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Abstract. Topological spaces with generalized symmetries are defined and extensions of the

Conley index of a compact isolated invariant set of the flow preserving the structures introduced

are proposed. One of the two new indexes is constructed with no additional assumption on the

examined set in terms of symmetry invariance.

1. Introduction. The Conley index theory is developed in many different directions

to examine various aspects of the behaviour of flows. It is well known that the behaviour

of flows which admit certain symmetries is strongly limited. The works of A. Floer [F],

A. Floer & E. Zehnder [FZ] and T. Bartsch [B] show how the ideas of Conley index

can be used to investigate the flows which are equivariant with respect to a compact Lie

group action. Nevertheless, there appear some “symmetries” which cannot be obtained

as a compact Lie group action.

The main aim of this paper is to study whether it is possible to define a homo-

topy index for flows which can contain some information about less regular symmetries

than those indicated by a compact Lie group action. The positive answer is obtained

through the concept of topological spaces with generalized symmetries. The suggested

invariant is the homotopy type of a suitable compact pointed space with generalized

symmetries.

The paper is organized as follows. In section 2 we introduce the notion of a topo-

logical space with generalized symmetries (or symmetries for short) over some base B,

a map preserving the generalized symmetries and finally the homotopy type of spaces

with generalized symmetries. We discuss the basic properties of these objects. In partic-

ular we describe the class of regular symmetries which can be treated similarly to the

“symmetries” established by the action of a compact Lie group.
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Section 3 describes some relations between extensively investigated classes of flows,

i.e. flows equivariant with respect to a compact Lie group action, flows admitting a

first integral, flows commuting with another given flow and the class of flows preserving

generalized symmetries. We show the way generalized symmetries can be defined in these

cases.

In section 4 there are some illustrations of the notion of homotopy type of spaces with

generalized symmetries.

Section 5 attempts to define the Conley index of compact isolated invariant sets of

a flow which preserves symmetries. In fact, we define the index Σ⋆h(·) which can be

associated with any compact isolated invariant set of this flow and the index Σh(·) which

is defined for some Σ-admissible compact isolated invariant sets. Next, we discuss the

properties of those indexes. Finally, we consider regular symmetries. In this case we can

describe in detail the class of Σ-admissible compact isolated invariant sets.

The proofs presented are based on the ideas of C.C. Conley [C] and standard con-

structions used in the Conley index theory which are excellently described in works of

D. Salamon [S], J. Robbin & D. Salamon [RS].

The last section 6 contains examples which show how these new invariants can be

used to answer natural questions about the flow behaviour.

It is worth emphasizing that the concept of Conley index with generalized symmetries

can be extended to the case of the Conley index for discrete semidynamical systems in

the setting due to A. Szymczak [Sz].

This paper is a part of the author’s Ph.D. thesis written at the Institute of Math-

ematics of the Polish Academy of Science. I would like to express my special gratitude

to Professor K. Gȩba who introduced me to this area of research. I also thank Professor

L. Górniewicz whose remarks helped me to simplify some of the ideas presented.

2. Generalized symmetries in topological spaces. This part is devoted to the

description of generalized symmetries in topological spaces and their basic properties.

Let (X,Θ) denote a Hausdorff topological space endowed with a topology Θ and let

P (X) stand for the family of subsets of X . Furthermore, for any subset A ⊂ X , cl(A)

and int(A) denote the closure and the interior of A according to the topology Θ.

A map between topological spaces will always mean a continuous map unless explicitly

stated otherwise.

We now formulate the definition of generalized symmetries in relation to some given

abstract base set B.

Definition 2.1. The generalized symmetries in X over the base set B is any family

Σ ⊂ (P (X) \ {∅})× B.

The system (X ; Σ,B) or (X,A; Σ,B), where A ⊂ X , is called a space with generalized

symmetries over B.

In the sequel we use the name symmetries instead of generalized symmetries ; this will

not lead to any confusion as we only consider generalized symmetries.
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Now, consider a given space with symmetries (X,Σ;B). We denote elements of Σ by

a, b, c, . . . Moreover, for a = (|a|, (a)) ∈ Σ, we will say that the subset |a| ⊂ X is the

support of a and (a) ∈ B is the index or type of a.

For any subset A ⊂ X , we define the symmetries ΣA in A induced by the symmetries

Σ as follows:

ΣA
def
= {(A ∩ |a|, (a)) : a ∈ Σ and |a| ∩ A 6= ∅}.

In this sense we will consider the space with symmetries (A; ΣA,B) as a subspace of

(X ; Σ,B).

Subsets A,B ⊂ X are said to be Σ-disjoint if they are disjoint and |a| ⊂ X \ A or

|a| ⊂ X \ B for any a ∈ Σ. This property implies that ΣA∪B = ΣA ∪ ΣB. A subset

A ⊂ X is Σ-invariant if A and X \ A are Σ-disjoint. Let PΣ(X) stand for the family of

Σ-invariant subsets of X .

Proposition 2.2. The family PΣ(X) forms an algebra of sets with the natural oper-

ations ∪ and ∩, i.e.

(1) ∅ ∈ PΣ(X) and X ∈ PΣ(X),

(2) X \A ∈ PΣ(X) for any A ∈ PΣ(X),

(3)
⋃
A ∈ PΣ(X) and

⋂
A ∈ PΣ(X) for any family A ⊂ PΣ(X).

Thus we can formulate the following definition.

Definition 2.3. The family of sets

ΘΣ
def
= Θ ∩ PΣ(X)

is called the topology of Σ-invariant sets .

To complete the formal definitions we introduce the notion of sum and product of

spaces with symmetries.

Definition 2.4. Let (X,A; ΣX ,BX) and (Y,B; ΣY ,BY ) be spaces with symmetries.

We define

• the sum

(X,A; ΣX ,BX) ∪ (Y,B; ΣY ,BY )
def
= (X ⊔ Y,A ∪B; ΣX ∪ΣY ,BX ∪ BY ),

if only the spaces X and Y are disjoint, where ⊔ means topological sum,

• the product

(X,A; ΣX ,BX)× (Y,B; ΣY ,BY )
def
= (X × Y,X ×B ∪ A× Y ; ΣX×Y ,BX × BY ),

where ΣX×Y = {(|a| × |b|, ((a), (b))) : a ∈ ΣX , b ∈ ΣY }.

Remark 2.5. If A ∈ PΣX
(X) and B ∈ PΣY

(Y ), then A×B ∈ PΣX×Y
(X × Y ).

Proof. Indeed, let c ∈ ΣX×Y and |c| ∩ A×B 6= ∅. Then

c = (|a| × |b|, ((a), (b))), |a| ∩ A 6= ∅ and |b| ∩B 6= ∅

for some a ∈ ΣX and b ∈ ΣY . Hence |a| ⊂ A and |b| ⊂ B, as they are Σ-invariant subsets.

Thus |c| ⊂ A×B.
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2.1. Regular symmetries. Consider a space with symmetries (X ; Σ,B). The symme-

tries Σ define the relation RΣ ⊂ X ×X by

RΣ = {(x, y) ∈ X ×X : ∃a∈Σ x, y ∈ |a|}.

It is elementary to verify that this is an equivalence relation if, for instance, the symme-

tries Σ satisfy the following conditions:

• X =
⋃
a∈Σ |a|,

• for any a, b ∈ Σ we have |a| = |b| or |a| ∩ |b| = ∅.

If RΣ is an equivalence relation then the quotient space X/RΣ is a topological space

and the canonical projection π : X → X/RΣ is a continuous map.

Remark 2.6. If RΣ is an equivalence relation then subsets A,B ⊂ X are Σ-disjoint

if and only if π(A) ∩ π(B) = ∅.

Proof. (⇒) If z ∈ π(A) ∩ π(B), then there are x ∈ A and y ∈ B such that z =

π(x) = π(y). Hence, there must exist a ∈ Σ such that x, y ∈ |a|, so |a| ∩A 6= ∅ 6= |a| ∩B,

which contradicts our assumption.

(⇐) Let a ∈ Σ and |a| ∩ A 6= ∅. Then

|a| ⊂ π−1(π(A)) ⊂ X \ π−1(π(B)) ⊂ X \B,

as π−1(π(A)) ∩ π−1(π(B)) = ∅ and B ⊂ π−1(π(B)).

Corollary 2.7. If RΣ is an equivalence relation then

A ∈ PΣ(X) if and only if A = π−1(π(A)).

