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1. Introduction. Let (X, d) be a given locally compact metric space and let

π : X × T → X

be a dynamical system on X with continuous time (T = R) or discrete time (T = Z).

For t ∈ T let

πt : X 3 x→ π(x, t) ∈ X
denote the t-translation map. Let f := π1. Note that π(x, n) = fn(x) for n ∈ Z. Thus

in the discrete case the map π may be reconstructed from f . Therefore in the sequel we

will identify a discrete dynamical system π with its 1-translation map f . For A ⊂ Z we

will use the notation fA(x) := {fn(x) | n ∈ A}.
Let N ⊂ X be a compact subset. The maximal invariant subset of N is defined by

Inv(N, π) := InvN := {x ∈ N | ∀t ∈ T πt(x) ∈ N}.

We say that S ⊂ X is invariant if InvS = S. A compact set N ⊂ X is called an isolating

neighbourhood if InvN ⊂ intN . The set S which admits an isolating neighbourhood N

such that S = InvN is called an isolated invariant set. Proving the existence of compact

invariant sets as well as understanding their structure and behaviour under perturbation

are important goals of the theory of dynamical systems. An important special case is an

isolated invariant set. Charles Conley (see [1]) showed that the properties of an isolated

invariant set may be studied by investigating the isolating neighbourhood. The advan-

tage is the fact that isolating neighbourhoods are easier to locate and understand. Conley

showed that every isolating neighbourhood N carries some information which depends

only on the isolated invariant set S in N . The information may be used to derive certain
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properties of S and may be computed from the topology of certain subsets of N . Depend-

ing on the particular construction the information may take the form of a certain group,

algebra, homotopy type of a space or just an object in an abstract category. Regardless

of its particular form the information is referred to as the Conley index.

In this paper we will present a concise but relatively general construction of the Conley

index. In the sequel we restrict our attention to discrete dynamical systems. This is not

an essential restriction: as was shown in [3] the flow case may be reduced to the discrete

case by studying iterates of the t-translation map of the flow for any t 6= 0.

An isolating neighbourhood N always admits an index pair, i.e. a pair P = (P1, P2)

of compact subsets of N such that the following three conditions are satisfied

(i) positive invariance relative to N :

x ∈ Pi, f(x) ∈ N ⇒ f(x) ∈ Pi, i = 1, 2

(ii) exit set: x ∈ P1, f(x) 6∈ N ⇒ x ∈ P2

(iii) isolation: InvN ⊂ int(P1\P2).

In fact one can prove a slightly more general result:

Theorem 1.1. Let N be an isolating neighbourhood for f and W a neighbourhood of

InvN . Then there exists an index pair P for N with P1\P2 ⊂W .

We will present a proof of this theorem in Section 3.

As we already mentioned Conley observed that although there are many different in-

dex pairs for a given isolating neighbourhood, they do contain some common information.

In the case of a flow the common information is the homotopy type of the quotient space

P1/P2, where the quotient space P1/P2 is obtained as follows. First we take a universal

point ∗ 6∈ P1 and introduce an equivalence relation ≡P in P1 ∪ {∗} given by

x ≡P y iff x = y or x, y ∈ P2 ∪ {∗}.

Then we take the equivalence classes of ≡P as elements in P1/P2 and define the open

sets in P1/P2 as sets whose counter image in the quotient map is open in P1∪{∗}. In the

sequel the equivalence class of x ∈ P1 ∪ {∗} in the relation ≡P will be denoted by [x]P
and the space P1/P2 will be treated as a pointed space with the base point being [∗]P .

In the discrete case the extraction of the common information is slightly more com-

plicated. First we need to observe that for every index pair P there is an induced map

on the quotient space P1/P2 defined by

fP ([x]P ) :=

{
[f(x)]P if x ∈ f−1(P1)

[∗]P otherwise.

It is an easy exercise to verify that fP is continuous and fP ([∗]P ) = [∗]P . It turns out

that if f comes from a flow then fP is homotopic to the identity on P1/P2 (see [3]).

This is why we can disregard fP in the case of a flow. In the discrete case the common

information may be extracted from (P1/P2, fP ). This requires introducing the category

of endomorphisms.

