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Wita Stwosza 57, 80-952 Gdańsk, Poland
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Abstract. In [C] and [F1] the connection matrix theory for Morse decomposition is developed

in the case of continuous dynamical systems. Our purpose is to study the case of discrete time

dynamical systems.

The connection matrices are matrices between the homology indices of the sets in the Morse

decomposition. They provide information about the structure of the Morse decomposition; in

particular, they give an algebraic condition for the existence of connecting orbit set between

different Morse sets.

0. Introduction. One of the methods by which the Conley index theory studies

isolated invariant sets is to decompose them into subinvariant sets (Morse sets) and

connecting orbits between them. This structure is called a Morse decomposition of an

isolated invariant set. A filtration of index pairs associated with a Morse decomposition

can be used to find connections between Morse sets. The existence of such a filtration

in the case of continuous dynamical systems has been proved in [CoZ], [Sal] and [F1]. In

[BD] we have proved the existence of index triples and index filtrations for dynamical

systems given by a homeomorphism (discrete dynamical systems).

Studying the topology of the sets in the filtration provides some information on the

structure of the Morse decomposition. The principal tool for this purpose is the connection

matrix. In [C] and [F1, F2] the connection matrix theory for Morse decompositions is

developed for flows. We wish to investigate this theory for a homeomorphism. Once an

index filtration has been found, most steps of the construction of the connection matrix

in the continuous case can be carried over to the discrete case. The main difference is

that the homology Conley index is not simply the homology of the index pair but the

Leray reduction of its homology (see [M2] for more details).
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1. Index. Let X be a fixed locally compact metric space. Assume a discrete time

dynamical system on X , i.e. a fixed homeomorphism f : X → X , is given. We will use

the convenient notation xn = fn(x) for any x ∈ X and n ∈ Z. If A ⊂ X and ∆ ⊂ Z,

then A∆ := {xn ; x ∈ A and n ∈ ∆}. For a given subset N ⊂ X the sets Inv+N :=

{x ∈ X | xZ+ ⊂ N}, Inv−N := {x ∈ X | xZ− ⊂ N}, InvN := Inv+N ∩ Inv−N are

called the positively invariant, negatively invariant and invariant part of N , respectively.

A set A is called invariant if Inv A = A. Similarly A is positively (negatively) invariant

if Inv+A = A (Inv−A = A).

A subset A of N is called positively invariant with respect to N if A∩f−1(N) ⊂ f−1(A).

A subset S ⊂ X is an isolated invariant set if S is compact invariant set and there exists

a compact neighbourhood N of S in X such that S = Inv N . In that case we call N an

isolating neighbourhood (for S in X).

Definition (1.1). A pair P = (P1, P2) of compact subsets of X is called an index

pair for S in X if

(o) P2 ⊂ P1,

(i) S = Inv(cl (P1 − P2)) ⊂ int(P1 − P2),

(ii) P2 is positively invariant with respect to P1,

(iii) P1 − P2 ⊂ f−1(P1).

Now we recall the notion of Leray functor introduced by Mrozek ([M2], [M3]). Denote

by ξ the category of graded vector spaces and linear maps of degree zero. A new category

Endo(ξ) of graded vector spaces with distinguished endomorphisms is defined as follows.

Objects are pairs (E, e), where E ∈ ξ and e ∈ ξ(E, E). Morphisms from (E, e) to (F, f)

are all maps Φ ∈ ξ(E, F ) such that Φ ◦ e = f ◦ Φ. Auto(ξ) is the full subcategory

of Endo(ξ) consisting of graded vector spaces with a distinguished isomorphism. The

full subcategory of Endo(ξ) consisting of all objects with finite dimensional components

and their morphisms will be denoted by Endo0(ξ). For (E, e) ∈ Endo(ξ) we define the

generalized kernel of e as

gker e :=
∑

{e−n(0) | n ∈ N}.

Put

(1.2) L(E, e) := (E/gker e, e′) ∈ Auto(ξ),

where e′ : E/gker(e) ∋ [x] 7−→ [e(x)] ∈ E/gker(e) is the induced endomorphism. Assume

Φ : (E, e)→ (F, f) is a morphism. Let

Φ′ : E/gker(e) ∋ [x]→ [Φ(x)] ∈ F/gker(f)

denote the induced morphism. We put

(1.3) L(Φ) := Φ′.

Thus we have defined a covariant functor

L : Endo0(ξ)→ Auto(ξ)

called the Leray functor.

Let H∗ be the functor of the Alexander–Spanier cohomology with rational coefficients.
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If we consider an index pair (P1, P2), then the map fp : P1/P2 → P1/P2 given by:

fp([x]) :=

{

[f(x)] if x, f(x) ∈ P1 − P2

[P2] otherwise

is continuous (see e.g. [Szy], Lemma 4.3), and it induces an endomorphism f∗ : H∗(P1, P2)

→ H∗(P1, P2). Therefore ((H∗(P1, P2), f
∗) ∈ Endo(ξ). We denote also by H∗ the exten-

sion of Alexander–Spanier cohomology functor to this category.

