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Abstract. We discuss the ideas of Morse decompositions and index filtrations for isolated

invariant sets for both single-valued and multi-valued maps. We introduce the definition of

connection matrix pairs and present the theorem of their existence. Connection matrix pair

theory for multi-valued maps is used to show that connection matrix pairs obey the continuation

property. We conclude by addressing applications to numerical analysis. This paper is primarily

an overview of the papers [R1] and [R2].

1. Introduction. In [F1] Franzosa proves the existence of connection matrices for

Morse decompositions of isolated invariant sets for flows. This tool has proved very useful

for detecting connections between Morse sets. Moreover, with the development of transi-

tion matrices, the connection matrix has proved useful for detecting heteroclinic bifurca-

tions between Morse sets. The power of the connection matrix lies in its computability;

like the Conley index, the connection matrix has the continuation property [F2].

Much of the recent research is directed towards the discrete Conley index. In this

article we survey results generalizing the connection matrix to the discrete case. In [R1]

the author proves the existence of a pair of matrices, the connection matrix pair, which

generalizes the single connection matrix for flows to the case of a single-valued continuous

map. Then, in [R2] connection matrix pairs are generalized to the case of multi-valued

maps. Among other applications, this result proves that connection matrix pairs possess

the continuation property.

Below we summarize the connection matrix pair results for multi-valued maps. Be-

cause most applications will be single-valued maps this generalization may seem to be

an unnecessary and indulgent. Indeed, one may question why we develop the theory for

multi-valued maps at all. It is not purely an academic generalization. First, with the
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multi-valued results in place one finds that the continuation property of the Conley in-

dex is transparent. In the same vein we show that there exist stable index filtrations -

filtrations which are robust under small perturbations of the map. Lastly, because of the

rise of computer assisted proofs, there has arisen a need for results about multi-valued

maps. Below we indicate how Morse decompositions and connection matrix pairs can be

used in numerical analysis. Moreover, all definitions and theorems below are still valid

for single-valued maps. If definitions can be significantly simplified when one considers

single-valued maps the author will make note of this.

2. Discrete multi-valued dynamical systems. Consider locally compact metric

spaces X and Y . We denote the power sets of X and Y by P(X) and P(Y ). We say

that F : P(X) → P(Y ) is a multi-valued map provided for all A,B ∈ P(X),

F (A ∪B) = F (A) ∪ F (B)

and

F (∅) = ∅.

Notice that we do allow the possibility F (A) = ∅ for A 6= ∅. If F : P(X) → P(Y ) is a

multi-valued map then we may define another multi-valued map F−1 : P(Y ) → P(X)

by

F−1(A) := {x ∈ X : F (x) ∩ A 6= ∅}.

It is important to note that, despite the notation, F−1 is not the inverse map to F . It is

the case that F (F−1(A)) ⊂ A and that (F−1)−1 = F .

If F : P(X) → P(X) is a self-map then we may define Fn : P(X) → P(X) for

n ∈ Z. We define F 0 = id and F−1 as above then require Fn+m(A) = Fn(Fm(A)) where

nm ≥ 0.

Clearly, every multi-valued map can be completely described by its action on single

points or, more precisely, sets consisting of a single point

F (A) =
⋃

x∈A

F (x).

Moreover, F is often defined in this way. Thus, in the literature one often finds multi-

valued maps defined as maps from a space to the power set of another space X → P(Y ).

This notation should cause no confusion.

A multi-valued map F : P(X) → P(Y ) is said to be upper semicontinuous if F−1(A)

is closed whenever A is closed, or equivalently, {x ∈ X : F (x) ⊂ U} is open whenever U

is open. The multi-valued map F is continuous if F−1(U) is open whenever U is open.

If F : P(X) → P(X) is an upper semicontinuous map with the property that F (x)

is compact for all x ∈ X then F is called a discrete multi-valued semidynamical system

(dmss). If, in addition, F−1 is upper semicontinuous and takes compact values then F is

called a discrete multi-valued dynamical system (dmds). We have the following classes of

maps.

