are thought of as the input database.

The names of the second type are intensional, for their meaning is going to be com-

puted by our program. Further, some of the intensional names are called output names,

and the remaining intensional names are called internal. The idea is, although we are

interested in computing output relations only, our computation itself may require gener-

ating intermediate results that are temporarily stored in internal names and discarded

afterwards.

Then, we want to consider the stratified negation. That is to say, intensional names

may be used under negation, but not sooner than their calculation terminates. Formally,

intensional names are ranked by consecutive positive integer numbers with the smallest

rank 1. Several intensional names can have the same rank. An intensional name may be

used under negation only in defining an intensional name of a higher rank.

The syntax of Datalog¬,<z is traditional. A Datalog¬,<z -program, which we some-

times also refer to as a stratified program, is a finite set of rules. Each rule has a head and

a body. The body can be either empty or be a sequence of formulas. The head of a rule is

an atomic formula of the form P (x1, x2, . . . , xn) where x1, x2, . . . , xn is a list of pairwise

different variables and P is an intensional name of arity n. The rank of the rule is defined

to be the rank of P . Each formula in a body must be of one of the following form:

• an atom or its negation,

• an atomic formula of the form P (x1, x2, . . . , xk), where x1, x2, . . . , xk is a list of

variables and P is an extensional name of arity k,

• an atomic formula of the form P (x1, x2, . . . , xk), where x1, x2, . . . , xk is a list of

variables and P is a k-ary intensional name whose rank is less than or equal to the

rank of the rule,

• a formula of the form ¬P (x1, x2, . . . , xk) where x1, x2, . . . , xk is a list of variables

and P is a k-ary intensional name whose rank is less than the rank of the rule.

So a rule has the form

P (x1, x2, . . . , xn)←− ϕ1, ϕ2, . . . , ϕm,

where ϕ1, ϕ2, . . . , ϕm are formulas used in its body. Note that we do not require the

variables occurring at the right side to occur at the left side; in case they do not, the

interpretation is existential — see a formal definition below.
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A state for a Datalog¬,<z -program R is an assignment of a set of integer number

tuples of proper arity to every extensional name in R. The set of tuples assigned by a

state to an extensional name is the input of the state for the extensional name. We assume

that all the sets are represented finitely by quantifier-free pure domain formulas. Given

a state for R, program R assigns a set of integer number tuples R(P ) of proper arity

for each intensional name P in R. R(P ) is defined step-by-step. Steps are enumerated

by pairs of natural numbers. In steps (i, j), the mapping adds new tuples to R(P ) for

intensional names P of the rank i.

The first step is (1, 0). Before the first step R(P ) are empty for all the intensional

names.

For a step (i, j), P (a1, a2, . . . , an) is true iff either the tuple a1, a2, . . . , an was included

in P before this step, or P is an extensional name and the tuple is contained in the set

assigned to P by the state. ¬P (a1, a2, . . . , an) is true iff the rank of the intensional name

P is less than i and P (a1, a2, . . . , an) is false.

A rule instantiation is defined as a substitution for each variable in the rule of an

integer number. Let

P (a1, a2, . . . , an)←− A1, A2, . . . , Am

be a rule instantiation for a rule in R, P of the rank i, and let A1, A2, . . . , Am be true

for a step (i, j). Then the tuple a1, a2, . . . , an is called marked for P at the step (i, j) iff

the tuple a1, a2, . . . , an was not included in P before this step.

In the step (i, j), if there is no intensional name of the rank i, the program R stops.

Otherwise, for all P of the rank i and for all tuples a1, a2, . . . , an marked for P at the

step, the tuple a1, a2, . . . , an is added to R(P ) at the step. If no tuple is added at step

(i, j) we proceed to the step (i+ 1, 0). Otherwise we proceed to the step (i, j + 1).

A state is said to be finite for a program R iff the program stops in it. A program is

finite or safe iff all states are finite for it.

Theorem 4.1. Any Datalog program without negations is safe.