Let E be a category. We define the category of endomorphisms of E , denoted by

Endo(E) as follows: the objects of Endo(E) are pairs (A, a), where A ∈ E and a ∈ E(A,A)

is an endomorphism of A. The set of morphisms from (A, a) ∈ E to (B, b) ∈ E is the
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subset of E(A,B) consisting of exactly those morphisms ϕ ∈ E(A,B) for which bϕ = ϕa.

We write ϕ : (A, a) → (B, b) to denote that ϕ is a morphism from (A, a) to (B, b) in

Endo(E). Note that in particular a : (A, a)→ (A, a) is a morphism in Endo(E).

Let C be another category and L : Endo(E)→ C be a functor. We say that L is normal

if L(a) is an isomorphism in C for any endomorphism a : A→ A in E . The reason we are

interested in normal functors is the following theorem.

Theorem 1.2. Assume L : Endo(E)→ C is a normal functor and ϕ : (A, a)→ (B, b),

ψ : (B, b)→ (A, a) are such that a = ϕψ, b = ψϕ. Then we have the commutative diagram

L(A, a)
L(a)−−→ L(A, a)yL(ϕ) ↗ L(ψ)

yL(ϕ)
L(B, b) −−→

L(b)
L(B, b)

in C, in which all morphisms are isomorphisms.

Proof. The commutativity of the diagram is obvious. The equality L(ψ)L(ϕ) = L(a)

implies (
L(a)−1L(ψ)

)
L(ϕ) = idL(A,a)

and L(ϕ)L(ψ) = L(b) implies

L(ϕ)
(
L(ψ)L(b)−1

)
= idL(B,b) .

Hence L(ϕ) is an isomorphism. The proof for L(ψ) is similar.

It turns out that normal functors are useful in extracting from an isolating neigh-

borhood information dependent only on the isolated invariant set inside. The first step

however is taking homotopy. Let Comp∗ denote the category of pointed compact metric

spaces and let HComp∗ denote the homotopy category of pointed compact metric spaces.

We recall that objects in both categories are pointed compact spaces (compact spaces

with a selected base point) and morphisms in Comp∗ are continuous maps preserving the

base point whereas morphisms in HComp∗ are homotopy classes of such maps. There is

also the homotopy functor Htp : Comp∗ → HComp∗ which fixes objects and sends every

base point preserving continuous map ϕ : X → Y to its homotopy class denoted by [ϕ].

Let L : Endo(HComp∗) → C be a normal functor. (We will show in the next section

that every category admits a normal functor.)

Theorem 1.3. Let S be an isolated invariant set, N be an isolating neighbourhood

for S and P be an index pair in N . Then C(S, f) := C(N, f) := L(P1/P2, [fP ]) is

independent of the choice of N and an index pair P in N .

The object C(S, f) given by the above theorem is called the Conley index of S.

2. The Szymczak functor. In order to construct a category C and a normal functor

L : Endo(E) → C we want to modify the category Endo(E) in such a way that every

morphism e : (E, e)→ (E, e) becomes an isomorphism. Thus let’s speculate and see what

happens if we add an artificial inverse of e denoted by ē. If ϕ : (E, e) → (F, f) is a
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morphism in Endo(E), then the equality ϕ ◦ e = f ◦ ϕ implies that also

f̄ ◦ ϕ = ϕ ◦ ē. (1)

To preserve the category structure for every sequence {ϕi}i=1,n of morphisms ϕi :

(Ei−1, ei−1) → (Ei, ei) and any sequence {ki}i=0,n of natural numbers we need to add

the composition

ēknn ◦ ϕn ◦ ē
kn−1

n−1 ◦ · · · ◦ ϕ1 ◦ ēk00 .
However it follows from (1) that the above composition equals

ϕn ◦ ϕn−1 ◦ · · ·ϕ1 ◦ ē
nk+nk−1+...+n0

0 .

