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Abstract. Given an unknown attractor A in a continuous dynamical system, how can we
discover the topology and dynamics of A? As a practical matter, how can we do so from only a
finite amount of information? One way of doing so is to produce a semi-conjugacy from A onto a
model systemM whose topology and dynamics are known. The complexity ofM then provides
a lower bound for the complexity of A. The Conley index can be used to construct a simplicial
model and a surjective semi-conjugacy for a large class of attractors. The essential features of
this construction are that the modelM can be explicitly described; and that the finite amount
of information needed to construct it is computable.

1. Introduction. The Conley index theory has grown and matured substantially in

recent years, in both its computational and theoretical aspects. The theoretical develop-

ments have deepened the dynamical information that can be extracted from the index;

while the computational improvements have broadened the range of applications in which

the index can be computed. In this note, I will consider a combination of recent theoret-

ical and computational developments – a combination that I believe points the way to a

rich new realm of applications of the index ideas.

The computational developments I refer to are the ongoing efforts to computerize the

index computations. As several papers in this volume describe, it is becoming feasible to

input a dynamical system (either continuous or discrete) to a computer, and obtain as

the output

• An isolating neighborhood;

• A Morse decomposition of its maximal invariant set;
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• The homology Conley index of each of the Morse sets;

• The connection matrix of the Morse decomposition.

Indeed, it is possible to carry out such computations even if the system is only defined

by experimental data [14] with no formulaic description at all. While there is still consid-

erable work required to make these index computations a practical reality, the potential

(and more than just potential) is clearly there.

But, how can this computational power be exploited? If φ is a flow (or semi-flow) on a

space X, perhaps defined by a formula, perhaps only known experimentally, how can we

use the ability to compute the Conley index information to understand the dynamics of φ?

Conley’s celebrated decomposition theorem [2] suggests one direction. If S is a compact

invariant set in a continuous dynamical system, Conley’s theorem states that there is

a semi-conjugacy from S onto a gradient-like system. This semi-conjugacy is formed by

identifying each component of the chain recurrent set to a point. While this is a powerful

structure theorem, its practical utility is limited by the fact that the semi-conjugacy and

the gradient-like system are existential. The theorem gives no method for describing or

understanding their structure, other than to first understand the structure of S itself.

Obviously, if the goal of the analysis is to understand the global structure of S, this is

not very useful.

However, using Conley’s theorem as motivation, we seek a method to use the Conley

index information to explicitly construct a compact space M , and explicitly define a flow

on M , such that there is a surjective semi-conjugacy f : S →M . The essential questions

that must be addressed are:

• How much information about S is needed to construct the model flow and semi-

conjugacy?

• How complicated can the model flow be?

• How do we guarantee surjectivity?

The first two questions are closely related: the complexity of the model is, in some sense,

a measure of the information available about S. With no information about S, we can

construct a semi-conjugacy onto a single (rest) point. With complete knowledge of S, we

can construct a model flow which is conjugate to S.

It is important that we not only construct the model and semi-conjugacy, but that we

also know exactly what the image of f in M is. It is only im(f) that carries information

about S. Since im(f) is a compact invariant subset of M , if we can identify im(f), we

can discard the rest of M . That is, the ability to identify im(f) is essentially equivalent

to requiring f to be surjective.

The first theorem along this line was proved in [9]. There, the Morse decomposi-

tion consisted of a collection M0,M1, . . . ,MP with partial order 0 < 1 < . . . < P .

The homology Conley index of Mi was assumed to be that of an orientable hyper-

bolic periodic orbit with unstable dimension 2i for i < P ; and that of a hyperbolic

fixed point with unstable dimension 2P for MP . The Morse sets below MP were each

assumed to admit a Poincaré section, and some technical algebraic hypotheses were

also assumed. From this information, a Morse-Smale flow on a 2P disk with P peri-
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odic orbits and one rest point, and a surjective semi-conjugacy to the disk, were con-

structed.

Similar results, with slightly simpler structures, were proved in [5, 6, 10, 11]. In [10],

for example, the Morse decomposition consisted of 2P+1 Morse sets M+
0 ,M

−
0 , . . . ,M

+
P−1,

M−P−1,MP , with partial order (0,±) < (1,±) < . . . < (P − 1,±) < P . The homology

Conley indices were those of a hyperbolic fixed point of index p for M±p and of index P

for MP . The connection matrix was assumed to have ∆qp 6= 0 if and only if p and q are

adjacent in the partial order. With this structure, a Morse-Smale flow on a P -disk with

2P + 1 rest points and no periodic orbits, and a surjective semi-conjugacy to the disk,

were constructed.

