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Abstract. Topological spaces with generalized symmetries are defined and extensions of the
Conley index of a compact isolated invariant set of the flow preserving the structures introduced
are proposed. One of the two new indexes is constructed with no additional assumption on the
examined set in terms of symmetry invariance.

1. Introduction. The Conley index theory is developed in many different directions
to examine various aspects of the behaviour of flows. It is well known that the behaviour
of flows which admit certain symmetries is strongly limited. The works of A. Floer [F],
A. Floer & E. Zehnder [FZ] and T. Bartsch [B] show how the ideas of Conley index
can be used to investigate the flows which are equivariant with respect to a compact Lie
group action. Nevertheless, there appear some “symmetries” which cannot be obtained
as a compact Lie group action.

The main aim of this paper is to study whether it is possible to define a homo-
topy index for flows which can contain some information about less regular symmetries
than those indicated by a compact Lie group action. The positive answer is obtained
through the concept of topological spaces with generalized symmetries. The suggested
invariant is the homotopy type of a suitable compact pointed space with generalized
symmetries.

The paper is organized as follows. In section 2 we introduce the notion of a topo-
logical space with generalized symmetries (or symmetries for short) over some base B,
a map preserving the generalized symmetries and finally the homotopy type of spaces
with generalized symmetries. We discuss the basic properties of these objects. In partic-
ular we describe the class of regular symmetries which can be treated similarly to the
“symmetries” established by the action of a compact Lie group.
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Section 3 describes some relations between extensively investigated classes of flows,
i.e. flows equivariant with respect to a compact Lie group action, flows admitting a
first integral, flows commuting with another given flow and the class of flows preserving
generalized symmetries. We show the way generalized symmetries can be defined in these
cases.

In section 4 there are some illustrations of the notion of homotopy type of spaces with
generalized symmetries.

Section 5 attempts to define the Conley index of compact isolated invariant sets of
a flow which preserves symmetries. In fact, we define the index X*h(-) which can be
associated with any compact isolated invariant set of this flow and the index ¥A(-) which
is defined for some Y-admissible compact isolated invariant sets. Next, we discuss the
properties of those indexes. Finally, we consider regular symmetries. In this case we can
describe in detail the class of ¥-admissible compact isolated invariant sets.

The proofs presented are based on the ideas of C.C. Conley [C] and standard con-
structions used in the Conley index theory which are excellently described in works of
D. Salamon [S], J. Robbin & D. Salamon [RS].

The last section 6 contains examples which show how these new invariants can be
used to answer natural questions about the flow behaviour.

It is worth emphasizing that the concept of Conley index with generalized symmetries
can be extended to the case of the Conley index for discrete semidynamical systems in
the setting due to A. Szymczak [Sz].

This paper is a part of the author’s Ph.D. thesis written at the Institute of Math-
ematics of the Polish Academy of Science. I would like to express my special gratitude
to Professor K. Geba who introduced me to this area of research. I also thank Professor
L. Goérniewicz whose remarks helped me to simplify some of the ideas presented.

2. Generalized symmetries in topological spaces. This part is devoted to the
description of generalized symmetries in topological spaces and their basic properties.

Let (X,©) denote a Hausdorff topological space endowed with a topology © and let
P(X) stand for the family of subsets of X. Furthermore, for any subset A C X, cl(A)
and int(A) denote the closure and the interior of A according to the topology ©.

A map between topological spaces will always mean a continuous map unless explicitly
stated otherwise.

We now formulate the definition of generalized symmetries in relation to some given
abstract base set B.

DEFINITION 2.1. The generalized symmetries in X over the base set B is any family
Y C(P(X)\{0}) x B.

The system (X;3,B) or (X, A; X, B), where A C X, is called a space with generalized
symmetries over B.

In the sequel we use the name symmetries instead of generalized symmetries; this will
not lead to any confusion as we only consider generalized symmetries.
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Now, consider a given space with symmetries (X, ¥; B). We denote elements of ¥ by
a,b,c,... Moreover, for a = (|a|,(a)) € ¥, we will say that the subset |a| C X is the
support of a and (a) € B is the index or type of a.

For any subset A C X, we define the symmetries ¥4 in A induced by the symmetries
3 as follows:

S4 % ((ANal,(a)) :a €Y and |a|NA#D}.
In this sense we will consider the space with symmetries (A;X4,8) as a subspace of
(X;%,B).

Subsets A, B C X are said to be X-disjoint if they are disjoint and |a| C X \ A or
la] € X \ B for any a € X. This property implies that ¥4y = ¥4 U Xp. A subset
A C X is E-invariant if A and X \ A are X-disjoint. Let Px(X) stand for the family of
Y-invariant subsets of X.

PROPOSITION 2.2. The family Ps(X) forms an algebra of sets with the natural oper-
ations U and N, i.e.

(1) 0 € Pg(X) and X € Ps(X),
(2) X\ A€ Px(X) for any A € Ps(X),
(3) UA € Pg(X) and A € Ps(X) for any family A C Ps(X).

Thus we can formulate the following definition.

DEFINITION 2.3. The family of sets

os ¥ on P rs(x)

is called the topology of Y-invariant sets.

To complete the formal definitions we introduce the notion of sum and product of
spaces with symmetries.

DEFINITION 2.4. Let (X, A; ¥ x,Bx) and (Y, B; Xy, By) be spaces with symmetries.
We define
e the sum
(X, A; Sy, Bx) U (Y, B; Sy, By) & (X UY, AU B;Sx Uy, Bx UBy),

if only the spaces X and Y are disjoint, where LI means topological sum,
e the product
def

(X, A4;2x,Bx) x (V,B; Xy, By) = (X xY, X XxBUAXY;Xxxy,Bx x By),
where Xxxy = {(|a| x b, ((a), (b)) :a € Xx, b€ Xy}
REMARK 2.5. If A€ Py, (X) and B € Py, (Y), then AXx B€ Py, , (X xY).
PROOF. Indeed, let ¢ € X x«y and |¢|N A x B # . Then
¢ = (la| x [b],((a), (b)), la] N A # @ and [b| N B # 0

for some a € ¥x and b € Xy. Hence |a| C A and |b| C B, as they are X-invariant subsets.
Thus || CAx B. =
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2.1. Regular symmetries. Consider a space with symmetries (X; %, B). The symme-
tries 3 define the relation Ry C X x X by

Ry ={(z,y) € X x X : Jyex 2,y € |al}.

It is elementary to verify that this is an equivalence relation if, for instance, the symme-
tries 3 satisfy the following conditions:

L4 X = UaEE |0,|,
e for any a,b € ¥ we have |a|] = |b] or |a| N |b] = 0.

If Ry, is an equivalence relation then the quotient space X /Ry is a topological space
and the canonical projection 7 : X — X/Ry is a continuous map.

REMARK 2.6. If Ry, is an equivalence relation then subsets A, B C X are X-disjoint
if and only if m(A) Nm(B) = 0.

PROOF. (=) If z € w(A) N 7(B), then there are x € A and y € B such that z =
w(x) = m(y). Hence, there must exist a € 3 such that z,y € |al, so |a| N A # 0 # |a| N B,
which contradicts our assumption.