Thus what we actually need to add are all morphisms of the form

ϕ ◦ ēm (2)

for any morphism ϕ : (E, e) → (F, f) and any natural number m. Notice that the

morphism ē is uniquely determined by the morphism ϕ. Therefore it is natural to identify

the morphism (2) with the pair (ϕ,m). The formula (2) implies that the definition of the

composition of the added morphisms should read

(ψ, k) ◦ (ϕ, l) := (ψ ◦ ϕ, k + l),

where ϕ : (E, e)→ (F, f), ψ : (F, f)→ (G, g) and k, l ∈ N. However there is one problem

with the above definition: it may happen that for ϕ,ϕ′ : (E, e)→ (F, f) we have:

ϕ ◦ em
′+k = ϕ′ ◦ em+k (3)

for some m,m′, k ∈ N. Then multiplying formula (3) on the right hand side by ēm+m′+k

we obtain

ϕ ◦ ēm = ϕ′ ◦ ēm
′
, (4)

i.e.

(ϕ,m) = (ϕ′,m′).

Thus we need to introduce an equivalence relation. Namely we write

(ϕ,m) ≡ (ϕ,m′) (5)

whenever there exists a k ∈ N such that the condition (3) is satisfied. One easily verifies

that this indeed defines an equivalence relation in Endo(E)
(
(E, e), (F, f)

)
. The Szymczak

category of endomorphisms of E , Szym(E) can now be defined formally as follows. The

objects of Szym(E) are the same as in Endo(E). The morphisms in Szym(E)
(
(E, e), (F, f)

)
are the equivalence classes of the relation (5). One easily checks that the definition of

composition carries over to the equivalence classes. The identity morphism on (E, e) ∈
Szym(E) is [idE , 0]. There is a functor Szym : Endo(E) → Szym(E) which fixes objects

and sends a morphism ϕ : (E, e) → (F, f) to the equivalence class [ϕ, 0]. In general it

may happen that Szym(ϕ) = Szym(ϕ′) even if ϕ 6= ϕ′. Nevertheless it is convenient to

write just ϕ to denote Szym(ϕ) whenever it is clear from the context in which category

we work. Now we can formally define the inverse of e : (E, e)→ (E, e) in Szym(E) by

ē := [idE , 1].
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Indeed, we have

e ◦ ē = [e, 0] ◦ [idE , 1] = [e, 1] = [idE , 0] = id(E,e)

which shows that ē is an inverse of e. We can also write the abstract morphism [ϕ, n] in

terms of ē as

[ϕ, n] = [ϕ, 0] ◦ [idE , 1]n = ϕ ◦ ēn.
Obviously Szym(e) is invertible in Szym(E), therefore Szym is a normal functor. Ac-

tually this is the most general normal functor. The reader may easily show that any other

normal functor L : Endo(E) → C admits a unique functor L′ : Szym(E) → C such that

L = L′ ◦ Szym. The construction of the Szymczak category and the Szymczak functor is

due to Szymczak [8].

3. Construction of index pairs. Construction of index pairs is probably the most

technical part of the Conley index theory. There are several different proofs available (see

[1], [5], [6], [7]). We will present here a proof which goes back to some early constructions.

First we recall the following straightforward proposition.

Proposition 3.1. Assume N ⊂ X is compact. Then the set InvN is compact and

so are the sets

Inv−N := {x ∈ N | ∀n ∈ Z− fn(x) ∈ N},
Inv+N := {x ∈ N | ∀n ∈ Z+ fn(x) ∈ N}.

To guide the reader’s intuition, we sketch the proof first, developing the necessary

lemmas. The idea is to take as the first approximation for P1 a compact neighbourhood

A of Inv−N and as the first approximation of P2 the set P1 \ U , where U is an open

neighbourhood of Inv+N . Such a pair does meet the isolation condition but obviously

it need not meet the relative positive invariance condition. Therefore we enlarge the sets

by following them along trajectories as long as they stay in N . Formally this is done as

follows. For x ∈ N we put

f+N (x) := {y ∈ N | ∃j ∈ Z y = f j(x) and f [0,j](x) ⊂ N}.

