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Abstract. We present a generalization of topological transition matrices introduced in [6].

1. Introduction. This paper deals with connecting orbit problems for flows. Namely,

given a flow on R
n having invariant sets called a repeller R and an attractor A, we are

interested in the existence of an orbit whose α-limit set is contained in R and whose

ω-limit set is contained in A. Such an orbit, if it exists, is called a connecting orbit from

R to A. The Conley index theory [1, 2] provides us with a topological method for the

connecting orbit problem. For this theory, one assumes to have an isolated invariant set

which contains the repeller and an attractor. The isolated invariant set S has an attractor-

repeller decomposition if the attractor A and the repeller R are isolated invariant subsets

in S and moreover it satisfies the following property: if there is an x ∈ S \ (R ∪ A), the

orbit of x must be a connecting orbit from R to A, namely

S = R ∪ A ∪ C(R,A),
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where C(R,A) is the union of all (possible) connecting orbits from R to A. Notice that

the unions in the above equation are all disjoint. The simplest way of using Conley

indices for detecting connecting orbits is in the following observation: suppose there is

no connecting orbit from R to A, then S is the disjoint union of the attractor and the

repeller, and hence, the corresponding Conley indices must be the direct sum:

CH∗(S) ∼= CH∗(A) ⊕ CH∗(R).

Therefore, if one can show that CH∗(S) is not the direct sum CH∗(A) ⊕ CH∗(R), it

implies that there must exist a connecting orbit from the repeller to the attractor.

This idea has been generalized to the theory of connection matrices [3]. If one has a

Morse decomposition [1, 2] of an isolated invariant set S:

M = {M(p) | p ∈ P},

then the connection matrix ∆ is given by the matrix representation of a degree one lower

triangular homomorphism from the cohomology group
⊕

p∈P
CH∗(M(p)) to itself, such

that its square is identically zero, and that, if it has a non-zero (p, q)-entry, there exists

a sequence of connecting orbits from the Morse component M(p) to M(q). Note that

since Conley indices remain the same under sufficiently small perturbation of the flow,

connecting orbits detected by the above methods persist under perturbation. On the

other hand, the connection matrix is not in general unique. See [9] for more detail.

Using ideas of Conley, Reineck [10] for the first time applied the idea of connection

matrix to a broader class of connecting orbit problems, namely those of detecting con-

necting orbits which are not persistent under perturbation. The basic idea is to put a

one-parameter family of flows into a slow-fast system by introducing an artificial slow

drift in the parameter space. More precisely, he considered the equation of the following

form:

ẋ = f(x, y)

ẏ = εy(1− y).
(1.1)

When ε = 0, this equation reduces to a one-parameter family of vector fields, whereas for

ε > 0, the parameter y evolves slowly from y = 0 at t = −∞ to y = 1 at t = +∞. Suppose

the parametrized system at ε = 0 has an isolated invariant set Sy for each y ∈ [0, 1] which

continues over the parameter interval [0, 1], together with its Morse decomposition

My = {My(p) | p ∈ P}.

One can then consider the entire system with small ε > 0 and show that the connection

matrix for (1.1) has the following decomposition:

∆ =

(
∆0 0

T ∆1

)
,

where ∆j is the connection matrix for the Morse decompositions at y = j = 0, 1, respec-

tively. If one has a nonzero (p, q)-entry of the submatrix T above, then the system with

ε > 0 possesses a connecting orbit from M0(p) to M1(q) for any ε > 0, since it is a part

of the connection matrix ∆. Moreover, one can show from this that the connecting orbit

even converges to a connected invariant subset in the parametrized system with ε = 0
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in the Hausdorff metric as ε → 0. This connected invariant subset contains M0(p) and

M1(q), and hence one concludes that the parametrized system at ε = 0 has an increasing

sequence of parameter values {yi}
k+1

i=0
with y0 = 0, yk+1 = 1, and connecting orbits from

Myi
(pi) to Myi

(pi+1) for i = 1, . . . , k with p1 = p, pk+1 = q, thereby showing the exis-

tence of connecting orbits which are not in general persistent under perturbation. This

submatrix T is called a (singular) transition matrix.