Definition 2.8. The symmetries Σ are regular if RΣ is an equivalence relation and

the canonical projection π : X → X/RΣ is a closed and open mapping.

We recall the following theorem.

Theorem 2.9. If X is a locally compact metric space and the symmetries Σ are

regular then the quotient space X/RΣ is a locally compact metric space.

Proof. It is known [E, theorem 4.4.18] that the quotient topology is metrizable as

there is a closed and open surjection π : X → X/RΣ.

Moreover, the quotient space X/RΣ is locally compact, as the quotient topology is

metrizable and π : X → X/RΣ is an open surjection, see [E, theorem 3.3.15].

2.2. Maps preserving generalized symmetries. The additional structure of symmetries

allows us to describe the class of maps which preserve the symmetries introduced.

Definition 2.10. Let (X,A; ΣX ,B) and (Y,B; ΣY ,B) be spaces with symmetries. A

continuous map f : (X,A) → (Y,B) is Σ-invariant (preserves the symmetries) if for any

a ∈ ΣX there is b ∈ ΣY satisfying

f(|a|) ⊂ |b| and (a) = (b).

We write

f : (X,A; ΣX ,B) → (Y,B,ΣY ,B).
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A Σ-invariant map is called a Σ-homeomorphism if its inverse is also a Σ-invariant

map.

Proposition 2.11. The basic properties of Σ-invariant maps are:

(1) the identity map id : (X,A; ΣX ,B) → (X,A; ΣX ,B) is Σ-invariant,

(2) for any Σ-invariant maps

f : (X,A; ΣX ,B) → (Y,B; ΣY ,B) and g : (Y,B; ΣY ,B) → (Z,C; ΣZ ,B)

the composition g ◦ f : (X,A; ΣX ,B) → (Z,C; ΣZ ,B) is Σ-invariant,

(3) for any Σ-invariant map f : (X,A; ΣX ,B) → (Y,B,ΣY ,B) the restriction

f|A : (A; ΣA,B) → (B; ΣB ,B), f|A(x)
def
= f(x)

is Σ-invariant with respect to the induced symmetries.

Remark 2.12. Let f : (X ; ΣX ,B) → (Y ; ΣY ,B) and B ∈ PΣY
(Y ) be a ΣY -invariant

subset of Y . Then the preimage f−1(B) ∈ PΣX
(X) is a ΣX-invariant subset of X.

Proof. Let a ∈ ΣX be such that |a| ∩ f−1(B) 6= ∅. As f preserves the symmetries,

f(|a|) ⊂ |b| for some b ∈ ΣY , so |b| ∩ B 6= ∅. Hence |b| ⊂ B as B ∈ PΣY
(Y ), thus

|a| ⊂ f−1(B).

2.3. Topological spaces with base point and generalized symmetries. We say that the

symmetries ΣX in the space X agree with the base point ⋆ ∈ X when ({⋆}, τ) ∈ ΣX for

any τ ∈ B. In this case we write (X, ⋆; ΣX ,B).

This condition implies that for any space (Y ; ΣY ,B) the constant map

f : (Y ; ΣY ,B) → (X, ⋆; ΣX ,B), f(x)
def
= ⋆

is Σ-invariant.

Furthermore, we define the pointed symmetries

(X, ⋆; ΣX ,B)
⋆ def
= (X, ⋆; Σ⋆X ,B)

where Σ⋆X = {(|a| ∪ {⋆}, (a)) : a ∈ ΣX}.

Remark 2.13. If the map f : (X, ⋆; ΣX ,B) → (Y, ⋆; ΣY ,B) preserves the symmetries,

then f : (X, ⋆; Σ⋆X ,B) → (Y, ⋆; Σ⋆Y ,B) preserves the pointed symmetries.

Proof. Let a ∈ Σ⋆X . Then a = (|b| ∪ {⋆}, (b)) for some b ∈ ΣX . By our assumption,

there is c ∈ ΣY such that (c) = (a) and f(|b|) ⊂ |c|, hence f(|a|) ⊂ |c| ∪ {⋆}.

2.3.1. Quotient space of a pair of sets. An important example of a topological space

with base point is a space generated by a pair of sets.

For any pair (X,A) of sets, A ⊂ X , there is the quotient space defined by

X/A
def
= X \A ∪ {A}

and the canonical projection

p : X → X/A, p(x) =

{
x if x 6∈ A

A if x ∈ A.

A set V ⊂ X/A is open if and only if its preimage p−1(V ) is an open subset of X .
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The point ⋆ = [A]
def
= A is the base point of X/A corresponding to the subset A and

we write

Q(X,A)
def
= (X/A,A).

It is obvious that if A ⊂ X is a compact subset of a Hausdorff space X then X/A is

a Hausdorff topological space. It is sufficient for further considerations to assume that A

is compact.

This construction leads us to the notion of the quotient spaces with symmetries in-

duced by pairs of sets.

Definition 2.14. Let A ⊂ X be a compact subset of X . We call

Q(X,A; ΣX ,B)
def
= (X/A, ⋆; ΣX/A,B),

where

ΣX/A
def
= {(p(|a|), (a)) : a ∈ ΣX} ∪ {{⋆}} × B,

the quotient space with symmetries induced by the pair (X,A).

Moreover, we call

Q⋆(X,A; ΣX ,B)
def
= Q(X,A; ΣX ,B)

⋆

the weak quotient space with symmetries induced by the pair (X,A).

2.3.2. Sum and product of spaces with base points and generalized symmetries. Now,

we define the sum and product of spaces with base points in the context of spaces with

symmetries.

Definition 2.15. Let (X, ⋆,ΣX ,B1) and (Y, ⋆; ΣY ,B2) be spaces with symmetries.

• If X and Y are disjoint then we define the sum

(X, ⋆; ΣX ,B1) ∨ (Y, ⋆; ΣY ,B2)
def
= Q((X, ⋆; ΣX ,B1) ∪ (Y, ⋆; ΣY ,B2)).

• We define the product

(X, ⋆; ΣX ,B1) ∧ (Y, ⋆; ΣY ,B2)
def
= Q((X, ⋆; ΣX ,B1)× (Y, ⋆; ΣY ,B2)).

There is an important relation between the quotient spaces induced by the sum of

Σ-disjoint pairs.

Proposition 2.16. Let (X ; ΣX ,B) be a space with symmetries, let (A,B) and (C,D)

be pairs of subsets of X such that A and C are Σ-disjoint. Then the spaces

Q((A,B; ΣA,B) ∪ (C,D; ΣC ,B)) and Q(A,B; ΣA,B) ∨Q(C,D; ΣC ,B)

are Σ-homeomorphic.

Proof. We consider the canonical projections

pA : A→ A/B ∨ C/D, pC : C → A/B ∨ C/D, pA∪C : A ∪ C → A ∪ C/B ∪D

and the homeomorphism

h : A ∪ C/B ∪D → A/B ∨ C/D, h(x) =

{
x if x 6= B ∪D

{B,D} if x = B ∪D.

In order to prove that h is a Σ-homeomorphism we observe the following.
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Let a ∈ ΣA∪C/B∪D and |a| 6= {⋆}. Then there is b ∈ ΣA∪B = ΣA ∪ ΣB such that

pA∪B(|b|) = |a| and (b) = (a). Thus, h(|a|) = pA(|b|) when b ∈ ΣA or h(|a|) = pB(|b|)

when b ∈ ΣB.

Let a ∈ ΣA/B∨C/D and |a| 6= {⋆}. Then there is either b ∈ ΣA ⊂ ΣA∪C or c ∈ ΣC ⊂

ΣA∪C such that either pA(|b|) = |a|, (b) = (a) or pB(|c|) = |a|, (c) = (a). Thus, either

h−1(|a|) = pA∪C(|b|) or h−1(|a|) = pA∪C(|c|).

The following propositions describe the relation between pointed symmetries and the

operations of sum and product.

Proposition 2.17. Let (X, ⋆,ΣX ,B1) and (Y, ⋆; ΣY ,B2) be spaces with symmetries.

Then

(1) ((X, ⋆; ΣX ,B1)∨ (Y, ⋆; ΣY ,B2))
⋆ = (X, ⋆; ΣX ,B1)

⋆ ∨ (Y, ⋆; ΣY ,B2)
⋆ if the spaces X

and Y are disjoint.