This actually defines a multivalued map. We recall that a multivalued map is a map

F : X → P(Y ), where P(Y ) stands for the family of all subsets of Y . If F : X → P(Y )

is a multivalued map and A ⊂ X then the image of A under F is defined by F (A) :=⋃
x∈A F (x). Thus f+N : N 3 x→ f+N (x) ∈ P(N) is a multivalued map. We put

P1 := f+N (A),

P2 := f+N (P1 \ U).

The first question now is if the modified sets are still compact. They would be compact

if f+N were an upper semicontinuous map. A multivalued map F : X → P(Y ) is upper

semicontinuous if for every x ∈ X and every open set U such that F (x) ⊂ U there exists

an open neighbourhood V of x such that y ∈ V implies F (y) ⊂ U . A well known fact is

that the image of a compact set under a compact valued upper semicontinuous map is

compact.
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Unfortunately f+N need not be upper semicontinuous. However, for every fixed n ∈ N
the map fN,n : N → P(N) given by

fN,n(x) := {y ∈ N | ∃j ∈ [0, n] y = f j(x) and f [0,j](x) ⊂ N}

is upper semicontinuous:

Proposition 3.2. The map fN,n : N → P(N) is upper semicontinuous for any

n ∈ N.

Proof. Suppose that fN,n is not upper semicontinuous. Then there exists a point x ∈
N and an open subset U of N satisfying fN,n(x) ⊂ U and a convergent sequence xk → x,

{xk} ⊂ N with fN,n(xk) 6⊂ U . Consequently for each k, there exists an mk ∈ [0, n] such

that fmk(xk) ∈ N \ U . Passing to a subsequence we may assume that mk = m ∈ [0, n]

for all k. It follows that fm(x) 6∈ U , a contradiction.

One can easily see that

f+N (x) :=
⋃
n∈Z+

fN,n(x),

unfortunately, upper semicontinuity does not carry over to infinite unions. However, if

x 6∈ Inv+N , then the above union is obviously finite and one can expect that this property

carries over to compact sets. Indeed, we have the following lemma.

Lemma 3.3. Let K ⊂ N be a compact subset of X such that K ∩ Inv+N = ∅. Then

(a) fN,n(K) = ∅ for all but finitely many n ∈ N,

(b) The mapping f+N restricted to K is upper semicontinuous,

(c) f+N (K) ∩ Inv+N = ∅ .

Proof. Since x ∈ K implies x 6∈ Inv+N , for each x ∈ K there exists an nx ∈ Z+ such

that fN,nx
(x) = ∅. Since fN,nx

is upper semicontinuous, there exists a neighbourhood Vx
of x such that fN,nx(Vx) = ∅. Let {Vx1 , . . . Vxk

} be a finite covering of K. Put

m := max{nxi
| i = 1, 2, . . . k}.

Then fN,n(K) = ∅ for all n ≥ m. This proves (a). Property (b) follows from (a) and

Proposition 3.2 since the union of finitely many upper semicontinuous maps is upper

semicontinuous. Property (c) is straightforward.

Returning to our construction we see that P2 = f+N (P1 \ U) is compact, because

K := P1 \ U satisfies the assumptions of the above lemma. Concerning P1, we have the

following lemma.

Lemma 3.4. If Inv−N ⊂ A ⊂ N and A is compact then f+N (A) is compact.

Proof. It is sufficient to show that f+N (A) is closed. Let {yk} be a sequence of points

in f+N (A), yk → y ∈ N . We need to show that y ∈ f+N (A). Let xk ∈ A, nk ∈ Z+ be

such that yk = fnk(xk) and f [0,nk](xk) ⊂ N . We will consider first the case when {nk}
is bounded. Then, passing to a subsequence if necessary, we may assume that nk = n for

all k. Since N and A are compact, we conclude that y = fn(x) and f [0,n](x) ⊂ N , i.e.

y ∈ f+N (A). Hence it remains to consider the case when {nk} is unbounded. Then, passing

to a subsequence, we may assume that {nk} is increasing and, by restricting the interval
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[0, nk], that nk = k. It follows that for any m ∈ Z− and almost all k ∈ Z+ fm(yk) ∈ N ,

hence also fm(y) ∈ N . Thus y ∈ Inv−N ⊂ A.