(<) Let a € ¥ and |a| N A # 0. Then

la] ¢ 77 (w(A)) c X\« Y(n(B)) Cc X\ B,
as 7 H(m(A) N~ Y(w(B)) =0 and B C 7~ }(n(B)). =
COROLLARY 2.7. If Ry, is an equivalence relation then
A€ Px(X) if and only if A= n""(n(A)).
DEFINITION 2.8. The symmetries X are reqular if Ry is an equivalence relation and
the canonical projection 7 : X — X /Ry is a closed and open mapping.

We recall the following theorem.

THEOREM 2.9. If X is a locally compact metric space and the symmetries ¥ are
regular then the quotient space X /Ry is a locally compact metric space.

PROOF. It is known [E, theorem 4.4.18] that the quotient topology is metrizable as
there is a closed and open surjection 7 : X — X/Rx.

Moreover, the quotient space X /Ry is locally compact, as the quotient topology is
metrizable and 7 : X — X/Ry is an open surjection, see [E, theorem 3.3.15]. =

2.2. Maps preserving generalized symmetries. The additional structure of symmetries
allows us to describe the class of maps which preserve the symmetries introduced.

DEFINITION 2.10. Let (X, A; X x,B) and (Y, B; Xy, B) be spaces with symmetries. A
continuous map f : (X, A) — (Y, B) is X-invariant (preserves the symmetries) if for any
a € Yx there is b € Xy satisfying

f(lal) € |b] and (a) = (b).
We write

f(X5A7EX78) - (Y5B52Y;B)
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A Y-invariant map is called a X-homeomorphism if its inverse is also a Y-invariant
map.

PRrOPOSITION 2.11. The basic properties of Y-invariant maps are:
(1) the identity map id : (X, A;Xx,B) = (X, A; X x, B) is Z-invariant,
(2) for any X-invariant maps

f:(X,A;%x,B) = (Y,B;2Xy,B) and g : (Y, B; %y, B) = (Z,C; 32, B)
the composition go f: (X, A;Xx,B) = (Z,C; Xz, B) is X-invariant,

(3) for any E-invariant map f : (X, A;Xx,B) = (Y, B, Xy, B) the restriction

fia: (iS4, B) = (B; S, B), fialz) Y f(2)

s 2-tnvariant with respect to the induced symmetries.

REMARK 2.12. Let f: (X;Xx,B) = (Y;Xy,B) and B € Px,. (Y) be a Ly -invariant
subset of Y. Then the preimage f~'(B) € Ps, (X) is a Sx-invariant subset of X.

PROOF. Let a € Xx be such that |a| N f~1(B) # 0. As f preserves the symmetries,
f(la]) € |b| for some b € By, so |b| N B # 0. Hence |b] C B as B € Px,(Y), thus
ol c f7H(B). =

2.3. Topological spaces with base point and generalized symmetries. We say that the
symmetries X x in the space X agree with the base point x € X when ({x},7) € Xx for

any 7 € B. In this case we write (X, *; Xx, B).
This condition implies that for any space (Y'; Xy, B) the constant map

[ (Y5Dy,B) > (X, 5, B), f(z) <

is X-invariant.

Furthermore, we define the pointed symmetries

(X, % 5x,B)* € (X, % Y%, B)

where 3% = {(Ja] U {x},(a)) : a € Zx}.

REMARK 2.13. If the map f : (X, % Xx,B) = (Y,%; Xy, B) preserves the symmetries,
then f: (X, % X%, B) — (Y,x X3, B) preserves the pointed symmetries.

PROOF. Let a € ¥%. Then a = (|b| U {x}, (b)) for some b € X x. By our assumption,
there is ¢ € ¥y such that (¢) = (a) and f(]b]) C |c|, hence f(Ja]) C |c]U{*x}. »

2.8.1. Quotient space of a pair of sets. An important example of a topological space
with base point is a space generated by a pair of sets.
For any pair (X, A) of sets, A C X, there is the quotient space defined by

X/AY X\ Au{A}

and the canonical projection

p: X — X/A, p(m):{x ifzdgA

A ifzxe A
A set V C X/A is open if and only if its preimage p~!(V) is an open subset of X.
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The point x = [A4] 4 4 is the base point of X/A corresponding to the subset A and

we write

Q(X,A) ¥ (x/4, A).

It is obvious that if A C X is a compact subset of a Hausdorff space X then X/A is
a Hausdorff topological space. It is sufficient for further considerations to assume that A
is compact.

This construction leads us to the notion of the quotient spaces with symmetries in-
duced by pairs of sets.

DEFINITION 2.14. Let A C X be a compact subset of X. We call

Q(XaA; ZXaB) déf (X/Aa*; EX/Aa[)’)a

where

Sxa ¥ {(p(al). (@) : a € Sx}U{{x}} x B,

the quotient space with symmetries induced by the pair (X, A).
Moreover, we call
Q" (X, 4;3x, B) = Q(X, 4;Xx, B)*
the weak quotient space with symmetries induced by the pair (X, A).
2.8.2. Sum and product of spaces with base points and generalized symmetries. Now,
we define the sum and product of spaces with base points in the context of spaces with
symmetries.

DEFINITION 2.15. Let (X, %, Xx,B1) and (Y, x; Xy, B2) be spaces with symmetries.

e If X and Y are disjoint then we define the sum

(X, % 5x, B1) V (Y, % Sy, Ba) & Q((X, % £x, B1) U (Y, % Sy, Ba)).

e We define the product

(X, % Sx, B1) A (Y, % Sy, By) 2 Q((X, % Sx, B1) x (Y, % Sy, Ba)).

There is an important relation between the quotient spaces induced by the sum of
Y-disjoint pairs.

PROPOSITION 2.16. Let (X;3x, B) be a space with symmetries, let (A, B) and (C, D)
be pairs of subsets of X such that A and C are 3-disjoint. Then the spaces

Q((A,B;X4,B)U(C,D;%¢,B)) and Q(A,B;X4,B)VQ(C,D; X, B)
are X-homeomorphic.
Proo¥r. We consider the canonical projections
pa:A—A/BVC/D, pc:C— A/BVC/D, pavec: AUC - AUC/BUD

and the homeomorphism
x ife#BUD
{B,D} ifxz=BUD.

In order to prove that h is a ¥-homeomorphism we observe the following.

h:AUC/BUD%A/B\/C’/D,h(:c){
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Let a € Y uc/pup and la| # {x}. Then there is b € Y 4up = X4 U Xp such that
paus(|b]) = la| and (b) = (a). Thus, h(|a|) = pa([b]) when b € 4 or h(|al) = pr(|b])
when b € Y 5.

Let a € ¥ 4/pve/p and |a| # {x}. Then there is either b € ¥4 C Y auc or c € ¥¢ C
Y auc such that either pa(|b]) = |a|, (b) = (a) or pr(|c|) = |al, (¢) = (a). Thus, either
h=Y(lal) = pauc(B]) or k= (lal) = pauc(|c]). =

The following propositions describe the relation between pointed symmetries and the
operations of sum and product.