One disadvantage of this formulation of the transition matrix is that it depends (at

least formally) on the form of the slow parameter drift, although in general the slow

parameter drift should be irrelevant to the form of connection matrices as well as the

existence of connecting orbits which can be detected by these methods. In order to re-

move the artificial dependence on the slow parameter drift, McCord and Mischaikow [6]

introduced the notion of topological transition matrix. The topological transition matrix

can be defined only from the parametrized system at ε = 0, and detects the change of the

topological nature of connecting orbits among Morse sets when the parameter varies from

y = 0 to y = 1. More precisely, the topological transition matrix is defined as follows:

Since each Morse setMy(p) continues over [0, 1], there are continuation isomorphisms

F ∗
1,0(p) : CH

∗(M1(p)) → CH∗(M0(p)).

Similarly, since Sy continues over [0, 1] there is an isomorphism

F ∗
1,0(S) : CH

∗(S1) → CH∗(S0).

If Sy =
⋃

p∈P
My(p), i.e. the set of connecting orbits is empty at y, then there exists an

index isomorphism

Φ∗
y : CH∗(Sy) →

⊕

p∈P

CH∗(My(p)). (1.2)

Suppose there are no connections at either y = 0 or y = 1, then we can construct the

following diagram

⊕

p∈P

CH∗(M1(p))

⊕

p∈P

F ∗
1,0(p)

−→
⊕

p∈P

CH∗(M0(p))

Φ∗
1 ↑ Φ∗

0 ↑

CH∗(S1)
F ∗
1,0(S)
−→ CH∗(S0)

Even though every map is an isomorphism this diagram is not, in general, commu-

tative. Furthermore, it is the failure of commutativity that gives information concerning

connecting orbits. The topological transition matrix

T 1,0 :
⊕

p∈P

CH∗(M1(p)) →
⊕

p∈P

CH∗(M0(p))

is defined by

T 1,0 = Φ∗
0 ◦ F

∗
1,0(S) ◦ (Φ

∗
1)

−1.
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Note that the diagram

⊕

p∈P

CH∗(M1(p))
T 1,0

−→
⊕

p∈P

CH∗(M0(p))

Φ∗
1 ↑ Φ∗

0 ↑

CH∗(S1)
F ∗
1,0(S)
−→ CH∗(S0)

(1.3)

commutes by definition. The topological transition matrix is lower triangular and shares

the same property as the singular transition matrix, namely its off diagonal nonzero entry

implies the existence of connecting orbits between appropriate Morse sets for various

y ∈ (0, 1). See [6] for more details.

Furthermore McCord and Mischaikow [7] showed the equivalence of the singular and

topological transition matrices. It implies that the change of the connecting orbit struc-

ture from y = 1 to y = 0 in the system (1.1) with ε < 0 is given by the inverse of the

singular transition matrix for ε > 0. This is proven by going through the topological

transition matrix for which the inverse operation is well-defined and makes a good sense,

whereas it cannot be directly applied to singular transition matrices since the isolation

of the system is completely lost at ε = 0. This fact was used to show the existence of

infinitely many connecting orbits of a slow-fast system. See [5].

In all these cases, the transition matrices provide information about how connecting

orbit structure changes as the parameter y moves in one direction, say from y = 0 to

y = 1. In this paper we want to extend the applicability of the idea of transition matrices

to even broader class of problems. We consider the slow-fast systems of the form

ẋ = f(x, y)

ẏ = εg(x, y),
(1.4)

where x ∈ R
n, y ∈ R. Notice that this form of the slow-fast system is more general than

(1.1) in that the equation for the slow variable y depends also on the fast variable x and

hence, for ε > 0, different Morse components may have different directions of slow drift.

We assume that when ε = 0 the parametrized system has an isolated invariant set Sy

for each y that continues over the interval [0, 1] in the y-space, together with the Morse

decomposition

My = {My(p)|p ∈ P}

parametrized by y ∈ R. We assume that g(My(p), y) 6= 0 for any y ∈ (0, 1) and any

p ∈ P , but do not assume that the slow dynamics introduced when ε > 0 goes in the

same direction for the Morse components, and we define the notion of box as follows.