(2) ((X, ⋆; ΣX ,B1) ∧ (Y, ⋆; ΣY ,B2))
⋆ = (X, ⋆; ΣX ,B1)

⋆ ∧ (Y, ⋆; ΣY ,B2)
⋆.

Proof. (1) Let (X ∨Y,Σ,B) = ((X, ⋆; ΣX ,B1)∨ (Y, ⋆; ΣY ,B2))
⋆ and let p : X ∪Y →

X ∨ Y be the canonical projection. Here, ⋆ stands for the base points in X , Y or X ∨ Y .

We notice that a ∈ Σ if and only if |a| = {⋆} or a = (p(|b| ∪ {⋆}), (b)) for some

b ∈ ΣX ∪ ΣY and a ∈ Σ⋆X∨Y if and only if |a| = {⋆}, a = (p(|b|) ∪ {⋆}, (b)) for some

b ∈ ΣX ∪ΣY .

But p(|b| ∪ {⋆}) = p(|b|) ∪ {⋆} for any b ∈ ΣX ∪ ΣY . This shows how the elements of

the symmetries are related.

(2) Let p : X × Y → X ∧ Y be the canonical projection and let a ∈ ΣX , b ∈ ΣY . We

observe

p((|a| ∪ {⋆})× (|b| ∪ {⋆})) = p(|a| × |b| ∪ |a| × {⋆} ∪ {⋆} × |b| ∪ {⋆} × {⋆})

= p(|a| × |b|) ∪ {⋆}

This shows how the elements of the symmetries can be obtained from one another.

2.3.3. Special maps on quotient spaces of pairs of sets. The construction of the Conley

index is founded on the properties of maps on spaces with base point of a special form.

In this section we study the properties of such maps in relation to symmetries.

We consider spaces (X ; ΣX ,B), (Y ; ΣY ,B) and an invariant map F : (X ; ΣX ,B) →

(Y ; ΣY ,B). For given sets A,B,C ⊂ X and D,E ⊂ Y such that

1. B ⊂ A ⊂ X ,

2. E ⊂ D ⊂ Y ,

3. C ⊂ (A \B) and F (C) ⊂ (D \ E),

we consider a map

f : (A/B, ⋆) → (D/E, ⋆), f(p(x)) =

{
p(F (x)) if p(x) ∈ C

⋆ if p(x) 6∈ C,

where p : A→ A/B and p : D → D/E denote the canonical projections. We additionally

assume that f is continuous, which does not hold for arbitrary sets A, . . . , E.

Proposition 2.18. The map f : Q⋆(A,B; ΣA,B) → Q⋆(D,E; ΣD,B) preserves the

weak quotient symmetries.
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Proof. Let a ∈ Σ⋆A/B. If |a| = {⋆} then ({f(⋆)}, (a)) = ({⋆}, (a)) ∈ Σ⋆D/E . If

|a| 6= {⋆} then there must exist b ∈ ΣX such that a = (p(|b| ∩ A) ∪ {⋆}, (b)). We know

that F (|b|) ⊂ |c| and (c) = (a) for some c ∈ ΣY . Hence

f(|a|) = f(p(|b ∩ A|) ∪ {⋆}) = f(p(|b ∩ A|)) ∪ {⋆}

= [f(p(|b| ∩C)) ∪ f(p(|b| ∩ (A \ C)))] ∪ {⋆}

= [p(F (|b| ∩ C)) ∪ {⋆}] ∪ {⋆} ⊂ p(|c| ∩D) ∪ {⋆}

and (p(|c| ∩D) ∪ {⋆}, (a)) ∈ Σ⋆D/E .

Proposition 2.19. If C is a Σ-invariant subset of X, i.e. C ∈ PΣX
(X), then the

map f : Q(A,B; ΣA,B) → Q(D,E; ΣD,B) preserves the quotient symmetries.

Proof. Let a ∈ ΣA/B. If |a| = {⋆} then ({f(⋆)}, (a)) = ({⋆}, (a)) ∈ ΣD/E . If

|a| 6= {⋆} then there must exist b ∈ ΣX such that a = (p(|b| ∩ A), (b)). Hence |b| ∩ C =

∅ or |b| ⊂ C as C is ΣX -invariant. Thus, when |b| ∩ C = ∅, we have

(f(|a|), (a)) = ({⋆}, (a)) ∈ ΣD/E .

If |b| ⊂ C, then F (|b|) ⊂ |c| and (c) = (a) for some c ∈ ΣY , so

f(|a|) = p(F (|b|)) ⊂ p(|c| ∩D)

and (p(|c| ∩D), (a)) ∈ ΣD/E .

2.4. Homotopy type of topological spaces with base point and symmetries. Maps f, g :

(X, ⋆; ΣX ,B) → (Y, ⋆; ΣY ,B) are Σ-homotopy equivalent , written f
Σ
∼ g, if there exists a

map H : X × [0, 1] → Y such that

1. Ht = H(·, t) : (X, ⋆; ΣX ,B) → (Y, ⋆; ΣY ,B),

2. H0 = f and H1 = g.

A map f : (X, ⋆; ΣX ,B) → (Y, ⋆; ΣY ,B) is a Σ-homotopy equivalence if there is a map

g : (Y, ⋆; ΣY ,B) → (X, ⋆; ΣX ,B) such that f ◦ g
Σ
∼ idY and g ◦ f

Σ
∼ idX .

The spaces (X, ⋆; ΣX ,B) and (Y, ⋆; ΣY ,B) with symmetries are Σ-homotopy equivalent

if there exists a Σ-homotopy equivalence f : (X, ⋆; ΣX ,B) → (Y, ⋆; ΣY ,B).

This leads to the notion of the Σ-homotopy type of (X, ⋆; ΣX ,B) which will be denoted

by [(X, ⋆; ΣX ,B)].

Remark 2.13 leads directly to

Remark 2.20. If [(X, ⋆; ΣX ,B)]=[(Y, ⋆; ΣY ,B)], then [(X, ⋆; Σ⋆X ,B)]=[(Y, ⋆; Σ⋆Y ,B)].

Standard properties of sum and product of spaces with base point (see for instance

[Wh, chapter III.2]) show that there are well defined operations of sum and product of

Σ-homotopy types of spaces.

Definition 2.21. Let X = [(X, ⋆; ΣX ,B)] and Y = [(Y, ⋆; ΣY ,B)] be Σ-homotopy

types of spaces with symmetries. We define

• the sum of X and Y by

X ∨ Y
def
= [(X, ⋆; ΣX ,B) ∨ (Y, ⋆; ΣY ,B)],
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• the product of X and Y by

X ∧ Y
def
= [(X, ⋆; ΣX ,B) ∧ (Y, ⋆; ΣY ,B)].

3. Examples of generalized symmetries. In this section we describe some exam-

ples of generalized symmetries which appear in a natural way in examining some classes

of flows.

3.1. Generalized symmetries induced by a group action. Let G be a topological group,

which is not assumed to be compact. Let B = S(G), the basic set of the symmetries, be

the family of closed subgroups of G. Moreover let the group G act on a space X . Then

we define

ΣG(X)
def
= {(Gx,Gx) : x ∈ X}, Σ̂G(X)

def
= {(Gx,H) : x ∈ X, H ⊂ Gx}.

where Gx = {gx ∈ X : g ∈ G} and Gx = {g ∈ G : gx = x} for any x ∈ X .

Elementary verification leads to the following statements.

Remark 3.1. A subset A ⊂ X is G-invariant if and only if it is ΣG(X)-invariant.

Remark 3.2. If G is compact then the symmetries ΣG(X) and Σ̂G(X) are regular.

Proposition 3.3. If f : (X,G) → (Y,G) is a G-equivariant homeomorphism then

f : (X ; ΣG(X)) → (Y ; ΣG(Y ))

preserves the symmetries.

Proposition 3.4. If f : (X,G) → (Y,G) is a G-equivariant map then

f : (X ; Σ̂G(X)) → (Y ; Σ̂G(Y ))

preserves the symmetries.

The above remarks suggest some kinds of symmetries which can be considered in the

case when the flow examined preserves an action of a topological group.

It also suggests the relations between the G-homotopy type of the G-spaces and the

Σ-homotopy type of the spaces with the induced symmetries.

3.2. Generalized symmetries induced by isolated invariant sets of a flow. We consider

a flow ψ : X×R → X and we introduce the symmetries induced by the compact isolated

invariant sets IIS(ψ) of the flow ψ, see section 5.1. Let

B = IIS(ψ)× IIS(ψ)

be the basic set of the symmetries.