PROPOSITION 2.17. Let (X, x, X x,B1) and (Y, x; Xy, Ba) be spaces with symmetries.
Then

(1) (X, %;Zx,B1)V (Y, %Xy, B2))* = (X, % Zx, B1)* V (Y, %; Xy, Ba)* if the spaces X
and Y are disjoint.
(2) ((Xa*7 ZXaBl) A (K*7 ZY;BQ))* = (X’*; Zx,Bl)* A (Ya *3 EYaBQ)*'

PROOF. (1) Let (X VY, 5, B) = (X, %Xx,B1)V (Y, xXy,B2))* and let p: XUY —
X VY be the canonical projection. Here, x stands for the base points in X, Y or X VY.

We notice that @ € ¥ if and only if |a| = {x} or a = (p(]b] U {x}), (b)) for some
be XxUZXy and a € X%,y if and only if |a| = {x}, a = (p(|b]) U {x}, (b)) for some
beXx UXy.

But p(|b| U {*}) = p(|b]) U {*} for any b € Xx U Xy . This shows how the elements of
the symmetries are related.

(2) Let p: X XY — X AY be the canonical projection and let a € Xx, b € Xy. We
observe

p((laf U 1) < ([olu{x})) = p(la] x [b] Ufa] x {x} U {5} x [b] U {x} x {x})
= p(lal x o)) U {x}

This shows how the elements of the symmetries can be obtained from one another. m

2.3.8. Special maps on quotient spaces of pairs of sets. The construction of the Conley
index is founded on the properties of maps on spaces with base point of a special form.
In this section we study the properties of such maps in relation to symmetries.

We consider spaces (X;Xx,B), (Y;Xy,B) and an invariant map F : (X;Xx,B8) —
(Y; Xy, B). For given sets A, B,C C X and D, E C Y such that

1. BCACX,

2. ECDCY,
3. C'C (A\B) and F(C) C (D \ E),

we consider a map
f i (A/B.x) = (D/E,%), f(p(x)) = {fmx)) iiéi 28

where p: A — A/B and p: D — D/FE denote the canonical projections. We additionally
assume that f is continuous, which does not hold for arbitrary sets A4, ..., E.

PROPOSITION 2.18. The map [ : Q*(A,B;X4,B) — Q*(D, E;Xp, B) preserves the
weak quotient symmetries.
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PROOF. Let a € ¥ p. If |a| = {x} then ({f(*)},(a)) = ({+},(a)) € X}, 5. If
la| # {x} then there must exist b € X x such that a = (p(|b| N A) U {x}, (b)). We know
that F(|b]) C |c|] and (¢) = (a) for some ¢ € Xy . Hence

f(al) = fl(bnA])U{x}) = flp(lbn A]) U {x}
[F(p([b N C)) U fp([b] N (AN C))] U {x}
= [p(F(pINC)) U{x}U{x} Cp(le|nD)U {x}
and (p(|e| N D) U {*},(a)) € Xhp-
PROPOSITION 2.19. If C is a X-invariant subset of X, i.e. C € Py, (X), then the
map f: Q(A, B;X4,B) = Q(D, E;Xp, B) preserves the quotient symmetries.

PROOF. Let a € Xy p. If |a| = {x} then ({f(¥)},(a)) = ({x},(a)) € Ep/p. If
la] # {x} then there must exist b € X x such that a = (p(|b] N A4), (b)). Hence |b| N C =
§ or |b] C C as C is X x-invariant. Thus, when [b| N C' = ), we have

(f(lal); (@)) = ({+}, (@) € Xp/E-
If |b] C C, then F(]b]) C |c| and (¢) = (a) for some ¢ € Xy, so
f(lal) = p(E(jb])) < p(le[ N D)
and (p(lc|N D), (a)) € ¥p/p. =

2.4. Homotopy type of topological spaces with base point and symmetries. Maps f, g :
(X,%;2x,B) = (Y,%; Sy, B) are X-homotopy equivalent, written f ~ g, if there exists a
map H : X x [0,1] = Y such that

1. H; = H(vt) : (Xv*; Ex,B) - (Ya*;EY7B)a
2. Hozfandleg.

Amap f: (X, xXx,B) = (Y, % Zy, B) is a X-homotopy equivalence if there is a map
g: (Y, %Xy, B) = (X,%; Yy, B) such that fog ~ idy and go f ~ idx.

The spaces (X, x; X x, B) and (Y, x; Xy, B) with symmetries are Y-homotopy equivalent
if there exists a ¥-homotopy equivalence f : (X, *;Xx,B) — (Y, *; Xy, B).

This leads to the notion of the X-homotopy type of (X, x; X x, B) which will be denoted
by [(X,*; Xx, B)].

Remark 2.13 leads directly to

REMARK 2.20. If[(X, % Sx, B)|=[(Y, % Sy, B)], then [(X, x; ¥%, B)|=[(Y, %, 3%, B)].

Standard properties of sum and product of spaces with base point (see for instance
[Wh, chapter II1.2]) show that there are well defined operations of sum and product of
Y.-homotopy types of spaces.

DEFINITION 2.21. Let X = [(X,%;Xx,B)] and Y = [(Y,*; Xy, B)] be E-homotopy
types of spaces with symmetries. We define

e the sum of X and Y by

XVvYY((X, %Sy, B)V (Y% Sy, B),
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e the product of X and ) by

XAY (X, %S, B) A (Y, % Sy, B).

3. Examples of generalized symmetries. In this section we describe some exam-
ples of generalized symmetries which appear in a natural way in examining some classes
of flows.

8.1. Generalized symmetries induced by a group action. Let G be a topological group,
which is not assumed to be compact. Let B = S(G), the basic set of the symmetries, be
the family of closed subgroups of G. Moreover let the group G act on a space X. Then
we define

Yo(X) ¥ (G2, Gy) iz e X}, Sa(X) Y {(Go,H) 2z € X, HC G,).

where Gz = {gr € X : g€ G} and G, = {g € G : gx =z} for any = € X.
Elementary verification leads to the following statements.

REMARK 3.1. A subset A C X is G-invariant if and only if it is g (X)-invariant.
REMARK 3.2. If G is compact then the symmetries S¢(X) and Sa(X) are regular.
ProOPOSITION 3.3. If f: (X,G) — (Y, G) is a G-equivariant homeomorphism then
[ (X53Ea(X)) = (Vi Ea(Y))
preserves the symmetries.
ProposITION 3.4. If f: (X,G) — (Y, G) is a G-equivariant map then
f(X;86(X)) = (Vi Za(Y))
preserves the symmetries.

The above remarks suggest some kinds of symmetries which can be considered in the
case when the flow examined preserves an action of a topological group.

It also suggests the relations between the G-homotopy type of the G-spaces and the
>-homotopy type of the spaces with the induced symmetries.

8.2. Generalized symmetries induced by isolated invariant sets of a flow. We consider
a flow ¥ : X x R — X and we introduce the symmetries induced by the compact isolated
invariant sets I75(¢)) of the flow 1), see section 5.1. Let

B =IIS() x I15(1)

be the basic set of the symmetries.

