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Abstract. We prove that the Poincaré map ϕ(0,T ) has at least N(h̃, cl(W0 \W−0 )) fixed

points (whose trajectories are contained inside the segment W ) where the homeomorphism h̃ is
given by the segment W .

1. Introduction. In [9] Roman Srzednicki introduced the geometric method for de-

tecting periodic solutions in nonautonomous periodic differential equations based on the

notion of periodic isolating blocks (or periodic isolating segments considered in [11], [13]).

The method is based on the Lefschetz Fixed Point Theorem and the Ważewski Retract

Theorem. It calculates the fixed point index of the Poincaré map inside the segment from

the Lefschetz number of the homeomorphism h̃ given by the segment (see Remark 2).

The problem of using other topological invariants (like the Nielsen numbers) to get more

information on the solutions inside the segment was proposed in [9], [12]. In this note we

study Srzednicki’s method from the point of view of the Nielsen fixed point theory ([2],

[3]). We prove that the relative Nielsen number (defined in [5]) of h̃ is a lower bound for

the number of fixed points of the Poincaré map whose trajectories are contained inside

the segment. First we recall the definition of the periodic isolating segments and some

basic facts from Nielsen theory.

Assume that X is a metric space and ϕ : D → X is a continuous mapping, D ⊂
R × X × R is an open set. We will denote by ϕ(σ,t) the function ϕ(σ, ·, t). ϕ is called a

local process if the following conditions are satisfied:

(1) ∀σ ∈ R, x ∈ X : {t ∈ R : (σ, x, t) ∈ D} is an interval,

(2) ∀σ ∈ R : ϕ(σ,0) = idX ,

(3) ∀σ ∈ R : ϕ(σ,s+t) = ϕ(σ+s,t) ◦ ϕ(σ,s),
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If D = R×X × R, we call ϕ a (global) process. For (σ, x) ∈ R×X the set

{(σ + t, ϕ(σ,t)(x) ∈ R×X : (σ, x, t) ∈ D}
is called the trajectory of (σ, x) in ϕ. If T is a positive number such that

(4) ∀σ, t ∈ Rϕ(σ+T,t) = ϕ(σ,t)

we call ϕ a T -periodic local process. In this paper ϕ denotes always a T -periodic process.

A local process ϕ on X determines a local flow Φ on R×X by the formula

Φt(σ, x) = (σ + t, ϕ(σ,t)(x)).

Remark 1. The differential equation

(∗) ẋ = f(x, t)

such that f is regular enough to guarantee the uniqueness of solutions of the Cauchy

problems associated to (∗) generates a local process as follows. For x(t0, x0; ·) the solution

of (∗) such that x(t0, x0; t0) = x0 we put

ϕ(t0,τ)(x0) = x(t0, x0; t0 + τ).

If f is T -periodic with respect to t then ϕ is a T -periodic local process and in order to

determine all T -periodic solutions of the equation (∗) it suffices to look for fixed points

of ϕ(0,T ) (called the Poincaré map).

Now we introduce the notion of periodic (isolating) segment. By π1 : [0, T ]×X → [0, T ]

and π2 : [0, T ]×X → X we denote the projections and for a subset Z ⊂ R×X and t ∈ R
we put

Zt = {x ∈ X : (t, x) ∈ Z}.
Let (W,W−) be a pair of subsets of [0, T ] ×X. We call W a periodic isolating segment

over [0, T ] (for the equation (∗)) and W− the exit set of W if:

(i) W and W− are compact ENR’s, W0 = WT and W−0 = W−T ,

(ii) there exists a homeomorphism

h : [0, T ]× (W0,W
−
0 ) −→ (W,W−)

such that π1 = π1 ◦ h,

(iii) for every σ ∈ [0, T ) and x ∈ ∂Wσ there exists a δ > 0 such that for every t ∈ (0, δ)

either ϕ(σ,t)(x) 6∈Wσ+t or ϕ(σ,t)(x) ∈ int Wσ+t.

(iv) W− ∩ ([0, T )×X) = {(σ, x) ∈W : σ < T, ∃δ > 0 ∀t ∈ (0, δ) : ϕ(σ,t)(x) 6∈Wσ+t}.
In all practical applications isolating segments are manifolds with corners and all

the necessary information can be obtained from the time periodic vector field f . The

condition (iv) usually means that the vector (1, f(t, x)) is directed outward with respect

to W . We call W a periodic segment over [0, T ] if conditions (i), (ii) and (iv) hold.

For a periodic segment W we define a homeomorphism

h̃ : (W0,W
−
0 ) −→ (WT ,W

−
T ) = (W0,W

−
0 )
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by h̃(x) = π2(h(T, π2h
−1(0, x))) for x ∈ W0. A different choice of the homomorphism h

in (ii) leads to a map which is homotopic to h̃ (compare [9]), hence the automorphism

µW = h̃∗ : H(W0,W
−
0 ) −→ H(W0,W

−
0 )

induced by h̃ in singular homology is an invariant of the segment W .