We define

Σ
def
= {(ψ({x} ×R), (A,B)) : x ∈ X, (A,B) ∈ B, αψ(x) ∩ A 6= ∅, ωψ(x) ∩B 6= ∅},

where αψ(·) and ωψ(·) denote the negative and positive limit sets of the flow ψ respec-

tively.

The family Σ describes the connecting trajectories of the flow ψ.
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We prove that any flow ϕ : X × R → X which commutes with ψ, i.e. ϕt ◦ ψs =

ψs ◦ ϕt for t, s ∈ R, preserves the symmetries Σ.

Lemma 3.5. Let A ∈ IIS(ψ). Then ϕt(A) ⊂ A for any t ∈ R.

Proof. The assumption guarantees the existence of a compact subset N ⊂ X such

that A = inv(N,ψ) ⊂ int(N). As A is compact and the flow ϕ is continuous there is

η > 0 such that ϕ(A × [−η, η]) ⊂ int(N). Hence, for any x ∈ A, t ∈ [−η, η] and s ∈ R,

ψs(ϕt(x)) = ϕt(ψs(x)) ∈ int(N) ⊂ N, so we finally obtain ϕt(x) ∈ inv(N,ψ) = A.

Corollary 3.6. Let A ∈ IIS(ψ) and x ∈ X satisfy ωψ(x) ∩A 6= ∅. Then ωψ(ϕt(x))

∩ A 6= ∅ for any t ∈ R.

Proof. Indeed, if limn→∞ ψtn(x) = x0 ∈ A for some sequence tn → +∞ then

lim
n→∞

ψtn(ϕt(x)) = lim
n→∞

ϕt(ψtn(x)) = ϕt(x0) ∈ A

for any t ∈ R.

Proposition 3.7. For any t ∈ R, ϕt : (X ; Σ,B) → (X ; Σ,B) preserves the symme-

tries.

Proof. For any x ∈ X and t ∈ R we obtain ϕt(ψ({x} ×R)) = ψ({ϕt(x)} ×R), as

the flows ϕ and ψ commute. Hence, Corollary 3.6 completes the proof.

3.3. Generalized symmetries for flows admitting a first integral. Let f : X → R be a

given function. We define B = R to be the basic set of the symmetries

Σ(f) = {(f−1(c), c) : c ∈ f(X)}.

We consider a flow ϕ : X ×R → X which admits f : X → R as a first integral, i.e.

f = f ◦ ϕt for any t ∈ R.

Proposition 3.8. For t ∈ R, ϕt : (X ; Σ(f),B) → (X ; Σ(f),B) preserves the sym-

metries.

This example can be extended if one replaces R with an arbitrary space Y , takes

B ⊂ P (Y ) and

Σ(f) = {(f−1(A), A) : A ∈ B, A ∩ f(X) 6= ∅}.

Such symmetries might be helpful for examining the properties of flows which admit first

integrals or invariant subspaces in a more general situation.

4. Some examples of spaces with generalized symmetries. Now, we present

some simple examples of spaces with generalized symmetries. We will use them in section

6 to show how the Conley index with symmetries can be applied to examine the behaviour

of flows.

Let us consider the following subsets of the Euclidean space (R2, | · |):

• discs:

D1 = {x ∈ R2 : |x− (3, 0)| 6 3},

D2 = {x ∈ R2 : |x− (−2, 0)| 6 2}, D3 = {x ∈ R2 : |x− (−2, 0)| 6 1},
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• circles:

E1 = {x ∈ R2 : |x− (2, 0)| = 2}, E2 = {x ∈ R2 : |x− (1, 0)| = 1},

• points:

P1 = (0, 0), P2 = (3, 0), P3 = (−2, 0), P4 = (−1, 0).

We define a space with generalized symmetries over the base set

B = {1, 2, 3} ⊂ N.

This will be done, roughly speaking, in the following way. The circles E1, E2 will

define the elements of symmetries (E1, 1) and (E2, 1) of type 1. The points P2, P3 will

determine the elements (P2, 2) and (P3, 2) of type 2. The points P1 and P4 will play the

role of base points in suitable spaces, so by the definition of symmetries in spaces with

base point, they will appear with types 1, 2, 3. Moreover we will introduce elements of

type 3 which will take the form ({x, ⋆}, 3), where x will belong to an appropriate set and

⋆ is a base point.

We define the following spaces.

• (U, ⋆; ΣU) = (D1, P1; ΣU ), where

ΣU = {(E1, 1), ({P2, P1}, 2)}
∪ {({x, P1}, 3) : x ∈ D1 \ (E1 ∪ {P2})}

∪ {({P1}, 1), ({P1}, 2), ({P1}, 3)}

• (W, ⋆; ΣW ) = (D1, P1; ΣW ), where

ΣW = {(E2, 1), ({P2, P1}, 2)}
∪ {({x, P1}, 3) : x ∈ D1 \ (E2 ∪ {P2})}

∪ {({P1}, 1), ({P1}, 2), ({P1}, 3)}

• (X, ⋆; ΣX) = (D1 ∪D2, P1; ΣX), where

ΣX = {(E2, 1), ({P3, P1}, 2)}
∪ {({x, P1}, 3) : x ∈ (D1 ∪D2) \ (E2 ∪ {P3})}

∪ {({P1}, 1), ({P1}, 2), ({P1}, 3)}
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• (Y, ⋆; ΣY ) = (D1, P1; ΣY ), where

ΣY = {(E2, 1)}
∪ {({x, P1}, 3) : x ∈ D1 \ E2}

∪ {({P1}, 1), ({P1}, 2), ({P1}, 3)}

• (Z, ⋆; ΣZ) = (D3, P4; ΣZ), where

ΣZ = {({P3, P4}, 2)}
∪ {({x, P4}, 3) : x ∈ D3 \ {P3, P4}}

∪ {({P4}, 1), ({P4}, 2), ({P4}, 3)}

The definition of the sum of spaces with symmetries leads us to the following remark.

Remark 4.1. The spaces (X, ⋆; ΣY ) and (Y, ⋆; ΣY )∨ (Z, ⋆; ΣZ) are Σ-homeomorphic.

Remark 4.2. The spaces (X, ⋆; ΣX) and (W, ⋆; ΣW ) are Σ-homotopy equivalent.

Lemma 4.3. The spaces (U, ⋆; ΣU ) and (W, ⋆; ΣW ) are not Σ-homotopy equivalent.

Proof. Assume that (U, ⋆; ΣU ) and (W, ⋆; ΣW ) are Σ-homotopy equivalent. Hence,

there exist f : (U, ⋆; ΣU ) → (W, ⋆; ΣW ), g : (W, ⋆; ΣW ) → (U, ⋆; ΣU) and a Σ-homotopy

H : (U, ⋆)× [0, 1] → (U, ⋆) which connects g ◦ f to idU .

This leads to the following observations:

• f(E1) ⊂ E2, f(P2) = P2, and f
−1(P2) = {P2},

• g(E2) ⊂ E1, g(P2) = P2, and g
−1(P2) = {P2},

• Hs(E1) ⊂ E1, Hs(P2) = P2, and H
−1
s (P2) = {P2}, for any s ∈ [0, 1].

Hence, for Ũ
def
= U \ {P2} and W̃

def
= W \ {P2}, there are well defined maps

f̃
def
= f

|Ũ
: (Ũ , ⋆) → (W̃ , ⋆), g̃

def
= g

|Ũ
: (W̃ , ⋆) → (Ũ , ⋆),

and the homotopy

H̃
def
= H

|Ũ×[0,1]
: (Ũ , ⋆)× [0, 1] → (Ũ , ⋆)

connects g̃ ◦ f̃ to id
Ũ
.

We note that

γ : [0, 1] → E1, γ(t) = (2− 2 · cos 2πt, 2 · sin 2πt),
which is a parametrization of the circle E1, represents a nontrivial element [γ] in the

fundamental group π1(Ũ , ⋆).



CONLEY INDEX AND GENERALIZED SYMMETRIES 205

On the other hand f(E1) ⊂ E2, so [f̃ ◦ γ] is the trivial element of π1(W̃ , ⋆). Hence

[g̃ ◦ f̃ ◦ γ] is the trivial element of π1(Ũ , ⋆). This contradicts [γ] = [g̃ ◦ f̃ ◦ γ] as g̃ ◦ f̃ and

id
Ũ
are homotopy equivalent.