Definition 1.1. A set B is a box if:

(1) There exists an isolating neighborhood B ⊂ R
n × [0, 1] for the parameterized flow

ψB defined by

ψB : R× R
n × [0, 1] → R

n × [0, 1],

(t, x, y) 7→ (ψy(t, x), y),

where ψy is the flow of ẋ = f(x, y) with fixed y.
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(2) Let S(B) := Inv(B, ψB). There exists a Morse decomposition

M(S(B)) := {M(p,B) | p = 1, . . . , PB},

with the usual ordering on the integers as the admissible ordering. Let By =

B ∩ (Rn × {y}), Sy(B) := Inv(By, ψy) and let {My(p,B) | p = 1, . . . , PB} be the

corresponding Morse decomposition of Sy(B). Then

S0(B) :=
PB⋃

p=1

M0(p,B) and S1(B) :=
PB⋃

p=1

M1(p,B).

(3) There are isolating neighborhoods V (p,B) for M(p,B) such that

V (p,B) ⊂ B and V (p,B) ∩ V (q,B) = ∅

for p 6= q with p, q = 1, . . . , PB, and for every y ∈ [0, 1]

Vy(p,B) ⊂ Int(By).

Furthermore, there are δ(p,B) ∈ {±1}, p = 1, . . . , PB, such that

δ(p,B)g(x, y) > 0 for all (x, y) ∈ V (p,B)

From the last property, one can decompose the finite index set of the Morse decom-

position as

P = P+ ∪ P−

where

P± = {p ∈ P | ±δ(p) > 0},

and accordingly, one can define Min(p,B) and Mout(p,B) as follows:

Min(p,B) =

{
M0(p,B) if p ∈ P+,

M1(p,B) if p ∈ P−;
(1.5)

Mout(p,B) =

{
M1(p,B) if p ∈ P+,

M0(p,B) if p ∈ P−.
(1.6)

Notice that there are no connecting orbits among the Morse sets at y = 0 and at y = 1,

and by the construction, the sets S0(B) and S1(B) are related by continuation. A box

with bi-directional slow dynamics can naturally occur in various problems, for instance,

in the FitzHugh-Nagumo equation. See [4] for more explanation. For this situation, either

singular or topological transition matrix is not useful since they are both essentially uni-

directional. In order to illustrate the difficulty, let us consider a variant of the connecting

orbit problem studied in [6]. See Figure 1. Consider a one-parameter family of planar

vector fields with three Morse sets indexed by 1,2,3 with the admissible ordering 3 > 2 >

1, which continue over the parameter interval [0, 1]. In transition from y = 0 to y = 1,

there is a chance of connections among these Morse components which may be detected

by the topological transition matrix. However, if the slow dynamics on each of the Morse

sets is as indicated in Figure 1, none of the known transition matrices can provide us

with information about orbits connecting, say M0(3) and M1(1), since the middle Morse

component goes in the opposite direction.
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The goal of this paper is to set up a version of transition matrix called directional

transition matrix given as an isomorphism

D :
⊕

p∈P

CH∗(Mout(p)) →
⊕

p∈P

CH∗(Min(p)),

whose non-zero (p, q)-entry implies the existence of connecting orbits from Min(p) to

Mout(q). In the next section, we give a definition of the directional transition matrix and

show that it has the desired property. The essential part of the proof relies on our recent

results [4]. In Section 3, we illustrate how the directional transition matrix can be applied

to the situation as in Figure 1 and be used to detect connecting orbits.

2. Directional transition matrix. Recall that the topological transition matrix

T :
⊕

p∈P

CH∗(M1(p)) →
⊕

p∈P

CH∗(M0(p))

is lower triangular. Namely, if its (p, q)-entry T (p, q) is nonzero, then p > q with respect

to an admissible ordering of the index set P for the Morse decomposition of a box in the

slow-fast system (1.4). This means that there exist a finite increasing sequence {yi}ki=1

in [0, 1] and a sequence {pi}ki=1 in P satisfying

p = p1 > p2 > . . . > pk = q

such that the corresponding parametrized flow at y = yi has a connecting orbit from

Myi
(pi) to Myi

(pi+1).