We define

S ({2} xR), (A, B)) :x € X, (A,B) € B, ayp(x) N A+, wy(z)N B +0},
where ay(-) and wy(-) denote the negative and positive limit sets of the flow ¢ respec-
tively.

The family ¥ describes the connecting trajectories of the flow .



202 A. M. PRUSZKO

We prove that any flow ¢ : X x R — X which commutes with 1, i.e. ¢! o ® =
® o ! for t,s € R, preserves the symmetries 3.

LEMMA 3.5. Let A € I1S(v)). Then ¢'(A) C A for any t € R.

PROOF. The assumption guarantees the existence of a compact subset N C X such
that A = inv(N,9) C int(N). As A is compact and the flow ¢ is continuous there is
n > 0 such that (A x [-n,7n]) C int(N). Hence, for any = € A, ¢t € [-n,7] and s € R,
(ot (z)) = ¢t (¢*(x)) € int(N) C N, so we finally obtain ¢'(z) € inv(N,1)) = A. =

COROLLARY 3.6. Let A € I1S(y)) and x € X satisfy wy(x) VA # 0. Then wy (o' (x))
NA#D for any t € R.

PROOF. Indeed, if lim,,_,o, 9" (z) = x¢ € A for some sequence t,, — +oo then
lim 4 (¢! (@) = lim (6 (2)) = ' (z0) € A
foranyt€ R. =

PROPOSITION 3.7. For any t € R, ¢! : (X;%,B) — (X; X, B) preserves the symme-
tries.

PROOF. For any z € X and t € R we obtain ¢! (¢ ({z} x R)) = v({¢'(z)} x R), as
the flows ¢ and ¢ commute. Hence, Corollary 3.6 completes the proof. m

3.3. Generalized symmetries for flows admitting a first integral. Let f : X — R be a
given function. We define B = R to be the basic set of the symmetries

() ={(fHe),0) s € F(X)}
We consider a flow ¢ : X x R — X which admits f : X — R as a first integral, i.e.
f=foy for any t € R.
PROPOSITION 3.8. For t € R, ¢! : (X;3(f),B) — (X;3(f), B) preserves the sym-

metries.

This example can be extended if one replaces R with an arbitrary space Y, takes
B cC P(Y) and
() ={(f1(A),A): Ae B, Anf(X) #0}.
Such symmetries might be helpful for examining the properties of flows which admit first
integrals or invariant subspaces in a more general situation.

4. Some examples of spaces with generalized symmetries. Now, we present
some simple examples of spaces with generalized symmetries. We will use them in section
6 to show how the Conley index with symmetries can be applied to examine the behaviour
of flows.

Let us consider the following subsets of the Euclidean space (R?, |- |):

e discs:
Dy ={zcR*: |z —(3,0)] <3},
Dy={zeR?:|z—(-2,0) <2}, D3={zcR?: |z —(-2,0)| <1},
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e circles:

Ey={zcR?: |z — (2,0 =2}, By ={z €cR?: |z —(1,0)| =1},

e points:

P, =(0,0), P, =(3,0), P;=(-2,0), P,=(-1,0).
We define a space with generalized symmetries over the base set
B={1,2,3}CN.

This will be done, roughly speaking, in the following way. The circles E;, Fs will
define the elements of symmetries (E7,1) and (Es, 1) of type 1. The points P, Ps will
determine the elements (P, 2) and (Ps,2) of type 2. The points P; and Py will play the
role of base points in suitable spaces, so by the definition of symmetries in spaces with
base point, they will appear with types 1,2,3. Moreover we will introduce elements of
type 3 which will take the form ({x,*}, 3), where = will belong to an appropriate set and

* is a base point.
We define the following spaces.

o (U,xXy) = (D1, P1;Xy), where A
Y = {(Elal)v ({PQaP1}72>} D,
U{({z, P1},3): 2 € D1\ (E1U{P2})} E,
U {({Pl}’l)a ({Pl}aQ)’ ({Pl}’?))} P >
o
L] (W, *;Ew) = (Dl,Pl;Ew), where
Yw = {(EQal)v ({PQaP1}72>} D
U {({ZC,Pl},?))Z.’L'GDl\(EQU{PQ})} 1
U {({Pl}’l)a ({Pl}aQ)’ ({Pl}’?))} B, E,
[ (X,*; Zx) = (D1 UDQ,Pl;ZX), where

Ix ={(E2,1), ({B5,P},2)}
@] {({$,P1},3) T E (Dl U Dg) \ (EQ U {P3})}

U {({Pl}’l)a ({Pl}aQ)’ ({Pl}’?))}
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(] (K*; Zy) = (Dl,Pl;Ey), where
Sy ={(£2,1)}

jil',Pl},-?))ZSCGDl\EQ} D1
{Pl}a 1)7 ({P1}72>5 ({Pl}v'?’)}

\ 4

= (D3, Py; X z), where

)
Yz ={({Ps P4}, 2)} A
{({z, P4},3) - w € D3\ {Ps, 4 }}
{{~}, 1), ({Pi},2), ({Pa},3)}

)

The definition of the sum of spaces with symmetries leads us to the following remark.
REMARK 4.1. The spaces (X, *;Sy) and (Y, x; Xy )V (Z,%*; X z) are X-homeomorphic.
REMARK 4.2. The spaces (X,x;Xx) and (W, *;Zw) are X-homotopy equivalent.
LEMMA 4.3. The spaces (U, x; X)) and (W, *; Zw) are not X-homotopy equivalent.

PROOF. Assume that (U,*;3y) and (W, x; y) are Y-homotopy equivalent. Hence,
there exist f: (U, % Xy) = (W, xZw), g+ (W, %;Zw) — (U,x; Zy) and a 3-homotopy
H : (U,*) x [0,1] = (U, ) which connects g o f to idy.

This leads to the following observations:

o f(E1) C Ba, f(P2) = Py, and f~1(P) = { P2},
o g(E2) C Er, g(P2) = P, and g~ (P») = { P2},
e HE)) C E1, Hy(P2) = P, and H; }(P,) = {P»}, for any s € [0, 1].

Hence, for U %' U\ {P,} and W L \ {P:}, there are well defined maps

FE 5 @) > (Won), 5% g5 (W) (0,9),

and the homotopy

~ def

H<H (U, *) x [0,1] = (U, )

|Ux[0,1] *
connects g o J?to id.
We note that
~v:[0,1] = Ey, v(t) = (2 — 2 cos27t, 2 - sin 27t),
which is a parametrization of the circle Ej, represents a nontrivial element [y] in the
fundamental group 1 (U, ).
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On the other hand f(E1) C E2, so [f o9] is the trivial element of m (W, %). Hence
[g o f o] is the trivial element of 71 (U, ). This contradicts [y] = [go fov] as o f and
idg are homotopy equivalent. m

5. Homotopy index for flows preserving generalized symmetries. In this sec-
tion we consider a locally compact metric space with symmetries (X; X x, B) and a flow ¢ :
X x R — X which preserves the symmetries, i.e. ot = o(-,1) : (X;3x,B) = (X;Yx,B)
for any t € R.

5.1. General definitions. Firstly we recall the definitions of objects studied in Conley
index theory and formulate additional conditions which are related to the presence of
symmetries.