5. Homotopy index for flows preserving generalized symmetries. In this sec-

tion we consider a locally compact metric space with symmetries (X ; ΣX ,B) and a flow ϕ :

X ×R → X which preserves the symmetries, i.e. ϕt = ϕ(·, t) : (X ; ΣX ,B) → (X ; ΣX ,B)

for any t ∈ R.

5.1. General definitions. Firstly we recall the definitions of objects studied in Conley

index theory and formulate additional conditions which are related to the presence of

symmetries.

Let us recall that for any subset A ⊂ X we call

inv(A) = inv(A,ϕ)
def
=

⋂

t∈R

ϕ−t(A)

the invariant part of A.

The subset A ⊂ X is an isolating neighbourhood if

inv(cl(A), ϕ) ⊂ int(A).

A subset S ⊂ X is an isolated invariant set of the flow ϕ, S ∈ IIS(ϕ), if there exists

a compact isolating neighbourhood A ⊂ X such that

S = inv(A,ϕ).

A pair (N,L) of compact subsets L ⊂ N ⊂ X is an index pair when the following

conditions are satisfied:

1. N \ L is an isolating neighbourhood,

2. L is an exit set for the subset N :

∀x∈N ∀t>0 ∃τ∈(0,t) ϕ
t(x) 6∈ N ⇒ ϕτ (x) ∈ L,

3. L is positively invariant in N :

∀x∈L ∀t>0 ϕ
[0,t](x) ⊂ N ⇒ ϕ[0,t](x) ⊂ L.

Moreover, the index pair (N,L) is regular if the exit time mapping

τ : N → [0,+∞], τ(x) =

{
sup{t > 0 : ϕ({x} × [0, t]) ⊂ N \ L} if x ∈ N \ L

0 if x ∈ L

is continuous.

Finally, the index pair (N,L) is an index pair of the set S if S = inv(N \L,ϕ). Hence,

of course, S is a compact isolated invariant set of the flow ϕ.

The fundamental theorem of Conley index theory is

Theorem 5.1. If A is an isolating neighbourhood then there exists a regular index

pair (N,L) of the set inv(A) such that N ⊂ A.

For the proof we refer the reader to [RS], theorem (5.2), and [S], theorems (5.2–4).

In our case with symmetries we introduce the following definitions.
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Definition 5.2. A (regular) index pair (N,L) is a Σ-invariant (regular) index pair

if the sets N,L are Σ-invariant subsets of X .

Definition 5.3. A subset S ⊂ X is a Σ-admissible compact isolated invariant set of

the flow ϕ, S ∈ IISΣ(ϕ), if it admits a Σ-invariant index pair.

Definition 5.4. Sets S1, S2 ∈ IIS(ϕ) are said to be (Σ, ϕ)-disjoint if they admit

index pairs (N1, L1) and (N1, L1) respectively such that the subsets N1 and N2 are

Σ-disjoint.

In section 5.4 we prove that when the symmetries Σ are regular then a set S ∈ IIS(ϕ)

is Σ-admissible if and only if it is Σ-invariant, and two Σ-admissible sets S1, S2 ∈ IIS(ϕ)

are (Σ, ϕ)-disjoint if and only if they are disjoint.

5.2. Homotopy index with symmetries. In this section we introduce the homotopy

index of a compact isolated invariant set of a flow which reflects the structure of symme-

tries.

We consider a flow ϕ : (X ; ΣX ,B)×R → (X ; ΣX ,B) which preserves the symmetries

and a compact isolated invariant set S ∈ IIS(ϕ).

In this situation, two cases can appear according to whether S is Σ-admissible, i.e.

has a Σ-invariant index pair, or not. Usually, invariant theories deal with somehow dis-

tinguished invariant objects. We show that both cases can be successfully treated. This

is a great difference in comparison to the usually proposed invariant index theory.

Definition 5.5. For any set S ∈ IIS(ϕ) we define the homotopy Σ⋆-Conley index

Σ⋆h(S, ϕ)
def
= [Q⋆(N,L; ΣN ,B)]

where (N,L) is an arbitrary index pair of S.

In the case when the set S ∈ IIS(ϕ) is additionally Σ-admissible, i.e. it admits a

Σ-invariant index pair, we can describe a more precise homotopy index.

Definition 5.6. For any Σ-admissible set S ∈ IISΣ(ϕ) we define the homotopy Σ-

Conley index
Σh(S, ϕ)

def
= [Q(N,L; ΣN ,B)]

where (N,L) is an arbitrary Σ-invariant index pair of S.

The independence of these indexes from the choice of index pairs follows from the

standard arguments used in the Conley index theory. We recall the basic constructions

and refer the reader to D. Salamon [S] and J. Robbin & D. Salamon [RS].

Let us consider two index pairs (Nα, Lα) and (Nβ , Lβ) of S ∈ IIS(ϕ). For t > 0 we

define
Ctβα

def
= {x ∈ Nα \ Lα : ϕ[0, 2t3 ](x) ⊂ Nα \ Lα, ϕ

[ t3 ,t](x) ⊂ Nβ \ Lβ}

=
⋂

τ∈[0, 2t3 ]

ϕ−τ (Nα \ Lα) ∩
⋂

τ∈[ t3 ,t]

ϕ−τ (Nβ \ Lβ)

and

f tβα : Nα/Lα → Nβ/Lβ, f
t
βα(p(x)) =

{
p(ϕt(x)) if x ∈ Ctβα,

⋆ if x 6∈ Ctβα,

where p : Nα → Nα/Lα and p : Nβ → Nβ/Lβ are the canonical projections.
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Moreover, let

Fα : Nα/Lα × [0,+∞) → Nα/Lα, F (x, t) = f tαα(x).

We recall the fundamental properties of the maps defined above. They are proved in

detail by J. Robbin and D. Salamon [RS], theorem (6.3) and theorem (4.2).

Theorem 5.7. There is Tβα > 0 such that the maps f tβα : Nα/Lα → Nβ/Lβ and

f tαβ : Nβ/Lβ → Nα/Lα are continuous for any t > Tβα and

f2t
αα = f tαβ ◦ f tβα, f

2t
ββ = f tβα ◦ f tαβ .

Theorem 5.8. The map Fα : Nα/Lα × [0,+∞) → Nα/Lα is continuous.

Now, we apply this technique to prove the correctness of the definitions of Conley

indexes with symmetries.

Lemma 5.9. For t > Tβα, the map f tβα : Q⋆(Nα, Lα; ΣNα
,B) → Q⋆(Nβ , Lβ; ΣNβ

,B)

preserves the symmetries.

Proof. This is a direct consequence of the above definitions, Theorem 5.7 and Propo-

sition 2.18.

Theorem 5.10. [Q⋆(Nα, Lα; ΣNα
,B)] = [Q⋆(Nβ , Lβ; ΣNβ

,B)].

Proof. Applying Lemma 5.9 and Theorem 5.8 we see that, for T = Tβα,

fTβα : Q⋆(Nα, Lα; ΣNα
,B) → Q⋆(Nβ , Lβ; ΣNβ

,B)

is a Σ-homotopy equivalence with Σ-homotopy inverse

fTαβ : Q⋆(Nβ , Lβ; ΣNβ
,B) → Q⋆(Nα, Lα; ΣNα

,B).

Indeed,

Hα : Nα/Lα × [0, 1] → Nα/Lα, Hα(x, τ) = Fα(x, 2τT ),

Hβ : Nβ/Lβ × [0, 1] → Nβ/Lβ, Hβ(x, τ) = Fβ(x, 2τT ),

yield fTαβ ◦ fTβα
Σ
∼ idNα/Lα

and fTβα ◦ fTαβ
Σ
∼ idNβ/Lβ

respectively.

Lemma 5.11. If (Nα, Lα) and (Nβ , Lβ) are Σ-invariant index pairs then Ctβα is a

Σ-invariant subset of X for t > 0.

Proof. This is straightforward from Remark 2.12 and Proposition 2.2, as Ctβα is an

intersection of preimages of Σ-invariant subsets of X .

Lemma 5.12. If (Nα, Lα) and (Nβ , Lβ) are Σ-invariant index pairs then, for t > Tβα,

the map f tβα : Q(Nα, Lα; ΣNα
,B) → Q(Nβ, Lβ; ΣNβ

,B) preserves the symmetries.

Proof. This is a direct consequence of the above definition, Lemma 5.11, Theorem

5.7 and Proposition 2.19.