We shall show an analogous but more general statement for the existence of connecting

orbits from a nonzero entry of the directional transition matrix. Let us begin by giving a

precise definition of the directional transition matrix.

Lemma 2.1. Let V, V ′ and W,W ′ be mutually isomorphic finitely generated free Abel-

ian groups, and let

A : V ⊕W → V ′ ⊕W ′

be an isomorphism. Suppose A is lower triangular with the following block decomposition:

A =

(
X 0

Y Z

)

where X : V → V ′ and Z : W → W ′ are isomorphisms, then the following maps are all

lower triangular isomorphisms:

A1 =

(
X 0

−Z−1Y Z−1

)
: V ⊕W ′ → V ′ ⊕W,

A2 =

(
X−1 0

Y X−1 Z

)
: V ′ ⊕W → V ⊕W ′,

A3 =

(
X−1 0

−Z−1Y X−1 Z−1

)
: V ′ ⊕W ′ → V ⊕W.

The proof is straightforward. Since the topological transition matrix is lower triangular

with respect to an admissible ordering, one can repeatedly apply the above lemma and
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obtain an isomorphism

D :
⊕

p∈P

CH∗(Mout(p)) →
⊕

p∈P

CH∗(Min(p)).

The matrix representation of this isomorphism, called the directional transition matrix,

has the following property.

Theorem 2.2. Let D be the directional transition matrix for a box in the slow-fast sys-

tem (1.4). If its (p, q)-entry D(p, q) is nonzero, then there exist a finite sequence {yi}
k+1

i=1

in [0, 1] and a sequence {pi}ki=1 in P satisfying

δ(pi+1)(yi+1 − yi) > 0 for all i = 1, . . . , k − 1

and

p = p1 > p2 > . . . > pk > pk+1 = q

such that the corresponding parametrized flow at y = yi has a connecting orbit from

Myi
(pi) to Myi

(pi+1).

This theorem is proven by applying the TBC collection theorem in [4, Theorem 1.10].

Let us first recall some definitions from [4].

Definition 2.3. T is a tube if:

(1) There exists an interval [a, b] such that T ⊂ R
n × [a, b] and T is an isolating

neighborhood for

ψT : R× R
n × [a, b] → R

n × [a, b],

(t, x, y) 7→ (ψy(t, x), y).

(2) There exists δ(T ) ∈ {±1} such that for all (x, y) ∈ T we have

δ(T )g(x, y) > 0.

Definition 2.4. A set C(R) (C(A)) is a repelling (attracting) cap if:

(1) There exists an interval [e, f ] such that C ⊂ R
n × [e, f ] and C is an isolating neigh-

borhood for

ψC : R× R
n × [e, f ] → R

n × [e, f ]

(t, x, y) 7→ (ψy(t, x), y)

(2)

x ∈ Ce(R) ⇒ g(x, e) < 0

x ∈ Cf (R) ⇒ g(x, f) > 0

x ∈ Ce(A) ⇒ g(x, e) > 0

x ∈ Cf (A) ⇒ g(x, f) < 0,

where Cy(R) := C(R) ∩ {y} and Cy(A) := C(A) ∩ {y}.

The following definition is a special case of the TBC collections defined in [4]. In this

paper we only need the case where the number of boxes is one (and hence the number of

tubes is two), hence the definition is adapted to such cases for simplicity.
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Definition 2.5. A tubes, box and caps collection (TBC collection) is a collection of

tubes T (1), T (2), a box B ⊂ R
n × [0, 1], and caps C(R) and C(A) such that:

(1) (a) T (1) ∩ (Rn × [0, 1]) ⊂ V (1,B) and T (1) ∩ B) isolates M(1).

(b) T (2) ∩ (Rn × [0, 1]) ⊂ V (PB,B) and T (2) ∩ B isolates M(PB).

(2) either

δ(T (2)) > 0 and δ(PB,B) > 0 in which case b2 = 1

or

δ(T (2)) < 0 and δ(PB,B) < 0 in which case a2 = 0

where a, b are as in Definition 2.3.

(3) either

δ(T (1)) > 0 and δ(1,B) > 0 in which case a1 = 0

or

δ(T (1)) < 0 and δ(1,B) < 0 in which case b1 = 1

where a, b are as in Definition 2.3.