It is natural to expect a general theorem that subsumes these results. Such a theorem

might be paraphrased as

Mantra If the flow on an isolated invariant set S “looks like” (i.e. has the same Morse

decomposition and Conley index invariants as) a Morse-Smale flow on M , then

there is a semi-conjugacy f : S →M that conjugates the index invariants.

This is a “mantra” rather than a “conjecture” because there is good reason to believe

that it is not literally true. But it is certainly a useful guiding principle for developing

results. One step in this direction was taken in [8]. This note is essentially a summary of

the results of [8], together with some speculations on the next steps towards realizing the

mantra. The next section states the semi-conjugacy existence and surjectivity results of

[8], while §§ 3 and 4 outline the details of the constructions. The last section considers

verifiability and necessity of the hypotheses, as well as possible generalizations.

2. Statement of results. Semi-conjugacies are constructed in [8] for attractors in

continuous dynamical systems satisfying the following hypotheses:

H0 A is an attractor in a continuous semi-flow on a locally compact metric space X.

On A itself, there is a complete two-sided flow.

H1 A has a Morse decomposition {Sp}p∈P indexed by the partially ordered set (P,<).

H2 Each Morse set Sp has the homology Conley index of a hyperbolic rest point. That

is, for each p ∈ P , there exists an n(p) such that

CHk(Sp) =

{
Z k = n(p)

0 otherwise

H3 There is a unique connection matrix ∆(P ). This matrix has the property that Morse

sets Sp and Sq are adjacent in the flow-defined ordering if and only if the connection

matrix entry ∆qp is an isomorphism.

From the partial order (P,<), we can construct in a natural way a simplicial complex

M(P,<) by creating a simplex for every totally ordered chain in P . This simplicial

complex admits a flow ψ :M×R→M which leaves each simplex invariant and has the

vertex set {Mp}p∈P as a Morse decomposition. This will be the model flow that is the

target of the semi-conjugacy from A. Its crucial feature is that it is constructed directly

from the partial order (P,<) – no further information about the topology or dynamics

of A is required.
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Theorem 1. Suppose A is an attractor with flow φ satisfying H0–H3. Let M(P,<)

be the simplicial complex generated by the poset (P,<). Then, up to a time reparame-

terization of φ, there is a continuous semi-conjugacy f : A → M(P,<). That is, there

is a function θ : A × R → R which is monotone increasing in t for every x ∈ A, such

that f ◦φ(x, θ(x, t)) = ψ(f(x), t). This semi-conjugacy preserves the Morse decomposition

structure: f−1(Mp) = Sp and for every interval I ⊂ P , f−1(M(I)) ⊂ S(I).

The time reparameterization is a technicality, and is only introduced to guarantee

that if f(x) = f(y), then f(x · t) = f(y · t). The time reparameterization does not change

any of the essential dynamical features of the flow on A, so it is not too imprecise to

interpret this theorem as “there is a semi-conjugacy from A to M.”

This theorem does not guarantee that the semi-conjugacy is surjective. At this point,

it is not clear whether this is a technical shortcoming of the proof, or whether there

are examples in which H0–H3 do not produce surjectivity. It is also natural to ask if

the model reproduces the Conley index information used to construct it. That is, since

M(P,<) has a Morse decomposition with the same flow-defined ordering, does it also

have the same Conley indices for the Morse sets? Does it have the same connection

matrix? Is f∗ a conjugacy between the algebra on A and the algebra on M?

It turns out that the two questions are closely related. Our proof of surjectivity will

use the homology Conley index, and it might be conjectured that, if Mp and Sp have

the same homology Conley index for all p, then f is surjective. While we cannot prove

such a relationship at this point, we can formulate a condition which is very close in

spirit to “Mp and Sp have the same homology Conley index” and which implies both the

equivalence of the indices and the surjectivity of f .

For every p ∈ P , let Ap = {q ∈ P |q < p}, and A+
p = Ap ∪ {p}. Let M(Ap) be the

subcomplex of M(P,<) spanned by vertices in Ap. To guarantee the surjectivity of f ,

we make the assumption

H4 For every p ∈ P , the complex M(Ap) is homeomorphic to the (n(p)− 1)-sphere.