Theorem 5.13. If (Nα, Lα) and (Nβ , Lβ) are Σ-invariant index pairs then

[Q(Nα, Lα; ΣNα
,B)] = [Q(Nβ, Lβ; ΣNβ

,B)].
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Proof. Applying Lemma 5.12 and Theorem 5.8 we see that, for T = Tβα,

fTβα : Q(Nα, Lα; ΣNα
,B) → Q(Nβ , Lβ; ΣNβ

,B)

is a Σ-homotopy equivalence with Σ-homotopy inverse

fTαβ : Q(Nβ , Lβ; ΣNβ
,B) → Q(Nα, Lα; ΣNα

,B).

Indeed,

Hα : Nα/Lα × [0, 1] → Nα/Lα, Hα(x, τ) = Fα(x, 2τT ),

Hβ : Nβ/Lβ × [0, 1] → Nβ/Lβ, Hβ(x, τ) = Fβ(x, 2τT ),

yield fTαβ ◦ fTβα
Σ
∼ idNα/Lα

and fTβα ◦ fTαβ
Σ
∼ idNβ/Lβ

respectively.

5.3. Properties of the homotopy Conley indexes with symmetries. In this section we

formulate the properties of the above defined homotopy Conley indexes.

5.3.1. Normalization. Define the space with symmetries

0 = ({∅}, ∅; Σ∅,B)

where Σ∅ = {{∅}} × B. This space plays the role of the trivial space in the category of

spaces with base point and symmetries over B.

Proposition 5.14. The set ∅ ∈ IISΣ(ϕ) is a Σ-admissible isolated invariant set of

the flow ϕ and Σh(∅, ϕ) = Σ⋆h(∅) = [0].

Proof. First we observe that (∅, ∅) is a Σ-invariant index pair of the set ∅. Hence,

according to our construction, we obtain Q(∅, ∅) = 0 = 0⋆.

5.3.2. Additivity. Consider isolated invariant (Σ, ϕ)-disjoint sets S1, S2 ∈ IIS(ϕ) of

the flow ϕ.

Proposition 5.15. Σ⋆h(S1 ∪ S2, ϕ) = Σ⋆h(S1, ϕ) ∨ Σ⋆h(S2, ϕ).

Proof. According to our assumptions there are index pairs (N1, L1) and (N2, L2)

of S1 and S2 respectively such that N1 and N2 are Σ-disjoint, thus disjoint. It is known

that (N1 ∪N2, L1 ∪ L2) is an index pair of S1 ∪ S2. Hence, due to Propositions 2.16 and

2.17, we obtain

Σ⋆h(S1 ∪ S2, ϕ) = [Q⋆(N1 ∪N2, L1 ∪ L2; ΣN1∪N2 ,B)]

= [(Q(N1, L1; ΣN1 ,B) ∨Q(N2, L2; ΣN2 ,B))
⋆]

= [Q⋆(N1, L1; ΣN1 ,B) ∨Q
⋆(N2, L2; ΣN2 ,B)]

= [Q⋆(N1, L1; ΣN1 ,B)] ∨ [Q⋆(N2, L2; ΣN2 ,B)]

= Σ⋆h(S1, ϕ) ∨Σ⋆h(S2, ϕ).

Proposition 5.16. If S1, S2 ∈ IISΣ(ϕ) then S1 ∪ S2 ∈ IISΣ(ϕ) and

Σh(S1 ∪ S2, ϕ) = Σh(S1, ϕ) ∨ Σh(S2, ϕ).

Proof. Our assumptions guarantee that there are Σ-invariant index pairs (N1, L1)

and (N2, L2) of S1 and S2 respectively such that N1 and N2 are Σ-disjoint, thus disjoint.

It is known that (N1 ∪N2, L1 ∪ L2) is an index pair of S1 ∪ S2, moreover these sets are

Σ-invariant, as stated in Proposition 2.2, thus S1 ∪ S2 ∈ IISΣ(ϕ).
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Hence, due to Proposition 2.16, we have

Σh(S1 ∪ S2, ϕ) = [Q(N1 ∪N2, L1 ∪ L2; ΣN1∪N2 ,B)]

= [Q(N1, L1; ΣN1 ,B) ∨Q(N2, L2; ΣN2 ,B)]

= [Q(N1, L1; ΣN1 ,B)] ∨ [(N2, L2; ΣN2 ,B)]

= Σh(S1, ϕ) ∨Σh(S2, ϕ).

5.3.3. Multiplicity. Consider spaces with symmetries (X ; ΣX ,BX), (Y ; ΣY ,BY ) and

flows ϕX : X ×R → X, ϕY : Y ×R → Y which preserve the given symmetries.

We define the flow

ϕ : X × Y ×R → X × Y, ϕ(x, y, t)
def
= (ϕX(x, t), ϕY (y, t))

which preserves the symmetries of the space (X ; ΣX ,BX)× (Y ; ΣY ,BY ).

Moreover let SX ∈ IIS(ϕX) and SY ∈ IIS(ϕY ). Then SX × SY ∈ IIS(ϕ).

Proposition 5.17. Σ⋆h(S1 × S2, ϕ) = Σ⋆h(SX , ϕX) ∧ Σ⋆h(SY , ϕY ).

Proof. Let (NX , LX) and (NY , LY ) be index pairs of SX and SY respectively. It is

known that (NX ×NY , NX × LY ∪ LX ×NY ) is an index pair of SX × SY . Hence, due

to Proposition 2.17, we obtain

Σ⋆h(S1 × S2, ϕ) = [Q⋆(N1 ×N2, N1 × L2 ∪ L1 ×N2; ΣN1×N2 ,BX × BY )]

= [(Q(N1, L1; ΣN1 ,BX) ∧Q(N2, L2; ΣN2 ,BY ))
⋆]

= [Q⋆(N1, L1ΣN1 ,BX) ∧Q
⋆(N2, L2; ΣN2 ,BY )]

= [Q⋆(N1, L1; ΣN1 ,BX)] ∧ [Q⋆(N2, L2; ΣN2 ,BY )]

= Σ⋆h(S1, ϕ) ∧ Σ⋆h(S2, ϕ).

Proposition 5.18. If SX ∈ IISΣX
(ϕX) and SY ∈ IISΣY

(ϕ) then S1 × S2 ∈

IISΣX×Y
(ϕ) and

Σh(S1 × S2, ϕ) = Σh(SX , ϕX) ∧ Σh(SY , ϕY ).

Proof. According to our assumptions there are Σ-invariant index pairs (NX , LX)

and (NY , LY ) of SX and SY respectively. It is known that

(NX ×NY , NX × LY ∪ LX ×NY )

is an index pair of SX × SY . From Remark 2.5 and Proposition 2.2 we conclude that

these sets are Σ-invariant, thus S1 × S2 ∈ IISΣX×Y
(ϕ).

Hence, we have

Σh(S1 × S2, ϕ) = [Q(N1 ×N2, N1 × L2 ∪ L1 ×N2; ΣN1×N2 ,BX × BY )]

= [Q(N1, L1ΣN1 ,BX) ∧Q(N2, L2; ΣN2 ,BY )]

= [Q(N1, L1; ΣN1 ,BX)] ∧ [Q(N2, L2; ΣN2 ,BY )]

= Σh(S1, ϕ) ∧ Σh(S2, ϕ).

5.3.4. Continuation. Let us introduce in the space X × [0, 1] the symmetries

ΣX×[0,1] = {(|a| × {λ}, (a)) : (|a|, (a)) ∈ Σ}

and consider a flow ϕ : X × [0, 1]×R → X× [0, 1] which preserves the symmetries. Then

the flows
ϕλ : X ×R → X, ϕ(x, λ, t) = (ϕλ(x, t), λ), for λ ∈ [0, 1],

preserve the symmetries of the space (X ; Σ,B).
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Moreover let S ∈ IIS(ϕ) and

Si
def
= {x ∈ X : (x, i) ∈ S}, for i = 0, 1.

It is known that S0 ∈ IIS(ϕ0) and S1 ∈ IIS(ϕ1) are isolated invariant sets of ϕ0 and ϕ1

respectively.

Remark 5.19. Let (N,L) be a Σ-invariant index pair of the set S and let λ ∈ [0, 1].

Then

(Nλ, Lλ) = ({x ∈ X : (x, λ) ∈ N}, {x ∈ X : (x, λ) ∈ L})

is a Σ-invariant index pair for the flow ϕλ.