(4) C(R) ∩ T (2) 6= ∅ and C(A) ∩ T (1) 6= ∅. Furthermore,

C(R) ∩ T (2) ∩ (Rn × {y}) 6= ∅ ⇒ Cy(R) = Ty(2),

C(A) ∩ T (1) ∩ (Rn × {y}) 6= ∅ ⇒ Cy(A) = Ty(1).

Given a TBC collection, let

D(PB, 1) : CH
∗(Mout(1,B)) → CH∗(Min(PB,B)) (2.1)

denote the (PB, 1)-entry of the directional transition matrix of the box B. The following

theorem is the special case of Theorem 1.10 in [4]. See [4] for its complete statement as

well as the proof.

Theorem 2.6. Let T (1), T (2), C(R), C(A), and B be a TBC collection for the slow-

fast system (1.4). Let

N := B ∪ T (1) ∪ T (2) ∪ C(R) ∪ C(A).

Then, for ε > 0 sufficiently small,

(1) N is an isolating neighborhood for the flow ϕε generated by (1.4);

(2) (Inv(C(R), ϕε), Inv(C(A), ϕε)) is an attractor-repeller pair for Inv(N , ϕε);

(3) If D(PB, 1) 6= 0, then

CH∗(Inv(N , ϕε)) 6∼= CH∗(Inv(C(A), ϕε))⊕ CH∗(Inv(C(R), ϕε)).

Therefore, for sufficiently small ε > 0 there is a connecting orbit from Inv(C(R), ϕε)

to Inv(C(A), ϕε) in N under the flow ϕε.

In order to prove Theorem 2.2, one can apply the above theorem as follows: Suppose

the directional transition matrix D associated to a box B has a nonzero (p, q)-entry. Then

one can modify the slow-fast system outside the box in such a way that one can attach

tubes as well as attracting and repelling caps to Morse components Min(p) and Mout(q).

Clearly the smallest interval in P that contains p, q gives rise to a subbox B′ in B, and

together with the attached tubes and caps, they form a TBC collection. Therefore, from
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Theorem 2.6, one obtains a connecting orbit from Min(p) to Mout(q) for any ε > 0.

One can then apply the same reasoning as in [10] to show that the connecting orbit

converges to a connected invariant set of the parametrized flow in the Hausdorff metric

as ε tends to 0. This connecting invariant set consists of connecting orbits between some

Morse sets Myi
(pi) to Myi

(pi+1) at y = yi as well as intervals between yi and yi+1 in

the slow manifold corresponding to the pi-th Morse component. Clearly the sequences yi
and pi must satisfy the relation as in the assertion of Theorem 2.2, and hence the proof

is completed.

3. Example. We shall illustrate how the directional transition matrix is computed

and used in an example. Consider a slow-fast system on R
2 × R with a box as in Figure

1. If one attaches a repelling cap to a tube connecting the {y = 0}-side of the top Morse

component M0(3) and an attracting cap to a tube connecting the {y = 1}-side of the

bottom Morse component M1(1), then these caps, tubes and the box will form a TBC

collection. Thus the problem is to find a connecting orbit from the repelling cap to the

attracting cap. According to the slow directions along the Morse components in the box,

if a connecting orbit exists, it should follow the top Morse component from y = 0 to

some y > 0, then jumps down to the middle Morse component and follow it in the

backward direction until it jumps further down to the bottom one and leaves the box
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Fig. 1. A box with three Morse components. Three horizontal lines represent the slow manifolds

corresponding to the three Morse components M(p) for p = 1, 2, 3. Slow dynamics in the slow

manifolds are indicated by the arrows. At both sides of the box given by y = 0, 1, the fast dynam-

ics changes as indicated, where the bold curves represent the unstable sets of the corresponding

Morse components. These unstable sets labeled α, β, γ at y = 0 and α′, β′, γ′ at y = 1 generate

the cohomology Conley indices. The shaded regions in the side boundary of the box exhibit the

(immediate) exit sets.
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through y = 1. In order to find such a connecting orbit, we must compute the directional

transition matrix and the corresponding (3,1)-entry.