Classical Nielsen fixed point theory (see [2], [3]) is concerned with the determination

of the minimal number of fixed points for all maps in the homotopy class of a given map

f : X → X. The Nielsen number N(f) provides a homotopy invariant lower bound for

the number of fixed points of f . In many cases N(f) is the best possible lower bound. The

basis of Nielsen fixed point theory is the notion of fixed point class. Let X be a compact

ENR, f : X → X be a map. The fixed point set Fixf = {x ∈ X : x = f(x)} splits into a

disjoint union of fixed point classes—two fixed points are in the same class if and only if

they can be joined by a path which is homotopic (rel end-points) to its own f -image. Each

fixed point class F is an isolated subset of Fixf , so its fixed point index ind(f, F ) ∈ Z is

defined. A fixed point class is called essential if its index is non-zero. The Nielsen number

N(f) of f is defined as the number of essential fixed point classes. Every map homotopic

to f must have at least N(f) fixed points. The Nielsen number is a rather poor lower

bound for the minimal number of fixed points for a self map f : (X,A)→ (X,A). In [6]

an extension of Nielsen theory to maps was begun. In this note we will use the Nielsen

number of the closure N(f, cl(X \ A)) introduced in [5]. We assume that (X,A) is a

pair of compact ENR’s, and f : (X,A) → (X,A) is a map. Let F be a fixed point class

of f : X → X. We say that F assumes its index in A if ind(f, F ) = ind(f |A, F ∩ A).

The Nielsen number of the closure N(f, cl(X \A)) is defined as the number of the fixed

point classes of f which do not assume its index in A (see [6], [7]). Note that all fixed

point classes, whether essential or not, are counted in this definition. N(f, cl(X \A) is a

homotopy invariant (under homotopies of the form H : (X × [0, 1], A× [0, 1])→ (X,A))

lower bound for the number of fixed points on cl(X \A).

2. Main result. Our main result is the following

Theorem 2. Assume that W is a periodic segment (not necessarily isolating) over

[0, T ]. Put

FW = {x ∈ X : ϕ(0,T )(x) = x, ∀t ∈ [0, T ] : ϕ(0,t)(x) ∈Wt}.
Then cardFW ≥ N(h̃, cl(W0 \W−0 )).

Note that the set FW of fixed points of the Poincaré map whose trajectories are

contained in W was first considered in [9].

Remark 3. (1) It follows that cl(W0 \W−0 ) = W0 but in general N(h̃, cl(W0 \W−0 ))

is not equal to N(h̃).

(2) In [9] it was proved that if W is a periodic isolating segment over [0, T ] then FW
is compact and open in the set of fixed points of ϕ(0,T ) and the fixed point index of ϕ(0,T )

in FW is given by

ind(ϕ(0,T ), FW ) = Lef(µW ).
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This result has many applications in detecting periodic solutions and chaos in nonau-

tonomous periodic differential equations (see [9], [10], [11], [12], [13]).

(3) If W0 is contractible then Lef(µW ) 6= 0 iff N(h̃, cl(W0\W−0 )) = 1 and N(h̃, cl(W0\
W−0 )) = 0 if Lef(µW ) = 0, so in this case our Theorem 1 does not give more information

than results in [9].

We will need some notions related to W . Assume that W is a periodic segment over

[0, T ]. Put S1 = R/TZ and by [t] denote the equivalence class of t ∈ R in S1. By

T -periodicity of ϕ the local flow Φ on R×X induces a local flow Φ̃ with S1 ×X as the

phase space. Put

W̃ = {([t], x) ∈ S1 ×X : x ∈Wt, t ∈ [0, T ]}.
If W is isolating then by the condition (i), the set W̃ is an isolating block in the usual

sense in the theory of isolated invariant sets (see [8]). The exit set W̃− of that isolating

block is equal to {([t], x) : x ∈W−t , t ∈ [0, T ]}.
Proof of Theorem 1. Define a map

τ = τW : W0 3 x −→ sup{t ≥ 0 : ∀s ∈ [0, t] : Φ̃s([0], x) ∈ W̃} ∈ [0,∞].

τ is continuous (by the argument in a proof of Ważewski Theorem, [8]). For s ∈ [0, T ] we

define a homeomorphism

hs,T : (Ws,W
−
s )→ (W0,W

−
0 )

by hs,T (x) = π2(h(T, π2h
−1(s, x))). Note that h0,T = h̃. Consider a homotopy H :

(W0,W
−
0 )× [0, 1]→ (W0,W

−
0 ) given by

H(x, t) =

{
hτ(x),T (ϕ0,τ(x)(x)), τ(x) ≤ (1− t)T ,

h(1−t)T,T (ϕ(0,(1−t)T ))(x)), τ(x) ≥ (1− t)T .