Proof. It is easy to notice that (Nλ, Lλ) is an index pair for ϕλ, as ϕ preserves the

set X × {λ}.

We are going to show that Nλ, Lλ are Σ-invariant subsets of X . Let a ∈ ΣX be

such that |a| ∩ Nλ 6= ∅. Then (|a| × {λ}, (a)) ∈ ΣX×[0,1] and |a| × {λ} ∩ N 6= ∅. Hence

|a| × {λ} ⊂ N , as N is a Σ-invariant subset of X × [0, 1], thus |a| ⊂ Nλ. Analogously we

obtain that Lλ is a Σ-invariant subset of X .

The continuation property of the Conley index with symmetries can be formulated in

the following way.

Proposition 5.20. Σ⋆h(S0, ϕ0) = Σ⋆h(S1, ϕ1).

Proposition 5.21. If S ∈ IISΣX×[0,1]
(ϕ) then S0 ∈ IISΣX

(ϕ0), S1 ∈ IISΣX
(ϕ1)

and

Σh(S0, ϕ0) = Σh(S1, ϕ1).

The proofs of these propositions can be based on the construction of a homotopy

equivalence given by D. Salamon [S] in chapters 6.2 and 6.3. It is elementary, but tech-

nically difficult, to show that the maps defined there preserve the symmetries induced

in the quotient spaces. We omit the details which, in fact, repeat the arguments used

in section 5.2 where we proved the correctness of the definitions of Conley indexes with

symmetries.

5.4. Existence of Σ-invariant index pairs. An important problem is to compare the

class of invariant sets of a flow which are Σ-invariant subsets of the phase space with the

class of those invariant sets of the flow which admit a Σ-invariant isolating neighbourhood

or a Σ-invariant index pair.

In general, when we do not impose any regularity conditions on the symmetries Σ,

we cannot expect that a set S ∈ IIS(ϕ)∩PΣ(X) possesses a Σ-invariant isolating neigh-

bourhood or a Σ-invariant index pair. This can be easily observed, for example, when we

consider, compact isolated invariant set S of a flow ϕ which is not an open subset of X

and the symmetries Σ = {S,X \ S} × B.

However, if the symmetries Σ are regular in the sense of Definition 2.8 all those

conditions describe the same class of sets. This will be studied in detail in this section.

Consider a space (X ; Σ,B) and assume that the symmetries Σ are regular. Moreover

let A ⊂ X be a compact isolating neighbourhood for a flow ϕ : X × R → X which

preserves the symmetries. We denote S = inv(A,ϕ).
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Theorem 5.22. The following conditions are equivalent:

(1) S is a Σ-invariant subset of X,

(2) there is a compact Σ-invariant isolating neighbourhood B ⊂ A of S,

(3) there exists a Σ-invariant regular index pair (N,L) of S such that N ⊂ A.

Proof. (3) ⇒ (1) We have

S = inv(cl(N \ L)) ⊂ int(N \ L) ⊂ N \ L.

Hence

S = inv(N \ L) =
⋂

t∈R

ϕ−t(N \ L),

thus S is a Σ-invariant subset of X as the intersection of a family of Σ-invariant sets.

To prove the remaining part of the theorem we will adopt techniques used in G-

equivariant Conley index theory.

Let Y = X/RΣ denote the quotient space and let π : X → X/RΣ stand for the

canonical projection. We define the flow

ψ : Y ×R → Y, ψ([x], t) = [ϕ(x, t)].

(1) ⇒ (2) Let D = X \ int(A). Then π(D) ∩ π(S) = ∅. As Y is a locally compact

metric space, there is a compact set V ⊂ Y \ π(D) such that π(S) ⊂ int(V ). Hence

S = π−1(π(S)) ⊂ π−1(int(V )) ⊂ int(π−1(V )) ⊂ π−1(V ) ⊂ int(A) ⊂ A,

thus we can take B = π−1(V ).

(2) ⇒ (3) In Lemma 5.23 it is proved that π(B) is an isolating neighbourhood of the

set π(S) for the flow ψ. Theorem 5.1 guarantees that there is a regular index pair (P,Q),

P ⊂ π(B), of the set π(S). The lemmas below say that

(N,L) = (π−1(N), π−1(L)), N ⊂ B ⊂ A,

is a regular index pair of S.

We formulate the lemmas we used in the proof above. We always assume (2).

Lemma 5.23. The set π(B) is a compact isolating neighbourhood of π(S) for the

flow ψ.

Proof. We see that π(B) is compact and

π(S) ⊂ π(int(B)) ⊂ int(π(B)) ⊂ π(B)

because π is an open map. We prove that π(S) = inv(π(B), ψ).

Let y ∈ inv(π(B), ψ). Then y = π(x) for some x ∈ X . Hence

Φ(π(x), t) = π(ϕ(x, t)) ∈ π(B)

for any t ∈ R, so ϕ(x, t) ∈ π−1(π(B)) = B. Thus x ∈ S and y ∈ π(S).

Conversely, let y ∈ π(S). Then y = π(x) for some x ∈ S. Hence, for any t ∈ R, we

have ψ(y, t) = π(ϕ(x, t)) ∈ π(S) ⊂ π(B), thus y ∈ inv(π(B)).

Lemma 5.24. Let (N,L) ⊂ (π(B), π(B)) be an index pair of the set π(S) for the flow

ψ. Then (N∗, L∗) = (π−1(N), π−1(L)) is an index pair of the set S for the flow ϕ.
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Proof. First we observe that the sets L∗ ⊂ N∗ ⊂ B are compact and

S = π−1(π(S)) ⊂ π−1(int(N \ L)) ⊂ int(N∗ \ L∗),

hence cl((N∗ \ L∗) ⊂ B is an isolating neighbourhood of S.

Let x ∈ N∗ and let ϕ(x, t) 6∈ N∗ for some t > 0. Then π(x) ∈ N and π(ϕ(x, t)) =

ψ(π(x), t) 6∈ N . As (N,L) is an index pair for ψ, there is τ ∈ [0, t] such that ψ(π(x), τ) ∈ L,

so ϕ(x, τ) ∈ L∗.

Let x ∈ L∗ and t ∈ R be such that ϕ(x, τ) ∈ N∗ for τ ∈ [0, t]. Hence we have π(x) ∈ L

and π(ϕ(x, τ)) = ψ(π(x), τ) ∈ N for τ ∈ [0, t]. As (N,L) is an index pair for ψ, we have

ψ(π(x), t) ∈ L for τ ∈ [0, t], thus ϕ(x, t) ∈ L∗ for τ ∈ [0, t].

Lemma 5.25. Let (N,L) and (N∗, L∗) be as in Lemma 5.4 and let τ : N → [0,+∞]

and τ∗ : N∗ → [0,+∞] be the exit time maps of the index pairs (N,L) and (N∗, L∗)

respectively. Then τ∗ = τ ◦ π.

Proof. We notice that N∗ \ L∗ = π−1(N \ L), so for x ∈ X ,

x ∈ N∗ \ L∗ if and only if π(x) ∈ N \ L.

The rest follows directly from the definition of the exit time map and the flows ϕ and ψ.

Corollary 5.26. Let S1, S2 ∈ IIS(ϕ) be disjoint and Σ-invariant sets. Then S1 and

S2 are (Σ, ϕ)-disjoint.

Proof. Indeed, as S1 and S2 are disjoint, they admit disjoint isolating neighbour-

hoods A1 and A2 respectively. Hence, Theorem 5.22(3) completes the proof.

6. Examples of the use of the Σ⋆h index. In this section we calculate Conley

indexes with symmetries of some isolated invariant sets and analyse them in relation to

the behaviour of the flow. In particular we discuss the problem of the connecting orbit

and the problem of deformation of the flow.

In the class F of vector fields on R2 which induce flows as solutions of associated

ODEs we consider the class FΣ ⊂ F satisfying additional conditions. We say that F =

(F1, F2) ∈ FΣ if

(1) F ((0, 1)) = (0, 0),

(2) F2((x,−1)) = 0 for x ∈ R.

We show how the above restrictions affect the behaviour of the flow and how it can

be observed in the context of Conley index with symmetries.

Let B = {1, 2, 3} ⊂ N be the basic set of the generalized symmetries. We denote

E
def
= R× {−1}, P

def
= (0, 1)

and

(X ; Σ,B)
def
= (X ; {(E, 1), ({P}, 2)} ∪ {({x}, 3) : x ∈ R2 \ (E ∪ {P})},B).