Thus we have a pair (P1, P2) of compact sets which are positively invariant with

respect to N . The exit set property is equivalent to showing that P1 \ P2 ⊂ f−1(N).

Since InvN is invariant under f , one can expect that points close to InvN cannot be

mapped by f outside of N . Thus the exit set property will be guaranteed if we choose

A and U in such a way that P1 \ P2 is close to InvN . Actually, this stronger postulate

is a part of the assertion of Theorem 1.1 anyway. To fulfill it, given a neighbourhood W

of InvN , we take U an open neighbourhood of Inv+N and V an open neighbourhood of

Inv−N such that U ∩V ⊂W . This is always possible, because InvN = Inv+N ∩Inv−N .

Then P1 \ U ⊂ f+N (P1 \ U) = P2, which implies that P1 \ P2 ⊂ U . To guarantee that

P1 \ P2 ⊂ W it is sufficient now to show that one can choose A in such a way that

P1 = f+N (A) ⊂ V . This is the contents of the following lemma.

Lemma 3.5. For any neighbourhood V of Inv−N there exists a compact neighbour-

hood A of Inv−N such that f+N (A) ⊂ V .

Proof. Similarly to the map fN,n for any n ∈ N we define the map fN,−n : N → P(N)

given by

fN,−n(x) := {y ∈ N | ∃j ∈ [−n, 0] y = f j(x) and f [j,0](x) ⊂ N}

The set K := N \ V is disjoint from Inv−N . An argument dual to the proof of Lemma

3.3 shows that there exists an m ∈ Z+ satisfying

fN,−m(N\V ) = ∅. (6)

Basically the same proof as in Proposition 3.2 shows that fN,−m is upper semicontinuous.

Therefore one can find for every x ∈ Inv−N a compact neighbourhood Vx of x such that

fN,−m(Vx) ⊂ V . Let {Vx1 , . . . Vxk
} be a finite covering of Inv−N . Put A :=

⋃k
i=1 Vxi .

Then A is a compact neighbourhood of Inv−N such that fN,−m(A) ⊂ V . It remains to

show that f+N (A) ⊂ V . Indeed, let y ∈ f+N (A). Then there exists an n > 0 and an x ∈ A
such that y ∈ fN,n(x). If n ≤ m, we are done. If n > m, we note that x ∈ fN,−n(y),

hence fN,−m(y) 6= ∅ and (6) implies that y ∈ V .

We are now ready to summarize the proof of the existence of index pairs.

Proof of Theorem 1.1. Since InvN = f(InvN) is a compact subset of intN , we may

assume that W ∪ f(W ) ⊂ intN . Let A be given for V by Lemma 3.5. We define

P1 := f+N (A), P2 := f+N (P1\U). (7)

Then P1 ⊂ V and P1\U ⊂ P2 which implies that P1\P2 ⊂ U . Therefore P1\P2 ⊂
U ∩ V ⊂ W . We verify that (P1, P2) is an index pair. P1 is compact by Lemma 3.4 and

P2 is compact by Lemma 3.3 (b), since P1\U is compact and the image of a compact

set under an upper semicontinuous compact valued map is compact. Obviously, P2 ⊂
f+N (P1) ⊂ P1. Positive invariance of P1 and P2 relative to N is obvious. Since P1\P2 ⊂W
and f(W ) ⊂ intN , we see that the exit set property is satisfied. In order to verify the

isolation property, observe that P1 is a neighbourhood of Inv−N and, by Lemma 3.3 (c),
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N\P2 is a neighbourhood of Inv+N . Therefore P1\P2 = P1∩ (N\P2) is a neighbourhood

of Inv−N ∩ Inv+N = InvN .

4. Correctness of the definition. There are several different proofs of the cor-

rectness of the construction of the Conley index. What one has to prove is that given

an isolated invariant set S, its two isolating neighbourhoods N and M and index pairs

P = (P1, P2), Q = (Q1, Q2) respectively in N and M , the objects L([P1/P2], [fP ]) and

L([Q1, Q2], [fQ]) are isomorphic. One way to prove this is to construct explicitly the

isomorphism (see [8]). However the explicit formula for the isomorphism is complicated

and it is of no use once the proof is completed. Therefore we will choose here another

approach, which follows the ideas in [4]. Again, to guide the reader’s intuition, we sketch

the proof first, developing the necessary lemmas.