IfM(Ap) is a sphere, then surjectivity is homologically detectable. We use this observation

to obtain the following result:

Theorem 2. If A is a compact attractor with flow φ that satisfies H0–H4, then

1. The semi-conjugacy f : A →M(P,<) is surjective.

2. For every interval I ⊂ P , f∗(I) : CH∗(A(I))→ CH∗(M(I)) is an isomorphism.

3. The Morse decomposition {Mp}p∈P has a unique connection matrix ∆M (P ), which

is conjugate to ∆(P ) via the isomorphism F = ⊕p∈P fp∗ : ⊕p∈PCH∗(Sp) →
⊕p∈PCH∗(Mp). That is, ∆M (P ) ◦ F = F ◦∆(P ).

There are several important features to these results. First, the hypotheses fit very

well with the output of the computerized index calculations. Hypotheses H3 and H4, to

be sure, are additional burdens, but both are tractable. The multi-valued map methods

used to calculate the index invariants can also be employed to verify H3, while H4 can be

verified from (P,<) either directly by constructing M(Ap), or indirectly (cf. Theorem 3

below).
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The second feature of these results is that, once the partial order (P,<) is known, the

complex M(P,<) can be easily constructed (and property H4 checked) without further

knowledge of A or its flow required. This ability to construct and exploreM is of central

importance. Once constructed, M serves as a model for the flow on A. If the semi-

conjugacy is surjective, then the complexity of M (both in its topology and dynamics)

serves as a lower bound for the complexity of A. If A is known only existentially, or is

part of a system defined only by experimental data, then this model may be the only

evidence of A’s structure available. It can then serve as a guide to further investigations

of the set.

In sum, a finite amount of information about A allows a Morse-Smale model flowM
to be explicitly constructed, and to guarantee that the dynamical structures revealed by

that model will be a lower estimate for the dynamics on A.

3. The simplicial model. The construction of the simplicial modelM(P,<) is very

natural, and the properties of the model are easy to establish. The hypotheses on the

Morse decomposition imply that all of the information needed to construct the complex

is carried by the poset (P,<). Indeed, the simplicial model M(P, <) can be thought of

as a geometric realization of the partial order (P,<). An inductive construction of this

geometric realization is:

1. The elements of P are the 0-skeleton.

2. Form the 1-skeleton by adding an edge from p to q if q < p.

3. Inductively add the k-skeleton by filling in all possible k-simplices. That is, if all

of the k − 1 simplices required to form ∂σ are present in the (k − 1)-skeleton, then

add σ to the k-skeleton.

A non-inductive formulation of this [4] is:

Definition 3.1. [p0p1 . . . pn] is a simplex in M(P,<) if and only if each pi < pi+1.

If I ⊂ P is an interval in P , let M(I) denote the maximal subcomplex spanned by the

vertices in I.

That is, σ is a simplex in M(P,<) if and only if there is an ordering of its vertices

p0, p1, . . . , pn such that p0 < p1 < . . . < pn.

The process of defining a flow on M(P,<) is somewhat convoluted (cf [8, §3.2]), but

the results of that definition are easily stated. We can define the flow simplex by simplex,

in such a way that the flows on two simplices agree on their overlap. We also define

h(t) = Σp∈Pn(p)tp, where tp is the barycentric coordinate of t associated with vertex p.

We can construct the model M(P,<) and the flow φ :M×R→ R such that

• Each simplex is invariant under the flow.

• The vertex set is the rest point set.

• The function h is a Lyapunov function, with h(p) = n(p) for every vertex p.

• If pi0 < . . . < pik , then the open simplex (pi0 . . . pik) ⊂W s(pi0) ∩Wu(pik).

An immediate consequence of these properties is:
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Fig. 1. Flow on the torus

Proposition 3.2. The vertex set {Mp}p∈P forms a Morse decomposition for the flow,

with flow-defined order (P,<). In particular, each Mp is an isolated invariant set.

Not only is the Morse decomposition derived directly from the partial order, but the

Conley index of each Mp also has natural description in terms of (P,<).

Proposition 3.3. If M(P,<) is constructed from the partial order of a system sat-

isfying H0–H3, then

• The unstable set Wu(Mp) of Mp is M(A+
p ). This is also the star in M(A+

p ) of the

vertex p, and is homeomorphic to the cone on M(Ap).

• Mp has the homotopy Conley index of Σ(M(Ap)), the suspension of M(Ap).

• Hk(Mp) ∼= H̃k−1(M(Ap)).

The natural expectation is that Mp will have the homology Conley index of Σn(p),

which will be the case if and only if M(Ap) is a homology (n(p)−1)-sphere. The following

example shows that M(Ap) need not be a sphere, nor even a homology sphere. Hence the

necessity of H4 as an explicit hypothesis.