Here the unstable sets of each of the Morse components give the sets of basis for the

corresponding Conley indices. To be more specific, let α̂, β̂, γ̂ be the elements in the Z2-

coefficient cohomology Conley index CH∗(S0) at y = 0 corresponding to the unstable sets

α, β, γ of the Morse componentM0(p) for p = 1, 2, 3, respectively. Then they form a basis

of CH∗(S0) ∼=
⊕

p=1,2,3 CH
∗(M0(p)). Similarly, the elements α̂′, β̂′, γ̂′ in the cohomology

Conley index CH∗(S1) ∼=
⊕

p=1,2,3 CH
∗(M1(p)) at y = 1 corresponding to the unstable

sets α′, β′, γ′ of the Morse component M1(p) for p = 1, 2, 3 form a basis of it. Figure 1

shows that these basis elements are related as

α̂′ = α̂, β̂′ = α̂+ β̂, γ̂′ = β̂ + γ̂. (3.1)

Indeed, this follows from the duality between the homology and cohomology groups and

a similar relation among homology classes generated by these unstable sets as follows:

α′ = α+ β + γ, β′ = β + γ, γ′ = γ,

which can be easily seen from Figure 1, where the same notation is used to indicate

an unstable set and its homology class. From (3.1), one can compute the cohomology

transition matrix

T 1,0 :
⊕

p=1,2,3

CH∗(M1(p)) →
⊕

p=1,2,3

CH∗(M0(p))

defined in §1 and obtains

T 1,0 =




1 0 0

1 1 0

0 1 1


 .

Given the direction of the slow dynamics as in Figure 1, we can now compute the

corresponding directional transition matrix. In this case, the directional transition matrix

D is given as a homomorphism

D :
⊕

p=1,2,3

CH∗(Mout(p)) = CH∗(M1(3))⊕ CH∗(M0(2))⊕ CH∗(M1(1))

→
⊕

p=1,2,3

CH∗(Min(p)) = CH∗(M0(3))⊕ CH∗(M1(2))⊕ CH∗(M0(1)).

We first decompose the index set as

T 1,0 : CH∗(M1(3))⊕ [CH∗(M1(2))⊕ CH∗(M1(1))]

→ CH∗(M0(3))⊕ [CH∗(M0(2))⊕ CH∗(M0(1))]

in order to apply Lemma 2.1, and obtain

A1 : CH∗(M1(3))⊕ [CH∗(M0(2))⊕ CH∗(M0(1))]

→ CH∗(M0(3))⊕ [CH∗(M1(2))⊕ CH∗(M1(1))],
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which is, as a matrix, given by

A1 =




1 0 0

1 1 0

1 1 1


 .

We then change the decomposition as

A1 : [CH∗(M1(3))⊕ CH∗(M0(2))]⊕ CH∗(M0(1))

→ [CH∗(M0(3))⊕ CH∗(M1(2))]⊕ CH∗(M1(1)),

and apply Lemma 2.1 again. The resulting matrix

D : [CH∗(M1(3))⊕ CH∗(M0(2))]⊕ CH∗(M1(1))

→ [CH∗(M0(3))⊕ CH∗(M1(2))]⊕ CH∗(M0(1))

is the same as the above A1, which gives the desired directional transition matrix in this

case. Therefore

D =




1 0 0

1 1 0

1 1 1


 .

In particular, the (3,1)-entry of D is nonzero, and hence it follows from Theorem 2.2 that

there exists a connecting orbit fromM0(3) toM1(1). Similarly, there also exist connecting

orbits from M0(3) to M0(2) and from M1(2) to M1(1), respectively, since the (3,2) and

(2,1)-entries of D are nonzero.

One can view the above computation of the directional transition matrix as follows.

Observe that α̂, β̂′, γ̂ form a basis of
⊕

p=1,2,3 CH
∗(Min(p)), whereas α̂

′, β̂, γ̂′ form a basis

of
⊕

p=1,2,3 CH
∗(Mout(p)). From (3.1), we have a similar relation between these sets of

basis, which are expressed as



1 0 0

1 1 0

1 1 1







α̂′

β̂

γ̂′


 =




α̂

β̂′

γ̂


 .

The matrix corresponding to this change of basis is in fact the directional transition

matrix D.
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