The first observation is that it is relatively easy to write down the isomorphism if

M = N and the index pairs P and Q do not lie too far apart. To be more specific,

assume that P ⊂ Q and

f(Qi) ∩N ⊂ Pi for i = 1, 2. (8)

Then one can define the map fQP : Q1/Q2 → P1/P2 by

fQP ([x]Q) :=

{
[f(x)]P if x ∈ f−1(N)

[∗] if x ∈ Q2 ∪ {∗}.
and the map ιPQ : P1/P2 → Q1/Q2 by

ιPQ([x]P ) := [x]Q.

The reader will check easily that both maps are well defined and continuous. We have

the following lemma.

Lemma 4.1. Assume that P ⊂ Q are index pairs in N such that (8) is satisfied. If

L : Endo(HComp∗)→ C is a normal functor then L([ιPQ]) is an isomorphism in C.

Proof. One easily verifies that the following diagram

P1/P2
fP−→ P1/P2yιPQ ↗ fQP

yιPQ

Q1/Q2
fQ−→ Q1/Q2

commutes. Applying the homotopy functor and Theorem 1.2 we get the required conclu-

sion.

The next step is to get rid of the assumption (8). This may be achieved by finding

a sequence of index pairs P = Qn ⊂ Qn−1 ⊂ · · · ⊂ Q1 ⊂ Q0 = Q such that any

two consecutive index pairs in the sequence satisfy condition (8). The sequence may

be constructed recursively by pushing forward the larger index pair into the smaller

index pair with the map f . Unfortunately the procedure requires an extra assumption to

guarantee that the construction really produces a new index pair, for instance it suffices

to assume that the index pairs P , Q differ in at most one coordinate. We will see later on

that there is no problem in getting rid of that assumption in the next step. The following

two lemmas formalize the described procedure.
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Lemma 4.2. Let P ⊂ Q be index pairs for N which differ in at most one coordinate,

i.e. P1 = Q1 or P2 = Q2. Define a pair of sets G(P,Q) by

Gi(P,Q) = Pi ∪ (f(Qi) ∩N), for i = 1, 2. (9)

Then

(a) If Pi = Qi then Gi(P,Q) = Pi = Qi, for i = 1, 2.

(b) P ⊂ G(P,Q) ⊂ Q.

(c) G(P,Q) is an index pair.

(d) f(Qi) ∩N ⊂ Gi(P,Q), for i = 1, 2.

Proof. Property (d) is obvious and property (a) is immediate from the positive

invariance of Pi, Qi relative to N . The first inclusion in (b) is obvious and the second

is an immediate consequence of the positive invariance of Qi relative to N . It remains

to prove (c). To prove the positive invariance relative to N let x ∈ Gi(P,Q) and y :=

f(x) ∈ N . If x ∈ Pi then obviously y ∈ Gi(P,Q). If x ∈ f(Qi) ∩ N then x ∈ Qi hence

y ∈ f(Qi) ∩N ⊂ Gi(P,Q). To prove the exit set property let us note that

G1(P,Q)\G2(P,Q) ⊂ Q1\G2(P,Q) ⊂ Q1\P2

and since P and Q differ in at most one coordinate either Q1\P2 = Q1\Q2 ⊂ f−1(N), or

Q1\P2 = P1\P2 ⊂ f−1(N). Finally observe that InvN ⊂ int(P1\P2)∩ int(Q1\Q2) so the

isolation property will follow if we verify that (P1\P2) ∩ (Q1\Q2) ⊂ G1(P,Q)\G2(P,Q).

Indeed, let y ∈ (P1\P2) ∩ (Q1\Q2). Then y ∈ G1(P,Q) and it remains to show that

y 6∈ f(Q2) ∩N . However if y ∈ f(Q2) ∩N , then y ∈ Q2, a contradiction.