Put Ht(x) = H(x, t). It is easy to check that Ht(x) = h̃(x) for x ∈ W−0 and H1 = h̃. By

the homotopy property of the Nielsen number of the closure we have N(H0, cl(W0 \
W−0 )) = N(h̃, cl(W0 \ W−0 )). In order to prove Theorem 1 it suffices to show that

card(FW ) ≥ N(H0, cl(W0,W
−
0 )). This follows from

Lemma 4. Assume that K ⊂ W0 is a fixed point class of H0. If K does not assume

its index in W−0 then FW ∩K is non-empty.

Proof. Suppose that FW ∩ K is empty. It is easy to check that Fix(H0) = FW ∪
Fix(h̃|W−

0
), so K ⊂W−0 . Put

U = {x ∈W0 : τ(x) < T}.
It follows that U is open in W0, W−0 ⊂ U and H0(U) ⊂W−0 , so by the commutativity of

the fixed point index we obtain

ind(H0,K) = ind(h̃|W−
0
,K),

a contradiction.

Simple examples show that in many cases it is possible that card(FW ) < N(h̃) but

we have the following
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Corollary 5. If N(h̃|W−
0

) = 0 then

card(FW ) ≥ N(h̃).

Proof. Let K ⊂ W0 be a fixed point class of h̃ which does not assume its index in

W−0 . Then K ∩W−0 is either empty or the union of fixed point classes of h̃|W−
0

(see [7]),

so ind(h̃|W−
0
,K ∩W−0 ) = 0 (because N(h̃|W−

0
) = 0). This means that K is an essential

fixed point class of h̃. The proof is complete by Theorem 1.

Remark 6. (1) The Nielsen number of the closure N(h̃, cl(W0 \W−0 )) in Theorem 1

cannot be replaced by the relative Nielsen number N(h̃,W0,W
−
0 ) defined in [6]. For

example consider the flow generated by the system

ż = z̄n.

Fix T > 0. From the phase portrait one can deduce the existence of a periodic segment

W over [0, T ] such that W0 = Wt is a regular 2(n + 1)-gon, W−0 consists of n + 1

disjoint contractible parts. In this example h̃ = id(W0,W
−
0 ). One can check (see [6]) that

N(h̃,W0,W
−
0 ) = n+ 1 and the map after time T has exactly one fixed point in W0. Note

that N(h̃, cl(W0 \W−0 )) = 1. On the other hand, it follows by our proof of Theorem 1

that cardFW ≥ N(h̃,W0 \W−0 ), where N(h̃,W0 \W−0 ) denotes the Nielsen number of

the complement defined in [14] (it is a lower bound for the number of fixed points of h̃

in W0 \W−0 ). By Theorem 2.9 in [14] we have N(h̃,W0 \W−0 ) ≤ N(h̃, cl(W0 \W−0 ). One

can check using Theorem 4.1 in [14] that in our example N(h̃,W0 \W−0 ) = 0.

(2) Note that our proof of Theorem 1 contains also the proof of Srzednicki’s theorem.

In fact if W is a periodic isolating segment then the homotopy H shows that

Lef(h̃) = Lef(H1) = Lef(H0).

Moreover

Lef(H0) = ind(ϕ(0,T ), FW ) + ind(h̃,Fix(h̃|W−
0

)),

so Srzednicki’s result follows, because by the commutativity of the fixed point index

ind(h̃,Fix(h̃|W−
0

)) = Lef(h̃|W−
0

).

(3) Corollary 1 gives a possibility of applications of the results in [4] to study periodic

points of the Poincaré map even if ϕ(0,T ) is defined only locally and W0 is not invariant

under ϕ(0,T ). Suppose that W is a periodic (not necessarily isolating) segment such that

N(h̃n|W−
0

) = 0 for any n ∈ N. The asymptotic Nielsen number N∞(h̃) of h̃ is defined by

(compare [4])

N∞(h̃) = Growthn→∞N(h̃n),

where

Growthn→∞an = max{1, lim sup
n→∞

|an|1/n}.

By Wn we denote the segment over [0, nT ] given by

Wn = {(kT + t, x) ∈ [0, nT ]×X : k ∈ {0, ..., n− 1}, t ∈ [0, T ], x ∈Wt}.
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It follows by Corollary 1 that

cardFWn ≥ N(h̃n).

In particular if N∞(h̃) > 1 then there are infinitely many periodic solutions whose trajec-

tories are contained in the segment W . For example suppose that there exists a segment

such that W0 is the space obtained from the closed 2-dimensional disk B of radius one

by removing the interiors of three disjoint disks inside B (thus W0 is a disk with three

holes). Let W−0 be equal to S1. Assume that h̃ is the homeomorphism H ′P defined in [1,

p. 236]. The suspension of H ′P and the braid related with it are given in Fig. 2.2 in [1].

In this case N∞(h̃) > 5/2 (see [4]), so we have infinitely many subharmonic solutions.

Note that the sequence Lef(µnW ) is periodic, so existence of infinitely many subharmonic

solutions does not follow from Srzednicki’s result.
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