Let us recall that for any subset A C X we call

inv(A) = inv(A4, @) def ﬂ 0 H(A)
teR

the invariant part of A.

The subset A C X is an isolating neighbourhood if

inv(cl(A), @) C int(A).

A subset S C X is an isolated invariant set of the flow ¢, S € ITS(y), if there exists

a compact isolating neighbourhood A C X such that
S =inv(A4,p).
A pair (N, L) of compact subsets L C N C X is an index pair when the following

conditions are satisfied:

1. N\ L is an isolating neighbourhood,
2. L is an exit set for the subset N:
Veen Vi>0 Jre0,) o' (z) gN = ¢ (z) €L,
3. L is positively invariant in N:
Veer Viso o (z) c N = ¢8(z) c L.

Moreover, the index pair (N, L) is regular if the exit time mapping

7N = [0,400], 7(x) = sup{t > 0: p({z} x [0,t])) C N\ L} ?fxe N\ L

0 ifxel

is continuous.

Finally, the index pair (N, L) is an index pair of the set S if S = inv(N\ L, ¢). Hence,
of course, S is a compact isolated invariant set of the flow ¢.

The fundamental theorem of Conley index theory is

THEOREM 5.1. If A is an isolating neighbourhood then there exists a regular index
pair (N, L) of the set inv(A) such that N C A.

For the proof we refer the reader to [RS], theorem (5.2), and [S], theorems (5.2-4).
In our case with symmetries we introduce the following definitions.
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DEFINITION 5.2. A (regular) index pair (N, L) is a 3-invariant (regular) index pair
if the sets IV, L are Y-invariant subsets of X.

DEFINITION 5.3. A subset S C X is a X-admissible compact isolated invariant set of
the flow ¢, S € II1Sx(p), if it admits a Y-invariant index pair.

DEFINITION 5.4. Sets S1,S2 € I1S(p) are said to be (X, p)-disjoint if they admit
index pairs (N7, L1) and (Np, L1) respectively such that the subsets N; and Ny are
Y-disjoint.

In section 5.4 we prove that when the symmetries ¥ are regular then a set S € I15(¢p)
is X-admissible if and only if it is X-invariant, and two X-admissible sets S1, .52 € I15(¢p)
are (X, p)-disjoint if and only if they are disjoint.

5.2. Homotopy index with symmetries. In this section we introduce the homotopy
index of a compact isolated invariant set of a flow which reflects the structure of symme-
tries.

We consider a flow ¢ : (X;Xx,B) x R — (X;Xx, B) which preserves the symmetries
and a compact isolated invariant set S € 115(¢p).

In this situation, two cases can appear according to whether S is Y-admissible, i.e.
has a ¥-invariant index pair, or not. Usually, invariant theories deal with somehow dis-
tinguished invariant objects. We show that both cases can be successfully treated. This
is a great difference in comparison to the usually proposed invariant index theory.

DEFINITION 5.5. For any set S € I15(p) we define the homotopy X*-Conley index
* ef *
S*h(S,0) € [Q*(N, L; £, B)]
where (N, L) is an arbitrary index pair of S.

In the case when the set S € I1S(p) is additionally Y-admissible, i.e. it admits a
Y-invariant index pair, we can describe a more precise homotopy index.

DEFINITION 5.6. For any ¥-admissible set S € 1155 () we define the homotopy -

Conley index dof
Eh(S,¢) = [Q(N,L; En, B)]

where (N, L) is an arbitrary Y-invariant index pair of S.

The independence of these indexes from the choice of index pairs follows from the
standard arguments used in the Conley index theory. We recall the basic constructions
and refer the reader to D. Salamon [S] and J. Robbin & D. Salamon [RS].

Let us consider two index pairs (Ng, Lo) and (Ng, Lg) of S € I115(yp). For t > 0 we
define

Cho € {z€Na\ Lo :9O%(@2) € No\ La, ¢89(x) € N\ Lg}
= ﬂ ¢ " (Na\ La) N ﬂ @ "(Np\ Lg)
T€[0,2L] TelL t]

and

i if z€Ct_,
fa: Naf/La = Na/Lp, fha(p(@)) = {f“" ) o e

where p: No = No/Lq and p: Ng — Ng/Lg are the canonical projections.
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Moreover, let
Fy: No/Lg % [0,400) = No/La, F(z,t) = fi, ().

We recall the fundamental properties of the maps defined above. They are proved in
detail by J. Robbin and D. Salamon [RS], theorem (6.3) and theorem (4.2).

THEOREM 5.7. There is Tgo = 0 such that the maps f, : No/Loa — Np/Lg and
L3 Ng/Lg — NofLea are continuous for any t > Tga and

oo = Jap © has T35 = fha o fap-
THEOREM 5.8. The map Fy : No/Lo % [0,400) = No/L, is continuous.

Now, we apply this technique to prove the correctness of the definitions of Conley
indexes with symmetries.

LEMMA 5.9. For t > Tga, the map fh, : Q*(Na, La; XN, , B) = Q*(Ng, Lg; Xn,, B)
preserves the symmetries.

PRrROOF. This is a direct consequence of the above definitions, Theorem 5.7 and Propo-
sition 2.18. =

THEOREM 5.10.  [Q*(Na, La; En,,B)] = [Q*(Ng, Lg; ¥n,, B)].
ProoF. Applying Lemma 5.9 and Theorem 5.8 we see that, for T' = Tj,,
fia : Q*(Na, La; S, B) = Q*(Ng, Lg; En,, B)
is a X-homotopy equivalence with -homotopy inverse
05 Q" (Ng, Lg; En,, B) = Q*(Na, La; Sy, B).
Indeed,

Hy i NofLo x[0,1] = No/Lo, Ho(x,7) = Fo(z,27T),
Hﬁ : Nﬁ/Lﬁ X [0,1] — Ng/Lﬁ, Hﬁ(:c,'r) = Fg(:c,QTT),

yield f250 f3, ~ idn, /L, and f3, 0 2 ~ idn, /L, respectively. m

LEMMA 5.11. If (Na, Lo) and (Ng, Lg) are X-invariant index pairs then Ch, is a
Y -invariant subset of X fort = 0.

PrOOF. This is straightforward from Remark 2.12 and Proposition 2.2, as Céa is an
intersection of preimages of Y-invariant subsets of X. m

LEMMA 5.12. If (Ng, Lo) and (Ng, Lg) are S-invariant index pairs then, fort > Taq,
the map féa :Q(Na, Lo En,, B) = Q(Ng, Lg; Xy, B) preserves the symmetries.