Lemma 4.3. Let P ⊆ Q be index pairs which differ in at most one coordinate. Then

there exists a sequence of pairs

P = Qn ⊂ Qn−1 ⊂ . . . ⊂ Q1 ⊂ Q0 = Q

with the following properties

(a) If Pi = Qi then Qki = Pi = Qi for all k = 1, 2, . . . n− 1; i = 1, 2.

(b) Qk is an index pair for all k = 1, 2, . . . n− 1.

(c) f(Qki ) ∩N ⊂ Qk+1
i , i = 1, 2; k = 0, 1, . . . n− 1.

Proof. Let Qk be given by the recurrence formula Q0 := Q, Qk+1 := G(P,Qk), k ∈
N. By Lemma 4.2 and induction on k, {Qk} is a decreasing sequence of index pairs

containing P and satisfying (a), (b) and (c) for all k ∈ Z. It remains to show that

Qn = P for some n. Indeed, suppose that the inclusion P ⊂ Qk is strict for all k ∈ N, i.e.

if i ∈ {1, 2} is such that Pi 6= Qi then Qki \Pi 6= ∅. Fix a k ∈ N and choose an xk ∈ Qki \Pi.
We will show by induction in j that

f−j(xk) ∈ Qk−ji \ Pi for j = 0, 1, . . . , k. (10)

The assertion is obvious for j = 0. If f−j(xk) ∈ Qk−ji \ Pi, then f−j(xk) ∈ f(Qk−j−1i ) ∩
N , i.e. f−(j+1)(xk) ∈ Q

k−(j+1)
i . We cannot have f−(j+1)(xk) ∈ Pi, because otherwise

f−j(xk) ∈ Pi. Thus the assertion (10) is proved. Put uk := f−k(x2k). It follows from (10)

that

f [−k,k](uk) ⊂ Qi \ Pi ⊂ Qi \ intPi. (11)
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Taking a subsequence we may assume that un → u ∈ Qi \ intPi and it follows from (11)

that f j(u) ∈ Qi \ intPi for j ∈ Z, i.e. u ∈ Inv(Qi \ intPi).

If i = 1 we get u ∈ Inv(Q1 \ intP1) ⊂ InvN ⊂ int(P1\P2) ⊂ intP1, a contradiction.

If i = 2, we get u ∈ Inv(Q2\ intP2) ⊂ InvQ2. On the other hand InvQ2 ⊂ InvN ⊂
int(Q1\Q2) ⊂ Q1\Q2, which implies that InvQ2 = ∅, a contradiction again.

The following proposition is a straightforward observation which will let us get rid of

the assumption that P and Q differ in at most one coordinate.

Proposition 4.4. If P ⊆ Q are index pairs for N , then so are (P1, P1 ∩ Q2) and

(P1 ∪Q2, Q2).

In order to consider index pairs which are not necessarily included in one another, we

need the following lemma.

Lemma 4.5. If P and Q are index pairs for N , then so is P ∩Q.

Proof. Positive invariance relative to N and exit set property are obvious. To prove

the isolation property let us note that int(P1\P2)∩int(Q1\Q2) ⊂ int(P1∩Q1\(P2∪Q2)) ⊂
int(P1 ∩Q1\P2 ∩Q2).

Finally, we will also need the following straightforward proposition.

Proposition 4.6. Assume P ⊂ Q are compact pairs such that P1 \ P2 = Q1 \ Q2.

Then P1/P2 and Q1/Q2 are homeomorphic.

We are now ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. We need to show that if M and N are two isolating neighbour-

hoods of S, P an index pair for N and Q an index pair for M then L(P1/P2, [fP ]) and

L(Q1/Q2, [fQ]) are isomorphic in C. The proof will be given in several steps.

Step 1. We begin with the following special case
(i) M = N,

(ii) P ⊂ Q,
(iii) P and Q differ in at most one coordinate,

(iv) f(Qi) ∩N ⊂ Pi, for i = 1, 2.

The conclusion in this case follows immediately from Lemma 4.1.

Step 2. We lift the assumption (iv). By Lemma 4.3 we can take a sequence

{Qk}k=0,1,...,n of index pairs such that Q0 = Q, Qn = P and the pair of index pairs

Qk+1 ⊆ Qk satisfies the assumptions (i) through (iv). The conclusion follows.