F(X) := {F : P(X) → P(X) : F is a dmss}

F0(X) := {F ∈ F(X) : F is continuous}.
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Clearly, not every F ∈ F(X) induces a map on cohomology. Thus, we must restrict

our attention to a subclass of these maps. In [G1] and [G2] Górniewicz describes a class

of functions called admissible maps or maps determined by a given morphism which may

be used for computing Conley indices. We refer the reader to those references for the

definitions. Examples of admissible maps are continuous single-valued maps and multi-

valued maps with compact acyclic values (H̃∗(F (x)) = 0 for all x ∈ X). Also compositions

of such maps are admissible. Let

G(X) := {F ∈ F(X) : F is admissible},

G0(X) := {F ∈ G(X) : F is continuous}.

As was alluded to above, each continuous map f : X → X determines a dmss F (x) =

{f(x)}. If f is proper, that is, F−1(K) is compact whenever K is compact, then F is a

dmds. In particular, F−1(x) = f−1(x).

We now present another multi-valued map. Suppose Gλ is the fattening homotopy

of F ; that is, Gλ : [0, 1] × P(X) → P(X) is given by Gλ(x) = cl(Bλ(F (x))) where

Bλ(A) = {x ∈ X : dist(x,A) < λ}. We will call the multi-valued map Gλ the λ-fattening

map for F .

We call a subset I ⊂ Z an interval provided it is the intersection of a real interval

with Z. Suppose I is an interval containing 0. A single valued map σ : I → X is called

a solution for x ∈ X provided σ(0) = x and σ(n + 1) ∈ F (σ(n)) whenever n, n+ 1 ∈ I.

If I = Z then σ is called a full solution for x. Similarly, if Z+(−) ⊂ I then σ is called

a full forward (backward) solution for x. A set S is called invariant if there exists a full

solution σx : Z → S for each x ∈ S. For a set N ⊂ X we define InvN to be the maximal

invariant subset of N . We impart a strong word of caution here; the term invariant may

be slightly misleading, as an invariant set S does not necessarily have the property that

F (S) ⊂ S.

Definition 1. A compact subset N ⊂ X is called an isolating neighborhood if

F (InvN) ⊂ IntN . If N is an isolating neighborhood then InvN is called an isolated

invariant set.

Remark 2. This definition is weaker than the one given by Kaczynski and Mrozek

[KM1], but one can see that the crucial property of N is that x ∈ N cannot escape from

N under one iterate of F , thus all proofs in [KM1] still hold. This definition benefits from

the absence of any mention of the metric.

Remark 3. In some situations we may want this definition to be stronger. In partic-

ular, if F is a dmds then this definition allows the possibility that an isolating neighbor-

hood N for F not be an isolating neighborhood for F−1. Thus, one may wish to require

F (InvN) ∪ F−1(InvN) ⊂ IntN . Since we are focusing on dmss we shall not make this

assumption.

Multi-valued maps have properties which may be undesirable, or are at least unex-

pected, to those used to single-valued maps. For instance, there may exist a set N with

the property that F i(x) ∩ N 6= ∅ for i = 1, . . . , n but there does not exist a solution

σ : {0, . . . , n} → N for x. This situation may be undesirable if N is an isolating neigh-
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borhood or an invariant set. In fact, the map that we would like is x 7→ F (x) ∩ N . We

denote this map by FN : P(N) → P(N) and call it the restriction of F to N . If F is

upper semicontinuous and N is compact then FN is upper semicontinuous [KM1]. Using

this definition we see that a set S is invariant if and only if for all x ∈ S, FS(x) 6= ∅ and

F−1
S (x) 6= ∅.

Definition 4. Let S be an isolated invariant set for F ∈ F(X). An index pair for S

is a compact pair (N,L) satisfying the following conditions:

1. S = Inv(cl(N \ L)) ⊂ Int(N \ L),

2. F (L) ∩N ⊂ L,

3. F (N \ L) ⊂ N,

The following result was proved by Kaczynski and Mrozek [KM1].

Theorem 5. Let F ∈ F(X) and W be a neighborhood of an isolated invariant set S.

Then there exists an index pair (N,L) for S with N \ L ⊂W .

We refer the reader to [KM1] for the details of defining the Conley index for discrete

multi-valued dynamical systems. We now give a brief overview. Suppose F ∈ G(X) and

P = (N,L) is an index pair for an isolated invariant set S. The inclusion map

i : (N,L) → (N ∪ F (L), L ∪ F (L))

induces an isomorphism in cohomology. Furthermore, since F is admissible, the map

F : (N,L) → (N ∪ F (L), L ∪ F (L))

induces a map on cohomology. Let FP : H∗(N,L) → H∗(N,L) be the composition

FP := F ∗ ◦ (i∗)−1.