Example 3.4. Consider the flow on the 2-torus generated by the following flow on

the unit square shown in Figure 1. There are eight Morse sets, each a hyperbolic fixed

point, with indices and partial order as illustrated in Figure 2. If p is one of the points of

index 2, then Mp is the 1-complex shown in Figure 3. This is a wedge of cirles, but not

a 1-sphere.

Since we will need to add H4 as an extra hypothesis, it would be useful if there were

a characterization of H4 in terms of the partially ordered set (P,<). I do not know of

such a charaterization, but there are necessary and sufficient conditions for H4 in terms

of (P,<).

Theorem 3. Let (P,<) be a partially ordered set, and M(P,<) the corresponding

complex.
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Fig. 3. Mp for the repelling points in the torus flow

1. If for every p with n(p) > 0 there are exactly two r+, r− < p with n(r±) = n(p)−1,

then every M(Ap) ∼= Sn(p)−1.

2. If every M(Ap) ∼= Sn(p)−1, then whenever q < p with n(p) = n(q) + 2, there are

exactly two r+, r− with q < r+, r− < p.

Neither of the converse statements are true.

4. The semi-conjugacy. Having constructed the complexM(P,<) and its dynam-

ics, we are now ready to define the semi-conjugacy f : A → M(P,<). There are two

basic ingredients to the construction of f . First, we choose neighborhoods in A about

the Morse sets Sp, and define transit time functions τp that measure the time an orbit

spends in each of these neighborhoods. Next, we construct a Lyapunov function Λ on A
that is compatible with these transit time functions. Intuitively, the semi-conjugacy is

constructed from these functions in the following steps:

1. An orbit x · R is mapped into the simplex spanned by the points p ∈ P with

τP (x) 6= 0.

2. Two of the τp functions will be infinite; the others will be finite. The finite-valued

transit time functions and the Lyapunov function give coordinates that define the

image of x in the simplex.

One technicality in this will be reparameterizing the flow on A to obtain the needed

compatibility between the Lyapunov function and the transit time functions. In order

for the semi-conjugacy to be well-defined, we require that, if x, y ∈ A have Λ(x) = Λ(y)

and τp(x) = τp(y) for all p ∈ P , then Λ(x · t) = Λ(y · t) for all t ∈ R. By creating

the appropriate subdivisions of A and adjusting the time each trajectory spends in each

subdivision, we can obtain the needed time reparameterization of the flow.
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The use of the transit times in defining f makes it clear that f−1(Mp) = Sp and

f−1(Mp,Mq) = C(Sp, Sq). The other features of Theorem 1 follow in a routine fashion. It

remains only to show that it is surjective. Since each Mp is a point, it is trivial that f maps

onto all Mp. Thus, to show f is surjective, we only need to show that it maps onto each

C(Mp,Mq). It is at this point that we require the hypothesis H4. We require this because

the “sphericity” provides an algebraic test for surjectivity: if f : f−1(M(Ap))→M(AP )

is not surjective, then f∗ : Hn(p)−1
(
f−1(M(Ap))

)
→ Hn(p)−1 (M(Ap)) is trivial. The

proof of Theorem 2 is thus reduced to the algebraic argument that f∗ is an isomorphism.

5. The hypotheses. I hope that Theorems 1 and 2 will be both useful in their own

right, and serve as models for further attempts to realize the Mantra. The applicability

of the the theorems depends on the ability to verify the hypotheses, while generalizing

the theorem will depend on weakening the hypotheses. I conclude therefore with consid-

erations of these two issues.

5.1. Verifying the hypotheses. To apply this theorem to an attractor A, we must be

able to carry out the following computations:

1. Isolate the attractor in X.

2. Determine that A admits a Morse decomposition with index set P .

3. Compute the homology Conley index of each of the Morse sets.

4. Compute a connection matrix for the Morse decomposition.

We must further show that the objects identified satisfy the following conditions:

5. The Morse sets must all have the homology Conley index of hyperbolic fixed points.

6. All non-zero entries in the connection matrix must be isomorphisms.

7. If ∆qp 6= 0, then p and q are not adjacent in the flow-defined order.

At this point, the model can be constructed, and the last required condition can be tested:

8. Each M(Ap) must be homeomorphic to Sn(p)−1.

These eight steps have varying degrees of difficulty associated with them. Assum-

ing the first seven steps have been carried out, the last step is straightforward (with

Theorem 3 available to assist). Similarly, if the first three steps have been carried out,

verifying (5) and (6) is trivial. Thus, the only steps of any substance are the first four

(computing the Conley index information) and the seventh (verifying that the Conley

index information has detected all connecting orbits). It is important to note that (7) is

fundamentally different than the first four. The first four are purely computational issues,

while (7) concerns the ability of those computations to detect the essential dynamical be-

havior.