Step 3.We lift the assumption (iii). Put R1 := P1∪Q2, R2 := P1∩Q2. By Proposition

4.4, (P1, R2) and (R1, Q2) are index pairs. We have the commutative diagram of inclusions

(P1, R2)
j2−→ (R1, Q2)xi1 yi3

(P1, P2)
j−→ (Q1, Q2)
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It is clear that the pair of index pairs (P1, P2) ⊂ (P1, R2) satisfies the assumption

(iii) and so does (R1, Q2) ⊂ (Q1, Q2), so by Step 2, the inclusions i1 and i3 induce

isomorphisms in C. Since P1\R2 = P1\Q2 = R1\Q2, it follows from Proposition 4.6 that

the inclusion j2 induces an isomorphism in C.
Step 4. Now, only (i) is assumed. By Lemma 4.5 P ∩Q is an index pair, hence the

conclusion of Step 3 can be applied to pairs P ∩Q ⊂ P and P ∩Q ⊂ Q.

Step 5. If M 6= N , one may always assume that M ⊂ N since otherwise M ∩N can

be considered which is also an isolating neighbourhood of S. By Step 4, it is sufficient

to show the existence of one index pair P for N and one index pair Q for M such that

L(P1/P2, [fP ]) and L(Q1/Q2, [fQ]) are isomorphic.

By Theorem 1.1 there exists an index pair P for N such that P1\P2 ⊂ intM ∩
f−1(intM). It is easily verified that Q := (M ∩P1,M ∩P2) is an index pair for M . Since

Q1\Q2 = M ∩ (P1\P2) = P1\P2, the inclusion Q ⊂ P induces an isomorphism in C by

Proposition 4.6.

5. Properties of the Conley index. The Conley index has several properties which

facilitate its computation.

Theorem 5.1 (Ważewski property). If N is an isolating neighbourhood with respect

to f and Con(N, f) 6= Con(∅, f) then InvN is non-empty.

Proof. If InvN = ∅, then (∅, ∅) is an index pair for N . It follows that Con(N, f) =

Con(∅, f).

The following two properties are studied in detail in [2].

Theorem 5.2 (Stability property). If N is an isolating neighbourhood with respect to

f then it is an isolating neighbourhood with respect to g for g sufficiently close to f in

the compact-open topology and the Conley indices with respect to f and g coincide.

Theorem 5.3 (Homotopy property). Assume fs, s ∈ [0, 1], is a family of maps fs :

X → X, continuously depending on s. If N ⊂ X is an isolating neighbourhood with

respect to every map fs then Con(N, fs) does not depend on s.

Theorem 5.4 (Additivity property). Assume the category C admits the product, de-

noted ×, and L maps products into products. If N,N1, N2 are isolating neighbourhoods

such that InvN = InvN1 ∪ InvN2, InvN1 ∩ InvN2 = ∅ then

Con(N, f) = Con(N1, f)× Con(N2, f)

Proof. Put Si := InvNi and select disjoint open neighbourhoods U1, U2 of S1 and

S2 respectively. For i = 1, 2 let Mi be a compact neighbourhood of Si such that Ni ⊂ U .

Select P i, index pairs for Si in Mi. One can easily verify that P := P 1 ∪ P 2 is an index

pair for InvN in M := M1 ∪M2. Obviously fP = fP 1 ∪ fP 2 . Hence, (P1/P2, [fP ]) is the

wedge sum of (P 1
1 /P

1
2 , [fP 1 ]) and (P 2

1 /P
2
2 , [fP 2 ]). It suffices now to apply L.

Theorem 5.5 (Normalization property). The whole space X is an isolating neigh-

bourhood and Con(X, f) = L([X], [f ]).

Proof. The conclusion follows from the fact that (X, ∅) is an index pair in X.
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Theorem 5.6 (Commutativity property; see [4]). Assume f = ψφ, g = φψ, where

φ : X → Y, ψ : Y → X are continuous,. If S ⊂ X is an isolated invariant set with respect

to f then φ(S) is an isolated invariant set with respect to g and Con(S, f) = Con(φ(S), g).
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