If we denote the Leray functor by L then we define the (cohomological) Conley index of

S to be

Con∗(S) = (CH∗(S), χ∗(S)) := L(H∗(N,L), F ∗
P )

As with the discrete single-valued map case, the Conley index consists of a graded abelian

group and a distinguished automorphism. For our purposes we will consider the coeffi-

cients of all cohomology to lie in some field, thus Con∗(S) will actually consist of a graded

vector space CH∗(S) and a linear map, χ∗(S) : CH∗(S) → CH∗(S). That Con∗(S) is

independent of index pair is proved by Kaczynski and Mrozek [KM1]. Furthermore, they

show that the Conley index satisfies the additive and continuation properties.

We say that G ∈ F(X) is a selector for F ∈ F(X) if G(x) ⊂ F (x) for all x ∈ X . We

have the following useful result.

Proposition 6 [KM2]. Let F ∈ F(X), N be an isolating neighborhood and P be an

index pair for InvN . If G ∈ F(X) is a selector for F then N is an isolating neighborhood

for G, Inv(N,G) ⊂ Inv(N,F ) and P is an index pair for G. If F,G ∈ G(X) then

Con∗(N,F ) ∼= Con∗(N,G).
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3. Attractor-repeller pairs. Let F ∈ F(X) and B ⊂ X . We define the ω-limit set

of B to be

ω(B) = ω(B;F ) =
⋂

N>0

cl
(

⋃

n>N

Fn(B)
)

and the α-limit set of B to be

α(B) = α(B;F ) =
⋂

N>0

cl
(

⋃

n>N

F−n(B)
)

.

If either F or F−1 is multi-valued, then we may wish to speak of the α- or ω-limit set of

a specific solution. Let σ : Z+ → X be a full forward solution for x ∈ X . The ω-limit set

of σ is defined to be

ω(σ) =
⋂

N>0

cl
(

⋃

n>N

{σ(n)}
)

.

Similarly, if σ : Z− → X is a full backward solution for x ∈ X the α-limit set is

α(σ) =
⋂

N>0

cl
(

⋃

n>N

{σ(−n)}
)

.

Consider an isolated invariant set S with isolating neighborhood N . We say that a set

A ⊂ S is an attractor in S if there exists a compact neighborhood U ⊂ N of A such that

ω(U ∩ S;FS) = A. Any such neighborhood U of A is called an attracting neighborhood

of A. Notice that in the definition we use the restriction map FS . If we did not then it

may be the case that ω(U ∩ S) would not be contained in S.

The dual repeller to A is defined to be

A∗ := {x ∈ S : ∃ solution σ : Z → S for x such that ω(σ) ∩ A = ∅}.

If F (A∗) ∩ A = ∅ then (A,A∗) is called an attractor-repeller decomposition of S. The

connecting orbits are

C(A∗, A;S) := {x ∈ S : ∃ solution σx : Z → S with ω(σx) ⊂ A,α(σx) ⊂ A∗}.

Again, notice that if F is single-valued then the definitions coincide with the usual

definitions. But, also notice that unlike the homeomorphism case, it may happen that

C(A∗, A;S) ∩ A 6= ∅ or C(A∗, A;S) ∩ A∗ 6= ∅. In particular, it may be the case that

Fn
N (A∗) ∩ A 6= ∅ for n > 1. We do have the following useful equivalent definition for

(A,R) an attractor-repeller decomposition of S.

Proposition 7. (A,R) is an attractor-repeller decomposition of S if and only if

A,R ⊂ S are isolated invariant sets with F (R) ∩ A = ∅ and with the following prop-

erty. If x ∈ S and σ : Z → S is a full solution for x then

1. σ(Z) ⊂ A, or

2. σ(Z) ⊂ R, or

3. ω(σ) ⊂ A and α(σ) ⊂ R.

Remark 8. If F is a dmds and we take the stronger definition of an isolating neigh-

borhood (see Remark 3) then the definitions of attractor and dual repeller are in fact

dual. That is, if (A,R) is an attractor-repeller decomposition of S for F then (R,A) is

an attractor-repeller decomposition of S for F−1.
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One may question whether there is a relationship between the Conley indices of A,

R and S. To answer this question we must find index pairs for each of the three isolated

invariant sets. We make the following definition.