The computational issues are considerably easier to deal with, as one of the strengths

of the Conley index is its computability. Detecting an attractor and a Morse decompo-

sition, computing the indices of the Morse sets and computing a connection matrix are

all well-understood processes. Typically, an attractor is detected by finding a positively

invariant neighborhood; a Morse decomposition is detected by a Lyapunov function; ho-

mology indices are computed by continuation; and connection matrices are computed by
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the algebraic relations of the attractor-repeller exact sequences. Moreover, the ongoing

development of computer-aided Conley index computations [7, 13, 15, 16, 17] promises

to make all of these calculations even more tractable, even in cases when the system is

only known from experimental data [14].

The real issue, then, is the verification that Sp and Sq are not adjacent if ∆qp = 0.

This is emblematic of a much deeper question: does the algebraic information of the Con-

ley index faithfully reflect the dynamical structure of the original system. Clearly, the

index information itself cannot answer such a question. Some other form of analysis is

required. For these results to be of any practical value, we must be able to carry out that

analysis with only partial knowledge of the system. Fortunately, the condition we seek

to verify is a negative one: showing that, if ∆qp = 0, then Sp and Sq are not adjacent

in the flow-defined order. That is, either there is some r with q < r < p, or p < q,

or p and q are unrelated in the partial order. There are a variety of ways this can be

done.

• If ∆pq 6= 0, then p < q, so q 6< p.

• If there is an explicitly given Lyapunov function L : A → R and L(Sp) < L(Sq),

then there can be no connection from Sp to Sq.

• If n(p) − n(q) > 2 and there are p1, . . . , pk with ∆qp1
∆p1p2

. . .∆pkp 6= 0, then

q < p1 < . . . < pk < p, so p and q are not adjacent.

• If all else fails, we must estimate Wu(Sp) and W s(Sq), and show that Wu(Sp) ∩
W s(Sq) = ∅.

In principle, this is the type of calculation that can be performed numerically, and made

rigorous by error estimates. While not an easy matter, such calculations are feasible,

particularly if an explicit Lyapunov function is given. The multi-valued map techniques

now being developed to carry out the index computations [7, 13, 15, 16, 17] may also be

used in these calculations.

Once the partial order (P,<) has been identified, the construction of M(P,<) pro-

ceeds in a purely routine fashion. While Theorem 3 does not give a purely graph-theoretic

condition for H4, it does provide tests for H4 to hold, or to fail. Alternatively, once

M(P,<) is constructed, the verification of H4 from M(P,<) is straightforward.

5.2. Necessity of the hypotheses. The conditions are not strictly necessary, in the sense

that there are examples in which some or all of hypotheses H0–H4 are not satisfied, but

the conclusions of theorems 1 and 2 hold. However, there are also examples that make it

clear that some hypotheses of this type are required. In this section, we examine some of

these examples and counter-examples. Of course, without hypothesis H1, the construction

is not even defined, so we limit our concern to the other four hypotheses.

First, the invariant set need not be an attractor. Take any compact manifold N with a

Morse function. The critical points form a Morse decomposition which satisfies H0–H2.

If we limit our attention to a manifold and Morse function that satisfy H3 and H4, then

there is a semi-conjugacy from N to a model systemM(P,<). Now, embed N as N×{0}
in N × Rk, and take a product flow such that {0} is repelling in Rk. Clearly, N is no

longer an attractor in N ×Rk, yet the semi-conjugacy still exists. Of course, it no longer
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produces an isomorphism on the Conley indices. If we retain the requirement that the

Conley indices are isomorphic, then A must be an attractor in the ambient space X,

since M(P,<) is certainly an attractor in itself.

The hypothesis H2 is very strong, and there is certainly no reason to expect it to be

a necessary condition for the construction of a model and a semi-conjugacy. Indeed, the

original paper [9] constructed a model for a system with Morse sets that have the Conley

index of a hyperbolic periodic orbit. While that example shows that it is not necessary

to assume that Morse sets have the homology Conley index of hyperbolic fixed points, it

also suggests why it is natural to make such an assumption.