PrOOF. This is a direct consequence of the above definition, Lemma 5.11, Theorem
5.7 and Proposition 2.19. =

THEOREM 5.13. If (No, Lo) and (N, Lg) are L-invariant index pairs then
[Q(Na; La, ZNQ,B)] = [Q(Nﬁv Lﬂ) ENga B)]
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ProoFr. Applying Lemma 5.12 and Theorem 5.8 we see that, for T' = Tg,,
fga : Q(NouLa;ENaaB) — Q(NBaL,@;ZNgaB)
is a 3-homotopy equivalence with ¥-homotopy inverse
fas : Q(Ns, Lgi ¥, B) = Q(Na, La: B, B).
Indeed,
Hy, : No/Lo x[0,1] = No/Lo, Ho(x,7) = Fo(z,27T),
Hg : Ng/Lp x [0,1] = Ng/Lp, Hp(x,7) = Fs(x,27T),
yield f250 f3, ~ idn, /L, and f3, o L ~ idn, /L, respectively. m
5.8. Properties of the homotopy Conley indexes with symmetries. In this section we
formulate the properties of the above defined homotopy Conley indexes.
5.83.1. Normalization. Define the space with symmetries
0= ({@}a (Z); Z@a B)

where ¥y = {{0}} x B. This space plays the role of the trivial space in the category of
spaces with base point and symmetries over .

PROPOSITION 5.14. The set O € I1Sx(p) is a X-admissible isolated invariant set of
the flow ¢ and Zh(0, p) = Z*h(0) = [0].

PRrROOF. First we observe that (0,0) is a Y-invariant index pair of the set (). Hence,
according to our construction, we obtain Q(@,0) =0 =0*. =

5.3.2. Additivity. Consider isolated invariant (X, ¢)-disjoint sets S1,S2 € II1S(p) of
the flow ¢.

PROPOSITION 5.15.  X*h(S7 U Sa, @) = Z*h(S1, @) V E*h(Sa, ).

PROOF. According to our assumptions there are index pairs (N1, L1) and (Na, L)
of S1 and S5 respectively such that N7 and Ns are X-disjoint, thus disjoint. It is known
that (N7 U N, L1 U Lo) is an index pair of S; U Sy. Hence, due to Propositions 2.16 and
2.17, we obtain

Z*h(SlUSQ,(,D) = [Q*(NlUNQ,LlLJLg;ZNlU]VZ,B)]

[( (NlaLl; ENI’B) \ Q(N27L2;2N278>>*]
[Q*(NlaLl; ENlaB) \ Q*(N27L2;2N278>]
[Q*(vaLl; ENI’B)] v [Q*(N%L?;ENwB)]

S h(S1, @) V S h(Ss, o). m
PROPOSITION 5.16. ]f S1,5; € IISE((,D) then S1 U Sy € IISZ((,D) and
Eh(Sl U SQ, (p) = Eh(Sl, (p) \Y Eh(SQ, (p)

PROOF. Our assumptions guarantee that there are Y-invariant index pairs (Ny, L)
and (Na, La) of S7 and Ss respectively such that Ny and Ny are Y-disjoint, thus disjoint.
It is known that (N7 U Na, L1 U Lo) is an index pair of S7 U Sy, moreover these sets are
Y-invariant, as stated in Proposition 2.2, thus S U S2 € I1S%(y).
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Hence, due to Proposition 2.16, we have

Eh(SlUSQ,SQ) - [Q(NlUNQ;LIULQ;ENlUNQ;B)]
= [Q(vaLl;ENlaB)\/Q(NQ;LQ;ZNwB)]
= [Q(vaLl;ENUB)] \ [(N27L2;EN256)]
= Xh(S1,9) VEh(S2,¢). =
5.3.83. Multiplicity. Consider spaces with symmetries (X;Yx,Bx), (Y;Xy,By) and

flows px : X x R = X, ¢y : Y x R — Y which preserve the given symmetries.
We define the flow

ef
P X XY XxR—= X xY, oz,y,t) E (ox(2,1), 0y (y,1))

which preserves the symmetries of the space (X; X x,Bx) x (YV; 3y, By).
Moreover let Sx € I1S(px) and Sy € II1S(¢y). Then Sx x Sy € I1S(yp).

PROPOSITION 5.17.  X*h(S1 X Sa,0) = Z*h(Sx, px) A X*h(Sy, ¢y).

PROOF. Let (Nx, Lx) and (Ny, Ly) be index pairs of Sx and Sy respectively. It is
known that (Nx x Ny, Nx x Ly U Lx x Ny) is an index pair of Sx x Sy. Hence, due
to Proposition 2.17, we obtain

Z*h(Sl X SQ,(p) = [Q*(Nl X NQ,Nl X L2 @] L1 X N2;2N1><N2;BX X By)]
= [(Q(N1,L1;¥nN,,Bx) A Q(Na, Ly; ¥n,, By))*]
= [Q*(NlaleNUBX) /\Q*(NQ,LQ;ZNZ,BY)]
= [Q"(N1, L1; XN, Bx)] A [Q*(Na, La; Xn,, By )]
S*h(S1,¢) A E*h(Sa, ¢).
PROPOSITION 5.18. ]f Sx € IISZX((px) and Sy € IISEY((,D) then S1 X Sy €
I1Ss, ., (¢) and
Eh(S1 x S2,¢) = Xh(Sx, px) A Eh(Sy, ¢y ).

PROOF. According to our assumptions there are X-invariant index pairs (Nx, Lx)
and (Ny, Ly) of Sx and Sy respectively. It is known that

(NX X Ny,Nx x Ly U Lx XNy)

is an index pair of Sx x Sy. From Remark 2.5 and Proposition 2.2 we conclude that
these sets are X-invariant, thus S; x Se € 1S5, ., (¥).
Hence, we have
Zh(Sl XSQ,(p) = [Q(Nl XNQ,Nl XLQULl XNQ;EleNZ;BX XBy)]
= [Q(N1,L1¥nN,, Bx) A Q(No, La; X, , By )]
= [Q(N1,L1; En,, Bx)] A [Q(N2, La; X, By )]
= Xh(S1,9) AEh(S2,¢).

5.3.4. Continuation. Let us introduce in the space X x [0, 1] the symmetries

Exxpo,1) = {(lal x {A}, (@) : (lal, (a)) € X}
and consider a flow ¢ : X x [0,1] x R — X x [0, 1] which preserves the symmetries. Then

the flows
ox: X xR = X, (e, 1) = (pa(a, ), \), for A€ [0,1],

preserve the symmetries of the space (X; X, B).
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Moreover let S € T1S(p) and

S; iz e X (x,d) €S}, fori=0,1.

It is known that Sp € IT1S(pp) and Sy € I15(p;) are isolated invariant sets of ¢o and @1
respectively.

REMARK 5.19. Let (N, L) be a Y-invariant index pair of the set S and let X € [0,1].
Then

(Nx, L)) =({re X : (z,\) e N}, {zr e X :(z,)) € L})
is a X-invariant index pair for the flow @y .

PROOF. It is easy to notice that (N, Ly) is an index pair for ¢y, as ¢ preserves the
set X x {A}.

We are going to show that Ny, L, are X-invariant subsets of X. Let a € X x be
such that |a| N Ny # 0. Then (Ja| x {)\}, (a)) € Xxx[o,1) and |a| x {A\} NN # 0. Hence
la| x {\} C N, as N is a E-invariant subset of X x [0,1], thus |a| C Nx. Analogously we
obtain that Ly is a X-invariant subset of X. m

The continuation property of the Conley index with symmetries can be formulated in
the following way.