Proof. Indeed, any input is a disjunction of conjunctions of expressions of one of the

forms:

x <p y, x = y

where x and y are either a constant or a variable, and p is a natural number. If we existen-

sionally quantify such a formula the result can be transformed in the same form. Thus, for

a given program and state and for a fixed intensional name of the program, the program

execution produces an increasing sequence of such formulas as the interpretations of the

name. The program rules and the state formulas initially representing the extentional

names use constants. A program execution cannot produce any new constant. Let A be

the set of all the constants and all the variables using by the program name. The number

of the variables is the arity of the name. Fix an ordering of A. For the ordering, any

tuple of the values of the variables produces the tuple of the positive distances between

the elements of A. Two tuples of the distances are compared by the following rule. A

distance tuple is less than other one if any its distance is less than or is equal to the

corresponding distance from the second distance tuple. A distance tuple ā is minimal iff
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for any distance tuple b̄, ā is less than b̄ implies that ā is equal to b̄. For any distance

tuple ā there is such a minimal distance tuple b̄ that b̄ is less than ā. It is easy to see

that if a value tuple is contained in the interpretation of the name and a second value

tuple produces a bigger or equal distance tuple then the second tuple is contained in the

interpretation too. So for the ordering, the interpretation is defined by its set of all the

minimal distance tuples. The interpretation of the name for the next step contains the

interpretation for the previous one. So any minimal distance tuple for the next step or

is incomparable with any minimal distance tuple for the previous one, or is less than a

minimal distance tuple for the previous one, or is equal to a minimal distance tuple for

the previous one.

Lemma 4.2. The sequence of the sets of all the minimal distance tuples is finite.

Lemma 4.2 arises from the following well known facts.

Fact 4.3. Let k be a positive integer number and B be a set of k-tuples of positive

integer numbers. The set of all the tuples minimal in B is finite.

Here a k-tuple is a tuple of the length k.

Proof. Induction on k. For k = 1, it is trivial. Let (a1, a2, . . . , ak) ∈ B. Denote

Bi = {(c1, c2, . . . , ck) ∈ B : ci 6 ai}. Let Mi be the set of all the tuples minimal in Bi.

By the induction, Mi is finite for any i. For any tuple b̄ minimal in B, there is i such that

bi 6 ai. So b̄ ∈Mi.

Fact 4.4. Let k be a positive integer number and B1, B2, . . . be a sequence of pairwise

different sets of pairwise incomparable k-tuples of positive integer numbers. Suppose that

any tuple from Bi+1 either is incomparable with any tuple from Bi or is less than or equal

to a tuple from Bi. Then the sequence is finite.

Proof. By Fact 4.3, there is j such that for i > j, any tuple from Bi+1 is less than

or equal to a tuple from Bi. Thus the sequence is finite.

So the sequence of the steps of the execution is finite.

Two safe programs R1 and R2 with the same extensional names are equivalent in a

state iff they have the same output intensional names of the same arities, and for each

output intensional name P , R1(P )=R2(P ) in the state. Two safe programs are equivalent

iff they are equivalent in any state.

4.2. Impossibility of safe syntax. The goal of this subsection is to prove that there

is no effective syntax for safe programs. Let us outline the idea of the proof. Consider

Turing machines in the alphabet {0, 1}, where 0 is used as the blank symbol. A one-way

infinite input tape for such a machine contains finitely many 1’s in the first few positions,

which can be interpreted as a natural number in the unary notation, and all other cells

contain 0. If, in an input, such a machine stops, it leaves finitely many 1’s on the tape.

We may consider the first uninterrupted string of 1’s left on the tape to be the output

natural number in the unary notation. Then, every machine defines a partial function on

natural numbers.
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We want to show that, for any such Turing machine, there exists a stratified program

that computes the same function. First problem is, programs do not work with tapes,

they work with database states. Then, these states are finitely representable, but not

necessarily finite. However, we can develop a coding scheme that will represent any natural

number in the unary notation in the form of a finite database state. Perhaps the simplest

such coding is by a unary predicate N as follows.