We notice that, for any F ∈ FΣ, the flow ϕ : X ×R → X induced by the vector field

F preserves the symmetries Σ. Indeed, we see that

• condition (1) guarantees ϕt(P ) = P for t ∈ R.

• condition (2) guarantees ϕt(E) = E for t ∈ R.
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Thus, for x ∈ R2 \ (E ∪ {P}) and t ∈ R, we have ϕt(x) 6∈ E ∪ {P}, as ϕt : X → X is a

homeomorphism.

Let

f(x, y)
def
=





x2 + (y − 1)2 + 2 if y > 1

x2 + (3y − y3) if y ∈ (−1, 1)

x2 − (y + 1)2 − 2 if y 6 −1

and

F (x, y)
def
= ∇f(x, y) =





(2x, 2(y − 1)) if y > 1

(2x, 3(1− y2)) if y ∈ (−1, 1)

(2x,−2(y + 1)) if y 6 −1

∈ FΣ.

The phase portrait of the flow ϕ induced by the vector field F is shown below.

We notice that {(0, 1)} ∈ IISΣ(ϕ) and A, {(0,−1)} ∈ IIS(ϕ) \ IISΣ(ϕ), where A =

{0} × [−1, 1], are compact isolated invariant sets of the flow ϕ. Moreover

• (N1, L1)
def
= ([−1, 1]× [−2, 2], {−1, 1}× [−2, 2] ∪ [−1, 1]× {2}) is an index pair for

A,

• (N2, L2)
def
= ([−1/2, 1/2]× [1/2, 3/2], {−1/2, 1/2}× [1/2, 3/2]∪ [−1/2, 1/2]×{3/2})

is an index pair for {(0, 1)},

• (N3, L3)
def
= ([−1/2, 1/2]× [−3/2,−1/2], {−1/2, 1/2}× [−3/2,−1/2]∪ [−1/2, 1/2]×

{−1/2}) is an index pair for {(0,−1)}.

This allows us to calculate the Conley indexes with symmetries of these sets. Applying

the notation of section 4 we obtain:

• Σ⋆h(A,ϕ) = [(U, ⋆; ΣU ,B)],

• Σ⋆h({(0, 1)}, ϕ) = [(Z, ⋆; ΣZ ,B)],

• Σ⋆h({(0,−1)}, ϕ) = [(Y, ⋆; ΣY ,B)].

We see that these sets have different Conley indexes with symmetries while their Conley

indexes

h(A,ϕ) = h({(0, 1)}, ϕ) = h({(0,−1)}, ϕ) = [({⋆}, ⋆)],

are trivial.
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Furthermore, an elementary computation shows that according to Definition 5.4 the

sets N2 and N3 are Σ-disjoint, so {(0,−1)}, {(0, 1)} ∈ IIS(ϕ) are (Σ, ϕ)-disjoint.

Connecting orbits problem. Now, we study the problem of existence of additional

stationary points or connecting orbits.

Let g : R2 → R be a function of class C2 and R > r > 0 such that

1. g|B((0,−1),r) = f|B((0,−1),r) and g|B((0,1),r) = f|B((0,1),r),

2. g|R2\B((0,0),R) = f|R2\B((0,0),R).

Moreover let ψ : R2 ×R → R2 denote the flow induced by ∇g : R2 → R2.

Theorem 6.1. Under the above assumptions, either

(1) there is x ∈ B(0, R) \ {(0,−1), (0, 1)} which is a stationary point of the flow ψ or

(2) there is x ∈ B(0, R) \ {(0,−1), (0, 1)} such that

lim
t→−∞

ψt(x) = (0, 1) and lim
t→+∞

ψt(x) = (0,−1)

which induces the orbit connecting the points (0, 1) and (0,−1).

Proof. We set B
def
= B((0, 0), 2R) = {x ∈ R2 : |x| 6 2R}. By our observations, we

have

Σ⋆h({(0, 1)}, ψ) = Σ⋆h({(0, 1)}, ϕ),

Σ⋆h({(0,−1)}, ψ) = Σ⋆h({(0, 1)}, ϕ),

Σ⋆h(inv(B), ψ) = Σ⋆h(inv(B), ϕ).

Hence by Lemma 4.3 we obtain

Σ⋆h(inv(B), ψ) 6= Σ⋆h({(0, 1)}, ψ) ∨ Σ⋆h({(0,−1)}, ψ).

We consider two cases:

1. (∇g)−1(0) ∩B \ {(0,−1), (0, 1)} 6= ∅. This is the (1) of the theorem.

2. (∇g)−1(0) ∩ B \ {(0,−1), (0, 1)} = ∅. Applying the additivity of the Conley index

with symmetries we obtain

inv(B,ψ) 6= {(0,−1), (0, 1)},

hence there exists x ∈ inv(A,ψ) \ {(0,−1), (0, 1)}. As the flow is generated by a gradient

vector field and (0,−1), (0, 1) are its only stationary points in B, it follows that x induces

the required connecting orbit.

Flow deformation problem. In the context of bifurcation phenomena a parametrized

family of flows is studied. We show that the Conley index with symmetries can be used

to verify whether one flow can be deformed to another one without disturbing a fixed

isolating neighbourhood.

Set

k(x, y)
def
= f(x,−y).

Then

K(x, y) = ∇k(x, y) = (F1(x,−y),−F2(x,−y)) ∈ FΣ,
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hence

K(x, y) =





(2x, 2(1− y)) if y > 1

(2x, 3(y2 − 1)) if y ∈ (−1, 1)

(2x, 2(1 + y)) if y 6 −1.

The phase portrait of the flow φ induced by the vector field K is shown below.

We see that the set

A
def
= {0} × [−1, 1] ∈ IIS(φ) \ IISΣ(φ)

is a compact isolated invariant set of the flow φ and

(N4, L4)
def
= ([−1, 1]× [−2, 2], {−1, 1}× [−2, 2] ∪ [−1, 1]× {−2})

is its index pair. Hence, applying the notation of section 4, we obtain that the Conley

index of A is

Σ⋆h(A, φ) = [(W, ⋆; ΣW ,B)],

while its Conley index h(A, φ) = [({⋆}, ⋆)] is trivial.

Let N ⊂ X be any isolating neighbourhood of A.

Proposition 6.2. There is no homotopy H : R2 × [0, 1] → R2 such that

1. H0 = F and H1 = K,

2. Hs ∈ FΣ for s ∈ [0, 1],

3. N is an isolating neighbourhood for the flow ϕHs
induced by the vector field Hs, for

any s ∈ [0, 1].

Proof. This is a straightforward consequence of the continuation property of the

Conley index with symmetries. Indeed A = inv(N,ϕ) = inv(N,φ) and Σ⋆h(A,ϕ) 6=

Σ⋆h(A, φ) as shown in Lemma 4.3.

Proposition 6.3. There exists a homotopy H : R2 × [0, 1] → R2 such that

1. H0 = F and H1 = K,

2. Hs ∈ F for s ∈ [0, 1],
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3. N is an isolating neighbourhood for the flow ϕHs
induced by the vector field Hs, for

any s ∈ [0, 1].

Proof. We construct the required homotopy which connects F and K in such a way

that N is an isolating neighbourhood for the associated gradient flows.

This homotopy is obtained as the composition of a deformation (H1), a rotation (H2)

and a deformation (H3) defined below.

Let H1 : R2 × [0, 1] → R,

H1(x, y, s) =





x2 + (y − (1− s))2 + 2(1− s)3 if y > 1− s

x2 + (3(1− s)2y − y3) if y ∈ (s− 1, 1− s)

x2 − (y + (1− s))2 − 2(1− s)3 if y 6 s− 1

and H2 : R2 × [0, 1] → R,

H2(x, y, s) = H1
0 (Os(x, y)),

where

Os =

(
cosπs − sinπs

sinπs cosπs

)

is the rotation through s · π and finally H3 : R2 × [0, 1] → R,

H3(x, y, s) =





x2 − (y − s)2 − 2s3 if y > s

x2 + (y3 − 3s2y) if y ∈ (−s, s)

x2 + (y + s)2 + 2s3 if y 6 −s.

The stages of deformation of ϕ to φ are presented below.

Phase portrait of the gradient flow along the deformation H1

Phase portrait of the gradient flow along the rotation H2
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Phase portrait of the gradient flow along the deformation H3
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