Definition 9. An index triple for (A,R) is a compact triple (N2, N1, N0) with the

property that (N2, N0), (N2, N1) and (N1, N0) are index pairs for S, R and A respectively.

The following theorem was proved for single-valued maps in [R1] and for multi-valued

maps in [R2].

Theorem 10. Let S be an isolated invariant set and (A,R) be an attractor-repeller

decomposition of S. Then there exists an index triple for (A,R).

Let (N2, N1, N0) be an index triple for S. Clearly the following diagram commutes,
where i, ι and ρ are defined by inclusions.

(N1, N0)
ι
−→ (N2, N0)

ρ

−→ (N2, N1)




yi





yi





yi

(N1 ∪ F (N0), N0 ∪ F (N0))
ι
−→ (N2 ∪ F (N0), N0 ∪ F (N0))

ρ

−→ (N2 ∪ F (N1), N1 ∪ F (N1))




yF





yF





yF

(N1, N0)
ι
−→ (N2, N0)

ρ

−→ (N2, N1)

Passing to cohomology and applying the Leray functor one obtains the following

result.

Proposition 11. If (A,R) is an attractor-repeller decomposition of an isolated in-

variant set S then we have the following long exact sequence of vector spaces and auto-

morphisms

δ∗

−→ Conk(R) −→ Conk(S) −→ Conk(A)
δ∗

−→ Conk+1(R) −→ .

The additive property of the Conley index gives the following useful corollary and its

contrapositive.

Corollary 12. If S = A∪R then δ∗ = 0, CH∗(S) ∼= CH∗(A)⊕CH∗(R) and χ∗(S)

is conjugate to χ∗(A)⊕ χ∗(R).

Corollary 13. If δ∗ 6= 0, CH∗(S) 6∼= CH∗(A)⊕CH∗(R) or χ∗(S) is not conjugate

to χ∗(A)⊕ χ∗(R), then S 6= A ∪R. That is, C(R,A;S) 6= ∅.

Notice that Corollary 12 is an improvement over the flow case. In particular, there

are simple examples of attractor-repeller decompositions for which δ∗ = 0 (and thus

CH∗(S) ∼= CH∗(A)⊕CH∗(R)) but for which χ∗(S) and χ∗(A)⊕χ∗(R) are not conjugate

linear maps. Thus we know the existence of a connecting orbit. Algebraically such a

situation is possible because short exact sequences of vector spaces and endomorphisms

do not always split. We give the following example.

Example 14. Suppose f is a single-valued map of the plane such that the following

compact neighborhoods, N1 and N2 get mapped as shown below.
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f(N  )
f(N  )

N

N 1

2

2

1

Let A = Inv(N1), R = Inv(N2) and S = Inv(N1 ∪N2). Clearly (A,R) is an attractor-

repeller decomposition of S. Furthermore, it is easy to see that

Conk(A) ∼= Conk(R) ∼=
{ (Q, id) k = 1

0 otherwise

and

Conk(S) ∼=
{ (Q⊕Q,

( 1 0

−1 1

)

) k = 1

0 otherwise

.

Notice that in this example CH∗(S) ∼= CH∗(A)⊕CH∗(R) but since χ∗(S) and χ∗(A)⊕

χ∗(R) are not conjugate we conclude that there must exist a connecting orbit from R to

A. Furthermore, it is interesting to note that we are detecting a “degree 0” connection.

For instance, if we made the above example Morse-Smale, with A and R hyperbolic fixed

point saddles, then we would be detecting the presence of a heteroclinic orbit.

Consider the graded vector space D = CH∗(A) ⊕ CH∗(R) and the linear map ∆ =
( 0 0

δ∗ 0

)

: D → D. We motivate the remainder of the paper with the following result.

Proposition 15 [R1]. (D,∆) is a cochain complex with H∗(D) ∼= CH∗(S). Further-

more, there is a cochain map d : D → D such that the induced map on cohomology, d∗,

is conjugate to χ∗(S).

Thus, we see that if one knows the Conley indices of both A and R and one knows

the two matrices ∆ and d then one is able to reconstruct the Conley index of S.