PROPOSITION 5.20.  X*h(So, ¢0) = X*h(S1, ¢1)-

PROPOSITION 5.21. If S € IISs, , (¢) then Sy € I1Ss (o), S1 € I1Ss (1)
and

Yh(So, w0) = Xh(S1,¢1).

The proofs of these propositions can be based on the construction of a homotopy
equivalence given by D. Salamon [S] in chapters 6.2 and 6.3. It is elementary, but tech-
nically difficult, to show that the maps defined there preserve the symmetries induced
in the quotient spaces. We omit the details which, in fact, repeat the arguments used
in section 5.2 where we proved the correctness of the definitions of Conley indexes with
symmetries.

5.4. Existence of X-invariant index pairs. An important problem is to compare the
class of invariant sets of a flow which are Y-invariant subsets of the phase space with the
class of those invariant sets of the flow which admit a ¥-invariant isolating neighbourhood
or a X-invariant index pair.

In general, when we do not impose any regularity conditions on the symmetries 3,
we cannot expect that a set S € I1S(¢) N Px(X) possesses a Y-invariant isolating neigh-
bourhood or a Y-invariant index pair. This can be easily observed, for example, when we
consider, compact isolated invariant set S of a flow ¢ which is not an open subset of X
and the symmetries ¥ = {S, X \ S} x B.

However, if the symmetries % are regular in the sense of Definition 2.8 all those
conditions describe the same class of sets. This will be studied in detail in this section.

Consider a space (X; X, B) and assume that the symmetries ¥ are regular. Moreover
let A C X be a compact isolating neighbourhood for a flow ¢ : X x R — X which
preserves the symmetries. We denote S = inv(A, p).
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THEOREM 5.22. The following conditions are equivalent:

(1) S is a T-invariant subset of X,
(2) there is a compact Y-invariant isolating neighbourhood B C A of S,
(3) there exists a Y-invariant reqular index pair (N, L) of S such that N C A.

PROOF. (3) = (1) We have
S=inv(cl(N\L)) Cint(N\L)C N\ L.
Hence

S—ino(N\L) = () ¢ ' (N\ ),
teR
thus S is a ¥-invariant subset of X as the intersection of a family of X-invariant sets.
To prove the remaining part of the theorem we will adopt techniques used in G-
equivariant Conley index theory.
Let Y = X/Ryx denote the quotient space and let 7 : X — X/Ry stand for the
canonical projection. We define the flow
61Y xR Y, (el b) = (oo, 0)].
(1) = (2) Let D = X \ int(A). Then n(D) Nw(S) = 0. As Y is a locally compact
metric space, there is a compact set V. C Y \ (D) such that 7(S) C int(V'). Hence
S =7"Yx(S)) c 7 (int(V)) Cint(z~ (V) Cc n~ (V) Cint(A) C A,

thus we can take B = 7~ }(V).

(2) = (3) In Lemma 5.23 it is proved that w(B) is an isolating neighbourhood of the
set w(S) for the flow ¢. Theorem 5.1 guarantees that there is a regular index pair (P, Q),
P C w(B), of the set w(S). The lemmas below say that

(N,L) = (x=*(N),n~ (L)), NCBCA,
is a regular index pair of S. m
We formulate the lemmas we used in the proof above. We always assume (2).

LEMMA 5.23. The set w(B) is a compact isolating neighbourhood of w(S) for the
flow .

PROOF. We see that 7(B) is compact and

7(S) C w(int(B)) C int(n(B)) C m(B)

because 7 is an open map. We prove that 7(S) = inv(w(B), ¥).

Let y € inv(n(B), ). Then y = w(x) for some z € X. Hence

O(m(x),t) = 7(p(x,t)) € m(B)

for any t € R, so ¢(x,t) € 7~ (n(B)) = B. Thus € S and y € 7(9).

Conversely, let y € 7(S). Then y = 7(z) for some = € S. Hence, for any t € R, we
have ¥(y,t) = n(¢(z,t)) € n(S) C 7(B), thus y € inv(n(B)). m

LEMMA 5.24. Let (N, L) C (w(B),w(B)) be an index pair of the set w(S) for the flow
. Then (N*,L*) = (m=1(N),7=(L)) is an index pair of the set S for the flow .
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Proor. First we observe that the sets L* C N* C B are compact and
S =n"Ym(S)) Ccnt(int(N\ L)) Cint(N*\ L*),
hence cl((N*\ L*) C B is an isolating neighbourhood of S.

Let © € N* and let o(x,t) € N* for some ¢t > 0. Then 7(z) € N and 7(p(z,t)) =
Y(r(x),t) € N. As (N, L) is an index pair for ¢, there is 7 € [0, ¢] such that ¢ (7 (z), ) € L,
so p(x,T) € L*.

Let 2 € L* and ¢t € R be such that ¢(z,7) € N* for 7 € [0, t]. Hence we have w(x) € L
and w(p(z, 7)) = P(r(x),7) € N for 7 € [0,t]. As (N, L) is an index pair for ¢, we have
Y(r(x),t) € L for 7 € [0,t], thus p(z,t) € L* for 7 € [0,¢]. m

LEMMA 5.25. Let (N, L) and (N*,L*) be as in Lemma 5.4 and let 7 : N — [0, +00]
and 7 1 N* — [0,400] be the exit time maps of the index pairs (N,L) and (N*,L*)
respectively. Then 7* = 7 o .

PROOF. We notice that N*\ L* =7~ 1(N \ L), so for z € X,

xe€ N*\L* if and only if 7(z) € N\ L.
The rest follows directly from the definition of the exit time map and the flows ¢ and ¢). m

COROLLARY 5.26. Let 51,52 € II1S(p) be disjoint and X-invariant sets. Then S1 and
Sy are (X, ¢)-disjoint.

PrOOF. Indeed, as S; and S, are disjoint, they admit disjoint isolating neighbour-
hoods A; and As respectively. Hence, Theorem 5.22(3) completes the proof. m

6. Examples of the use of the ¥*/h index. In this section we calculate Conley
indexes with symmetries of some isolated invariant sets and analyse them in relation to
the behaviour of the flow. In particular we discuss the problem of the connecting orbit
and the problem of deformation of the flow.

In the class F of vector fields on R? which induce flows as solutions of associated
ODEs we consider the class Fy C F satisfying additional conditions. We say that F =
(Fy,Fy) € Fy if
(1) F((O’ 1)) = (an)a
(2) Fo((x,—1)) =0 for z € R.

We show how the above restrictions affect the behaviour of the flow and how it can
be observed in the context of Conley index with symmetries.

Let B ={1,2,3} C N be the basic set of the generalized symmetries. We denote

EY¥Rx{-1}, P¥(0,1)

and
(X:2,8) € (X {(E,1), ({PL2)}U{({z}.3): 2 € R?\ (EU{P})},B).