If Sp has a more complicated homology index, we must decide between (at least)

two alternatives. On the one hand, we can employ the construction of M(P,<) used

here, which collapses each Sp to a point. On the other hand, we may seek to use the

homology index to “guess” the appropriate model Mp for Sp, then build the total model

M by collating these model Morse sets. That was the strategy employed in [9]. There we

hypothesized that whenever Sp had the homology Conley index of a hyperbolic periodic

orbit, it had a return map defined on a neighborhood. With this information, it was

natural to take a single periodic orbit as the model Mp.

Obstructions to generalizing this approach are:

• How do we recognize from the homology index what the underlying space should

be?

• How do we know what flow to put on that space?

• ∆qp may now be unreliable as a guide to whether or not Sp and Sq are adjacent.

• ∆qp is now a matrix, so there are many different ways that it can be non-zero. How

do we interpret these dynamically?

• How do we assemble the model Morse sets to form M?

• How do we put co-ordinates on M so that we can construct the semi-conjugacy?

These obstructions are substantial, and it is not clear that there is any general construc-

tion that will successfully deal with all of them. Certainly, [9] suggests that there will be

at least some cases that are tractable. Assumptions such as ∗-hyperbolicity [3] may help

to expand that collection. However, if the Morse sets are assumed to have the homology

Conley index of a hyperbolic periodic orbit, these obstructions (for the most part) vanish.

Obviously, H2 is not enough to eliminate all difficulties, hence the need for H3 and H4.

We now turn to a consideration of those hypotheses.

As discussed above H3 contains the crucial assumption that the algebra of the Conley

index detects all connections. To see that this assumption need not always be satisfied,

consider the attractor-repeller decomposition of the circle shown in Figure 4(a). The

Morse sets are hyperbolic fixed points with n(i) = i. Since the index of the total invariant

set S is the direct sum of the indices of the Morse sets, the connection matrix must be

trivial. That is, the two branches separately have connection homomorphisms that are

isomorphisms, but they have opposite orientations and so cancel one another. The algebra

provides no evidence of any connections between S1 and S0. Similarly, in a situation in

which Wu(R) and W s(A) intersect non-transversely, the connection homomorphism can

be trivial.
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Fig. 4. Flows on the circle and projective plane

H3 assumes more than just that ∆qp is non-zero when Sp and Sq are adjacent. It

assumes that ∆qp is either an isomorphism or is trivial. This need not always occur.

Consider the flow on RP 2 generated from the flow in Figure 4(b) formed by identifying

antipodal points on the boundary. Each of the Morse sets S0, S1, S2 is hyperbolic with

n(i) = i. The connection matrix must compute the homology of RP 2 from the chain

complex

Ci∆(P ) =

{
Z i = 0, 1, 2

0 otherwise

Clearly, the unique matrix that does this is

∆(P ) =

 0 0 0

0 0 2

0 0 0

 .
The first example (i.e. adjacent entries with trivial algebra) appears at this point to

be an essential obstruction. If the algebra carrying the dynamical information, there is

no reason to expect a model based on the algebra to be meaningful. The second example

(i.e. non-trivial entries in ∆(P ) that are not isomorphisms) suggests that a more general

construction of the model space may be needed. Suppose we retain H2, and weaken H3

to

H3′ There is a unique connection matrix ∆(P ). This matrix has the property that Morse

sets Sp and Sq are adjacent in the flow-defined ordering if and only if the connection

matrix entry ∆qp is non-zero.

If we define Cn =
⊕

p∈Pn
CHn(Sp) and ∂n = ∆(Pn−1, Pn) : Cn → Cn−1, then it is

natural to interpret the chain complex {Cn, ∂n} as the cellular chains of a CW-complex.

That is, we might try to construct a CW model instead of a simplicial model for the flow.

This is hardly a new idea. After all, Morse theory describes a CW decomposition of a

manifold. But, in the Morse theory setting, we start with the assumption of a flow on a

manifold. Here, we are starting with an unknown attractor, that looks like a Morse flow

on the homology level. Can we, from homological data that emulates that of a Morse flow,

construct an actual Morse flow and a semi-conjugacy onto it? This is an open question

at present, and will be the subject of future investigations.

Finally, we turn to H4. Example 3.4 shows that M(Ap) need not have the homology

of Sn(p)−1, and so the homology Conley indices of Mp and Sp need not be isomorphic.
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Some hypothesis of this type is needed. But, could it suffice to assume that M(Ap) is a

homology sphere, or a homotopy sphere, to prove that f is surjective? Is the isomorphism

of indices required at all for f to be surjective? These are open questions at this point.
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