4. Morse decompositions and index filtrations. We now consider the situation

where an isolated invariant set can be decomposed into a finite number of attractors and

repellers. Recall that a finite set P is called partially ordered by < if

1. it is never the case that p < p for p ∈ P , and

2. if p < q and q < r then p < r.

3. If p 6= q implies p < q or q < p then P is totally ordered.
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If P has a partial order < then a subset I ⊂ P is called an interval provided p < q < r

and p, r ∈ I implies q ∈ I. An interval I is called attracting if r < q and q ∈ I implies

r ∈ I. We will denote the set of intervals I = I(P , <) and the set of attracting intervals

A = A(P , <). An ordered collection of intervals (I1, . . . , In) is called an n-tuple provided

I1 ∪ . . . ∪ In ∈ I and i < j, p ∈ Ii, q ∈ Ij implies q 6< p. We will denote this union by

I1 . . . In. The collection of n-tuples will be denoted In = In(P , <).

Suppose S is an isolated invariant set and P(<) is a finite, partially ordered set. Let

M = M(P , <) = {Mp ⊂ S : p ∈ P} be any collection of mutually disjoint isolated

invariant sets. For each interval I ∈ I define

MI :=
(

⋃

p∈I

Mp

)

∪
(

⋃

p,q∈I

C(Mp,Mq;S)
)

.

Definition 16. A collectionM = M(P , <) = {Mp ⊂ S : p ∈ P} of mutually disjoint

isolated invariant sets is a Morse decomposition of S if the following conditions hold:

1. (MI ,MJ) is an attractor-repeller decomposition of MIJ for all (I, J) ∈ I2,

2. for each x ∈ S and each full solution for x, σ : Z → S, either σ(Z) ⊂ Mp for some

p or there exists p, q ∈ P such that q < p and ω(σ) ⊂ Mq and α(σ) ⊂ Mp, i.e.

x ∈ C(Mp,Mq;S).

The sets Mp are called Morse sets.

Remark 17. For the single-valued case the definition of a Morse decomposition is

slightly easier to state. In fact, one need only check that the second condition holds; for

any x ∈ S \
⋃

p∈P
Mp there exists p, q ∈ P such that q < p and x ∈ C(Mp,Mq;S).

Given a collection of Morse sets it may be the case that there are several differ-

ent orderings which may be placed on the decomposition. For sure, there is a minimal

such ordering, the one defined by the connecting orbits. This ordering is called the F -

defined ordering and will be denoted <F . Any other ordering < is a refinement of <F .

That is, p <F q implies p < q. We shall call any refinement of <F an admissible or-

der.

We now have a large collection of isolated invariant sets. We would like to be able to

compute Conley indices for each of them. In particular, we need index pairs. We state

the following definition.

Definition 18. A collection of compact sets N = N (P , <) = {N(I) : I ∈ A(P)} is

called an index filtration for the Morse decomposition M(P , <) provided

1. for each I ∈ A, (N(I), N(∅)) is an index pair for MI ,

2. for any I, J ∈ A we have N(I) ∩N(J) = N(I ∩ J) and N(I) ∪N(J) = N(I ∪ J).

Theorem 19 [R2]. Suppose F ∈F0(X) and S is an isolated invariant set. If M(P , <)

= {Mp : p ∈ P} is a Morse decomposition of S then there exists an index filtration

N (P , <) = {N(I) : I ∈ A(P)} for M.

We conclude this section with a remark which will prove useful in subsequent sec-

tions. Suppose G ∈ F(X) is a selector for F ∈ F(X). Also suppose F has an iso-
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lated invariant set SF with Morse decomposition MF (P , <) = {Mp,F : p ∈ P}. For

each p ∈ P let Np be an isolating neighborhood for Mp,F . Define a new collection

MG(P , <) = {Mp,G : p ∈ P} by Mp,G = Inv(Np, G). Clearly, since G is a selector

for F MG is a Morse decomposition of SG = Inv(N,G). We call MG the restriction

of MF by G. If N (P , <) is an index filtration for F then it is also an index filtration

for G.

5. Connection matrix pairs. In this section we present the definition of connection

matrix pairs. They were introduced by the author for single-valued maps in [R1] and for

multi-valued maps in [R2]. In fact, all the results given below and their proofs are identical

for both the multi-valued and the single-valued cases. In this section we will assume that

S is an isolated invariant set, P(<) is a finite partially ordered set and M(P , <) is a

Morse decomposition of S with index filtration N (P , <). We denote the Conley index of

MI by Con∗(MI) = (CH∗(I), χ∗(I)). As we mentioned earlier, we will assume that all

coefficients lie in some field.