• if N is assigned a set of a cardinality 0 or > 2, it does not represent a number,

• N assigned a set of cardinality 1 or 2 represents the natural number

max(N)−min(N).

For a natural number n, let n̂ denote its representation in the form of unary predicate.

Consider a stratified program R whose signature includes a single extensional predicate

INPUT and a single output intensional predicate OUTPUT . If, for a number n, R ter-

minates when n̂ is assigned to INPUT , OUTPUT is assigned a certain set. If this set is

m̂ for some m, we say that R(n) = m. Otherwise we say that R(n) = 0. This way, every

such program R defines a partial function on natural numbers.

Henceforth, we consider programs whose only extensional predicate is a unary INPUT ,

and only output intensional predicate is a unary OUTPUT . However, these programs

may have other internal intensional predicates. The idea of our proof is to show that

total Turing machines and safe stratified programs are effectively translatable to each

other in the way that preserves the functions they define on natural numbers. It is known

([End72]) that total Turing machines do not have any effective syntax.

Theorem 4.5. For any stratified program R there exists — and can be effectively

constructed — a Turing machine M that defines the same partial function on natural

numbers. If R is safe, the construction gives a total M .

Proof. The target program works as follows. Given a number n, it assigns n̂ to

INPUT and then interprets the computation by R step-by-step, according to the stepwise

definition of semantics of a stratified program. At each step (i, j), our machine stores the

values of all intensional predicates in the form of first-order pure domain formulas.8

This computation may never end, and then the result in n is undefined. However, if R

terminates in n̂, our interpretation terminates too, and as a result, we have a value for

OUTPUT in the form of a first-order pure domain formula (note that, since the pure

domain theory admits elimination of quantifiers, this representation can be translated

into a finite representation, although we do not need this).

Since the pure domain theory is decidable, we can effectively determine whether this

value for OUTPUT represents a number. If it does, we can determine which number, and

then write this number in the unary notation down to the tape and stop, otherwise, we

write 0 in the unary notation to the tape and stop.

This computation can be carried out by a Turing machine, although explicitly writing

such a machine would be a long boring exercise. Finally, if R is safe, it always terminates,

8That is, such formulas that only use constants and the integer (gap)-orders.
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and particularly it terminates when working on representations for natural numbers.

Hence, for a safe R, the machine is total.

The other direction is slightly more technical:

Theorem 4.6. For any Turing machine M there exists — and can be effectively

constructed — a stratified program R that defines the same partial function on natural

numbers. If M is total, the construction gives a safe R.

Proof. We want to concentrate on the case when the value assigned to INPUT does

represent a number. However, since we are going to construct a safe R, the case when

it does not represent a number shall also be considered. It turns out that the program

can decide whether INPUT represents a number from the outset, and then if it does not,

simply terminate right away with no matter which value for OUTPUT — notice that as

far as the numerical function goes it does not matter.

For example, the program may use nullary intensional predicates BAD and GOOD

to make this determination as follows:

GOOD ←− INPUT (x),¬BAD

BAD ←− INPUT (x), INPUT (y), INPUT (z),

x 6= y, x 6= z, y 6= z

If GOOD is true, the database state does indeed represent a number. So all the other rules

in our program may start with GOOD , and this guarantees termination for non-numerical

inputs right away. We will omit GOOD from the rules below, just to simplify notation.

Further, we need to select some number to serve as 0. For a numerical state, we can

pick up the minimal element in INPUT as 0. Formally, this can be done by a stratified

program that defines a unary predicate ZERO to include this minimal number only,

however, to simplify notation, we will simply use 0 as a constant. Similarly, we will use a

constant max for the maximal number in INPUT , and constants 1, 2, . . . , |Q|, where Q is

the set of the internal states of our Turing machine. Clearly, using any of these constants

in the rules is simply an abbreviation for a long routine list of formulas.