We notice that, for any F' € Fx, the flow ¢ : X x R — X induced by the vector field
F preserves the symmetries X. Indeed, we see that

e condition (1) guarantees ¢'(P) = P for t € R.
e condition (2) guarantees ¢!(F) = E for t € R.
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Thus, for # € R?\ (EU{P}) and t € R, we have ¢'(z) ¢ EU{P},as ¢’ : X — X is a

homeomorphism.
Let
2+ (y—-172%2+2 ify>1
flay) € a2+ @y—y®)  ifye(-1,1)
22— (y+1)2 -2 ify<—1
and

(202y-1) ify>1
Fz,y) ¥ Vi(z,y) =4 (22,3(1—y2) ifye(-1,1) € F.
(22, -2y +1)) ify<—1
The phase portrait of the flow ¢ induced by the vector field F' is shown below.
A

A
Y
P
\. A-
N7
N7/
NA AT Nl
$\Y\ 7/?

We notice that {(0,1)} € I1Sx(p) and A, {(0,—1)} € I1S(p) \ I1Ss(p), where A =
{0} x [~1,1], are compact isolated invariant sets of the flow ¢. Moreover

\

A\

(Na,L,)

(Ny,Ly)

4 AAA
J Iy V

\ 4

A
N

E

e (N1, L) def ([-1,1] x [-2,2],{-1,1} x [-2,2] U [-1,1] x {2}) is an index pair for

A,
o (NQ; LQ) dZEf ([_1/25 1/2] X [1/25 3/2]5 {_1/25 1/2} X [1/27 3/2] U [_1/27 1/2] X {3/2})
is an index pair for {(0,1)},
o (N3, Ls) = ([-1/2,1/2) x [-3/2,-1/2], {~1/2,1/2} x [-3/2,-1/2] U[~1/2,1/2]
{—1/2}) is an index pair for {(0,—1)}.
This allows us to calculate the Conley indexes with symmetries of these sets. Applying
the notation of section 4 we obtain:
i E*h(Aa (10) = [(Ua *3 EU7 B)]7
i E*h({(oa 1)}7 p) = [(Zv*; Xz, B)]a
i E*h({(oa _1)}5 90) = [(Ya * Yy, B)]
We see that these sets have different Conley indexes with symmetries while their Conley
indexes
h(A, ) = h({(0,1)},¢) = h({(0, =1)}, ) = [({x}, %],

are trivial.
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Furthermore, an elementary computation shows that according to Definition 5.4 the
sets No and N3 are 3-disjoint, so {(0,—1)},{(0,1)} € I1S(p) are (%, ¢)-disjoint.

Connecting orbits problem. Now, we study the problem of existence of additional
stationary points or connecting orbits.
Let g : R? = R be a function of class C? and R > r > 0 such that

L. 9B((0,-1),r) = fiB((0,~1),r) a0d g|B((0,1),r) = f|B((0,1),r)5
2. gIR2\B((0.0).R) = fIR2\B((0.,0).R)-

Moreover let ¢ : R? x R — R? denote the flow induced by Vg : RZ2 = R2.
THEOREM 6.1. Under the above assumptions, either

(1) there is x € B(0, R) \ {(0,—1),(0,1)} which is a stationary point of the flow ¢ or
(2) there is x € B(0,R) \ {(0,—1),(0,1)} such that

Jim 9t(@) = (0,1) and lim $4(2) = (0,-1)

which induces the orbit connecting the points (0,1) and (0,—1).

PROOF. We set B &' B((0,0),2R) = {x € R?: |z| < 2R}. By our observations, we

have

"h{(0, 1)} 4) = ETA{(0,1)}, ),

({(0, Dhy) = E7h({(0,1)}

“B(ino(B), ) = S*h(inv(B), ).
Hence by Lemma 4.3 we obtain

S*h(inv(B), 1) # Z*h({(0,1)},¢) vV E*h({(0, =1)},¢).
We consider two cases:
1. (Vg)~10)n B\ {(0,—1),(0,1)} # 0. This is the (1) of the theorem.
2. (Vg)~1(0)n B\ {(0,-1),(0,1)} = 0. Applying the additivity of the Conley index
with symmetries we obtain

inv(B, ) # {(0,-1), (0, 1)},

hence there exists x € inv(A4, )\ {(0,—1),(0,1)}. As the flow is generated by a gradient
vector field and (0, —1), (0, 1) are its only stationary points in B, it follows that z induces
the required connecting orbit. m

Flow deformation problem. In the context of bifurcation phenomena a parametrized
family of flows is studied. We show that the Conley index with symmetries can be used
to verify whether one flow can be deformed to another one without disturbing a fixed
isolating neighbourhood.

Set

k?(.%',y) dZEf f(.%', _y)'
Then
K(z,y) = Vk(z,y) = (Fi(z, —y), —F2(z, —y)) € Fx,
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hence
(22,20 —y) ify>1
K(z,y) =< (27,3(y* 1)) ifye (-1,1)
(22,21 +y)) ify<-L
The phase portrait of the flow ¢ induced by the vector field K is shown below.
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We see that the set

A0} x [-1,1] € T1S(¢) \ [1S%(4)

is a compact isolated invariant set of the flow ¢ and

(Ny, Ly) def ([-1,1) x [-2,2],{-1,1} x [-2,2] U [-1,1] x {-2})

is its index pair. Hence, applying the notation of section 4, we obtain that the Conley
index of A is

XTh(A, @) = [(W, % Zw, B)],
while its Conley index h(A, ¢) = [({x}, *)] is trivial.
Let N C X be any isolating neighbourhood of A.
PROPOSITION 6.2. There is no homotopy H : R? x [0,1] — R? such that
1. H():F andleK,
2. Hy € Fx, for s € [0,1],
3. N is an isolating neighbourhood for the flow ¢y, induced by the vector field Hs, for
any s € [0, 1].

ProoF. This is a straightforward consequence of the continuation property of the
Conley index with symmetries. Indeed A = inv(N,p) = inv(N,¢) and I*h(A4, @) #
Y*h(A, ¢) as shown in Lemma 4.3. m

PROPOSITION 6.3. There exists a homotopy H : R? x [0,1] — R? such that

1. H():FaTLdHliK,
2. Hy € F for s €0,1],
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3. N is an isolating neighbourhood for the flow wm, induced by the vector field H, for
any s € [0,1].

PRrROOF. We construct the required homotopy which connects F' and K in such a way
that N is an isolating neighbourhood for the associated gradient flows.
This homotopy is obtained as the composition of a deformation (H), a rotation (H?)
and a deformation (H?) defined below.
Let H' : R? x [0,1] — R,
2+y—(1-35)2+21-3s)3 ify=>1-s
HY(z,y,8) = { 224 (3(1 — 5)%y — y%) ifye(s—1,1—s)
22— (y+(1-38)2-2(1-35)3 ify<s—1

and H?: R? x [0,1] — R,
H*(,y,5) = Hy(Os(2,y)),

where

cosms —sinws
Os - ( )

sinws  cosTs
is the rotation through s - 7 and finally H® : R? x [0,1] — R,
22— (y—s)?2—2s ify>s
HP(z,y,s) =4 2° + (y* = 3s%y)  ifye (-s,9)
22+ (y+s)?2+2s ify< —s.

The stages of deformation of ¢ to ¢ are presented below.

- wé%w%

17

Phase portrait of the gradient flow along the deformation H!
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Phase portrait of the gradient flow along the rotation H?
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Phase portrait of the gradient flow along the deformation H3
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