Below we define and state the existence of connection matrix pairs. In order to define

them we must present a formidable collection of definitions. Perhaps the reader would ben-

efit from an informal definition at this point. The connection matrix pair (∆, d) consists

of a pair of matrices of linear maps acting on the vector space C∆(P) =
⊕

p∈P
CH∗(p).

This pair will have the following properties. If ∆(I) and d(I) are the restrictions of ∆

and d to C∆(I) then

1. ∆(I) is a coboundary map and d(I) is a cochain map,

2. there exists an isomorphism ψ∗(I) : H∗(C∆(I)) → CH∗(I),

3. the induced map d∗ on H∗(C∆(I)) is conjugate to χ∗(I) via ψ∗(I), i.e.

ψ∗(I)d∗ = χ∗(I)ψ∗(I).

Thus, knowing the Conley indices Con∗(Mp) and the connection matrix pair (∆, d)

we are able to reconstruct Con∗(MI) for every interval I.

By Proposition 11 we know that attractor-repeller pairs fit together nicely in a long

exact sequence. In the discussion that follows we shall see that Morse decompositions

have a similarly nice relationship.

Definition 20. A cochain complex braid with endomorphism is a collection C =

{(C(I), ∂(I), c(I)) : I ∈ I} of cochain complexes and endomorphisms satisfying the

following conditions.

1. For each I ∈ I, there exists a cochain complex C(I) and a cochain endomorphism

c(I) : C(I) → C(I) of degree 0.

2. For all (I, J) ∈ I2 there exist chain maps ι(I, IJ) and ρ(IJ, J) such that the fol-

lowing sequence is exact:

0 −→ (C(J), c(J))
ρ

−→ (C(IJ), c(IJ))
ι

−→ (C(I), c(I)) −→ 0.

3. For all (I, J,K) ∈ I3 the following braid diagram commutes.
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0

0

0

0

0

00

(C(I), c(I))

(C(IJK), c(IJK))

(C(K), c(K))

(C(JK), c(JK)))

(C(IJ), c(IJ)))

(C(J), c(J))

0

Definition 21. A graded module braid with endomorphism is a collection H =

{(H(I), a(I)) : I ∈ I} of graded modules and linear endomorphisms such that the fol-

lowing conditions are satisfied:

1. For each I ∈ I, there exists a graded module H(I) and a linear endomorphism

a(I) : H(I) → H(I) of degree 0,

2. for all (I, J) ∈ I2, there exists a long exact sequence of modules and endomorphisms

δn−1

−→ (Hn(J), an(J))
ρn

−→ (Hn(IJ), an(IJ))
ιn

−→ (Hn(I), an(I))
δn

−→,

3. for all (I, J,K) ∈ I3 the following braid diagram commutes

(H   (JK), a   (JK))

(H    (K), a    (K))

(H   (J), a   (J))

(H    (I), a    (I))

(H   (IJK), a   (IJK))

(H   (I), a   (I))
kk

kk

(H   (K), a   (K))k

k k

k(H   (IJ), a   (IJ))k

k-1 k-1

k k

k+1 k+1

k
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Proposition 22. Let C be a cochain complex braid with endomorphism. Passing to

cohomology one obtains a graded module braid with endomorphism which we denote HC.

Definition 23. Let H(P , <) = {(H(I), a(I)) : I ∈ I} and H′(P , <) = {(H ′(I),

a′(I)) : I ∈ I} be graded module braids with endomorphisms. Define a graded module

braid homomorphism Ψ : H → H′ to be a collection of homomorphisms ψ(I) : H(I) →

H ′(I) defined for all I ∈ I such that for (I, J) ∈ I2 the following diagram commutes.

δ
−→ (H(J), a(J)) −→ (H(IJ), a(IJ)) −→ (H(I), a(I))

δ
−→





y
ψ(J)





y
ψ(IJ)





y
ψ(I)

δ
−→ (H ′(J), a′(J)) −→ (H ′(IJ), a′(IJ)) −→ (H ′(I), a′(I))

δ
−→

We say that Ψ is an isomorphism if each ψ(I) is an isomorphism.