We will also use a binary successor relation S, S(x, y)⇐⇒ x+ 1 = y. This relation is

definable using the gap orders as follows:

S(x, y)←− x < y,¬(x <1 y)

To simulate computation by a Turing machine, we will use the following list of internal

intensional predicates:

• ternary TAPE : TAPE (i, j, k) indicates that in the step i of our computation the

cell number j contains symbol k (0 or 1),

• binary CELL: CELL(i, j) indicates that in the step i of our computation the cell

number j is the current position of the machine,

• binary STATE : STATE (i, j) indicates that in the step i of our computation the

internal state is j.

The initial configuration of the Turing machine M can be explained by the following rules

(we assume that the initial state is always 0):
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TAPE (i, j, k) ←− i = 0, j > max, k = 0

TAPE (i, j, k) ←− i = 0, j < max, j > 0, k = 1

CELL(i, j) ←− i = 0, j = 0

STATE (i, j) ←− i = 0, j = 0

We can also include the following rule asserting that the cells which are different from

the current position of the machine do not change:

TAPE (i, j, k)←− S(`, i),TAPE (`, j, k),CELL(`, c), c 6= j

Further simulation of the Turing machine is done according to the rules of this ma-

chine. Generally, a rule is of the form:

(q, k) =⇒ (s,m, n, a),

and it indicates that when the machine sees the symbol k in the internal state q, it replaces

k in the current cell with s, moves according to m ∈ {left, right, stay}, and, generally,

goes into the internal state n. If, however, the movement prescribed by the rule is left,

but the current cell is the leftmost and no left movement is possible, the machine goes

into the internal state a.

For each such Turing machine rule, we include a set of rules into our program. For

example, let:
(3, 1) =⇒ (0, left, 2, 7)

be a rule in our Turing machine. It causes inclusion of the following set of rules into our

program:

TAPE (i, j, k) ←− S(`, i),TAPE (`, j, 1),CELL(`, j),

STATE (`, 3), k = 0

CELL(i, j) ←− S(`, i),TAPE (`, j, 1),CELL(`, j),

STATE (`, 3), j = 0

CELL(i, j) ←− S(`, i),TAPE (`, j, 1),CELL(`, x),

STATE (`, 3), S(j, x), x 6= 0

STATE (i, j) ←− S(`, i),TAPE (`, p, 1),CELL(`, p),

STATE (`, 3), p = 0, j = 7

STATE (i, j) ←− S(`, i),TAPE (`, p, 1),CELL(`, p),

STATE (`, 3), p 6= 0, j = 2

Let us now define unary predicates LAST and MAX as follows:

LAST (`) ←− STATE (`, x), S(`, p),

¬STATE (p, 0),¬STATE (p, 1), . . . ,

¬STATE (p, |Q|)
MAX (m) ←− LAST (`), n < m, n > 0,TAPE (`, n, 0)
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Clearly, LAST defines the last step in the computation by the Turing machine, if it stops.

MAX defines the set of positive integer numbers m such that on the resulting tape left

by our computation, there is at least one cell that is numbered lower than m and contains

a 0. In particular, if the tape left by our Turing machine contains only 0’s, the predicate

is going to contain all positive integers.

We can finally define OUTPUT as a predicate of the next rank as follows:

OUTPUT (m) ←− m = 0

OUTPUT (m) ←− m > 0,¬MAX (m), S(m,x),MAX (x)

Clearly, the value of OUTPUT is going to be exactly the result of the computation by

our Turing machine in our input, of course if this computation terminates. Since total

Turing machines always terminate, our program R for a total Turing machine M is safe:

given an INPUT n̂ representing n, it computes m̂ such that m = M(n), in a state that

does not represent a natural number, it terminates right away.

Corollary 4.7. There is no effective syntax for safe programs.

Proof. Indeed, the existence of such an effective syntax would, by Theorem 4.5, yield

a recursive enumeration of total Turing machines such that every Turing computable total

function is computed by a machine in this enumeration — here we use Theorem 4.6 to

assure that every Turing computable total function appears in the enumeration. Such an

enumeration is known to be impossible (see [Rog67]).
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