We have at hand one example of a graded module braid. From the index filtration

N (P , <) for the Morse decomposition M(P , <) we obtain the graded module braid

H(M) := {(CH∗(I), χ∗(I)) : I ∈ I}.

The purpose of connection matrix pairs is to reconstruct this braid.

Let C∆(I) :=
⊕

p∈ICH
∗(p) for I ∈ I. We may regard any linear map B : C∆(P) →

C∆(P) as a matrix of linear maps, B = (Bpq)p,q∈P where Bpq : CH∗(Mq) → CH∗(Mp).

Furthermore, we may define the submatrix B(I) : C∆(I) → C∆(I) to be B(I) =

(Bpq)p,q∈I . Such a map B is called lower triangular if q 6≤ p implies Bpq = 0 and is

called strictly lower triangular if q 6< p implies Bpq = 0. B is a coboundary operator if it

is of degree +1 and B2 = 0.

Suppose ∆ : C∆(P) → C∆(P) is a strictly lower triangular coboundary operator and

d : C∆(P) → C∆(P) is a lower triangular cochain map (with respect to ∆) of degree 0.

Let C∆(M) = {(C∆(I),∆(I), d(I)) : I ∈ I}. Then it is clear that C∆(M) is a cochain

complex braid with endomorphism. Passing to cohomology one obtains a graded module

braid with endomorphism H∆(M).

We are finally in a position to make the following definition.

Definition 24. The pair of matrices (∆, d) is called a connection matrix pair for the

Morse decomposition M(P , <) if the graded module braid with endomorphism H∆(M)

is isomorphic to the graded module braid with endomorphism H(M).

Let CM(M(P , <)) denote the set of connection matrix pairs for the Morse decompo-

sition M(P , <).

Theorem 25 [R2]. For any isolated invariant set S and any partially ordered Morse

decomposition M(P , <) of S, CM(M(P , <)) 6= ∅.

Just as is the case for connection matrices for flows, there may not exist a unique con-

nection matrix pair for a given Morse decomposition. Understanding this nonuniqueness

is not yet complete. It seems that nonuniqueness is a consequence of the continuation

property.

6. Continuation of connection matrix pairs. One of the crucial properties of

the Conley index is that it is robust under small perturbations of the map; it has the
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so-called continuation property. In [R1] we developed the theory of connection matrix

pairs for continuous maps of locally compact metric spaces. In [R2] we show that, like

the rest of the Conley index theory, connection matrix pairs satisfy the continuation

property.

Let F : [a, b] × P(X) → P(X) be a continuous homotopy through F(X). That is,

for each λ ∈ [a, b], Fλ ∈ F(X) where Fλ(A) = F (λ,A). Assume that N is an isolating

neighborhood for Fλ for all λ ∈ [a, b]. Let Sλ = Inv(N,Fλ). Furthermore, suppose Sa

and Sb have Morse decompositions M(P , <, Fa) and M(P , <, Fb) respectively. We say

that M(P , <, Fa) and Mb(P , <, Fb) are related by continuation if each Sλ has a Morse

decomposition M(P , <, Fλ) and if there exists a collection of sets N which serves as

an index filtration for each Mλ. By Proposition 6 N is also an index filtration for any

selector Ga of Fa and any selector Gb of Fb, thus we will say that M(P , <,Ga) and

M(P , <,Gb) are related by continuation. We then make this definition transitive, that

is, if Mb is related by continuation to both Ma and Mc we say that Ma and Mc are

related by continuation. Thus we obtain an equivalence relation.

If < is the Fa-defined order on a Morse decomposition Ma, and Mb is a Morse

decomposition related to Ma by continuation, then < may not be the Fb-defined order.

Of course, it does follow that < is an admissible order for Mb.

The proof of the continuation property of connection matrix pairs can be broken into

two parts. First we show that if two Morse decompositions are related by continuation

then they have the same set of connection pairs. This statement is easy to prove and

is stated below in Proposition 26. Second, we show that in fact Morse decompositions

always continue to Morse decompositions for nearby maps. We shall sketch the proof of

Proposition 29 below.

Proposition 26. Suppose Fa, Fb ∈ G(X) and the Morse decompositions Ma(P , <)

and Mb(P , <) are related by continuation. Then CM(Ma(P , <)) = CM(Mb(P , <)).

That is, (∆, d) is a connection matrix pair for Ma if and only if it is a connection matrix

pair for Mb.

Remark 27. Recall that the collection of connection matrix pairs depends on the

choice of ordering on the Morse sets. If one were to refine an ordering P(<) to obtain

P(<′) then P(<′) would have fewer intervals. Thus there would be fewer algebraic re-

strictions on the set of connection matrix pairs, and we have M(P , <) ⊂ M(P , <′).

In particular, if <a is the map defined order for Fa and Ma(P , <) and Mb(P , <) are

related by continuation, then CM(Mb(P , <a)) = CM(Ma(P , <a)), but CM(Mb(P , <b

)) ⊂ CM(Ma(P , <a)).

Suppose F ∈ F0(X) and that M0(P , <) is a Morse decomposition of an isolated

invariant set S0 = InvN . Let Gλ be the fattening homotopy of F . For λ small enough,

say λ ∈ [0, 2ε), N is an isolating neighborhood for Gλ.

Lemma 28. Let Gλ be the fattening homotopy for F ∈ F0(X). For ε > 0 small

enough, M0(P , <) continues to a Morse decomposition Mε(P , <) for Gε.

This statement seems weaker than the one we need, but we see that it will suffice.

Let ε > 0 be the one of Lemma 28. Then there exists an index filtration N (P , <) for the
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ε-fattening map Gε. Since N is also an index filtration for any selector of Gε, Proposition

6 gives us the following result.

Proposition 29. For G ∈ F0(X) sufficiently close to F , say G(x) ⊂ Bε(F (x)) for

all x ∈ X, the Morse decomposition MF (P , <) continues to a Morse decomposition

MG(P , <).

We combine Proposition 26 and Proposition 29 to obtain the following lemma.

Lemma 30 (Stable index filtrations). Let F ∈ F0(X) and let S be an isolated in-

variant set with Morse decomposition MF (P , <). Then there exists an index filtration

N (P , <) which is stable under small perturbations in F(X). That is, there exists ε > 0

such that if G ∈ F(X) has the property G(x) ⊂ Bε(F (x)) for all x ∈ X then N is an

index filtration for G.

Theorem 31 (Continuation of connection matrix pairs). Let F ∈ G0(X) and let S

be an isolated invariant set with Morse decomposition MF (P , <). Then for G ∈ G(X)

sufficiently close to F the graded module braids with endomorphisms H(MF ) and H(MG)

are isomorphic. In particular CM(Ma, <) = CM(Mb, <).

7. Computer assisted proofs. We conclude with an application to numerical anal-

ysis. One would like to be able to model continuous maps f : Rm → Rm on a computer in

such a way that Morse decompositions and connection matrix pairs could be computed.

Of course any such model must take the form of a multi-valued map. In particular, such

a map may be upper semicontinuous. Theorem 30 was only proved for continuous maps,

thus we must proceed with care.

Suppose f : Rm → Rm is an L-Lipschitz continuous map and N ⊂ Rm is a compact

neighborhood. Suppose Nn ⊂ N is a family of subsets with the property that for any

x ∈ N we have dist(x,Nn) <
1
n
. Moreover, suppose that for any x ∈ Nn we can find

numerically an approximation fn(x) such that dist(f(x), fn(x)) ≤ 1
n
. We now define a

multi-valued map by

Fn(x) = conv
⋃

{Br(fn(y)) : dist(x, y) = dist(x,Nn)}

where r = (1 + L)/n.

Suppose that N is an isolating neighborhood for f and M(P , <) is a Morse decom-

position for S = InvN . Let NI be an isolating neighborhood for the set MI . For each n

define MI,n = Inv(NI , Fn). Let Mn(P , <) = {Mp,n : p ∈ P}.

Let ε > 0 be small enough so that the Morse decomposition M continues to the

ε-fattening map Gε. Now, if we take n large enough Fn is a selector for Gε, thus Mn is

a Morse decomposition for Fn. Lastly, we see that the index filtration for Gε is an index

filtration for both f and Fn. This argument proves the following theorem.

Theorem 32 [R2]. For n large enough Mn(P , <) is a Morse decomposition of

Inv(N,Fn). Moreover, there exists an index filtration N for both f and Fn. Thus, CM(M)

= CM(Mn).
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