Definition (1.4). The cohomological Conley index of an isolated invariant set is

defined as

CH(S) := LH∗(P ),

where P is any index pair for S in X .

Due to [M2],Thm. 2.6 the above definition makes sense. Similarly we can define the

homological index, which we denote by HI(S).

2. Attractor-repeller pairs. For a given set A ⊂ X the sets

Ω+(A) =
⋂

{cl A[n,∞) ; n ∈ N}, Ω−(A) =
⋂

{cl A(−∞,−n] ; n ∈ N}

are called the positive and negative limit sets of A.

Definition (2.1). Let Y be a compact, positively (negatively) invariant subset of

X . The set A ⊂ Y will be called an attractor (repeller) relative to Y if there exists a

neighbourhood U of A in Y such that Ω+(U) = A (respectively Ω−(U) = A).

For given subsets A, B of X we define the connecting orbit set:

C(A, B; X) := {x ∈ X ; Ω−(x) ⊆ A and Ω+(A) ⊆ B}.

Let S be a compact isolated invariant set. If A is an attractor in S, then the set

A∗ := {x ∈ S ; Ω+(x) ∩ A = ∅} is a repeller in S (see [S], Prop. 3.4). It is called the

repeller complementary to A in S. We call such a pair (A, A∗) an attractor-repeller pair

in S.

Theorem (2.2) (see [BD], Thm. 3.3). Let S be an isolated invariant subset of X and

N an isolating neighbourhood of S. Assume that (A, A∗) is an attractor-repeller pair in

S. Then there exists a filtration P2 ⊂ P1 ⊂ P0 of compact subsets of N such that:

(i) (P0, P2) is an index pair for S,

(ii) (P0, P1) is an index pair for A∗,

(iii) (P1, P2) is an index pair for A.

If (A, A∗) is an attractor-repeller pair in an isolated invariant set S such that CH(S),

CH(A∗), CH(A) are graded vector spaces with finite dimensional components (this as-

sumption is satisfied e.g. when X is a compact ANR), then we can construct a long exact

sequence relating the cohomology indices of S, A∗ and A (see [M3]). Namely, there is a

long exact sequence

0→ H0(P0, P1)
i
−→ H0(P0, P2)

j
−→ H0(P1, P2)

∂
−→ H1(P0, P1)→ . . . ,
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where i, j are induced by inclusions and (P0, P1, P2) is a filtration given by Thm. 2.2.

Applying the Leray functor we obtain an exact sequence of cohomology Conley indices

0→ CH0(A
∗)→ CH0(S)→ CH0(A)

∂
−→ CH1(A)→ . . .

This sequence, called the cohomology index sequence of the attractor-repeller pair, pro-

vides an algebraic condition for the existence of connecting orbits. The map ∂ is called a

connection map.

Theorem (2.3). If the connection map ∂ is nontrivial then C(A∗, A; S) is nonempty.

Proof. To obtain a contradiction, suppose that C(A∗, A; S) is empty. If S = A∪A∗,

there exist index pairs (P0, P1) and (P ∗

0 , P ∗

1 ) for A and A∗, respectively, such that P0 ∩

P ∗

0 = ∅. In this case (P0 ∪P ∗

0 , P1 ∪P ∗

1 ) is an index pair for S. Therefore we have a pair of

excisive triads: (P1 ∪ P ∗

1 , P1, P
∗

1 ) ⊂ (P0 ∪ P ∗

0 , P0, P
∗

0 ) because Pi, P
∗

i are open in Pi ∪ P ∗

i

for i = 0, 1. Thus we obtain the following exact cohomology sequence (see e.g. [D], Thm.

8.22), called the Mayer–Vietoris sequence:

. . .← Hn+1(P0 ∪ P ∗

0 , P1 ∪ P1)
d∗

←− Hn(P0 ∩ P ∗

0 , P1 ∩ P1) = Hn(∅, ∅)←

k∗

←− Hn(P0, P1)⊕Hn(P ∗

0 , P ∗

1 )
l∗

←− Hn(P0 ∪ P ∗

0 , P1 ∪ P ∗

1 )←
d∗

←− Hn−1(P0 ∩ P ∗

0 , P1 ∩ P ∗

1 ) = Hn−1(∅, ∅)← . . .

By the exactness of this sequence it follows that

Ker l∗ = Im d∗ = 0, Im l∗ = Ker k∗ = H∗(P0, P1)⊕H∗(P ∗

0 , P ∗

1 )

and, in consequence, CH(S) ∼= CH(A)⊕CH(A∗), which gives ∂ = 0, a contradiction.

Since we need the Leray functor to maintain exactness of homological sequences, from

now on we assume that X is a compact ANR, which is sufficient according to [M3].

3. Morse decompositions. Let (P, <) be a finite partially ordered set. A subset

I ⊂ P is an interval if π, π′ ∈ I and π < π′′ < π′ imply π′′ ∈ I. The set of intervals is

denoted by I(<). An interval I ⊂ P is an attracting interval if π ∈ I and π′ < π imply

π′ ∈ I. The set of attracting intervals is denoted by A(<).

An ordered collection (I1, . . . , In) of mutually disjoint intervals is called an adjacent

n-tuple of intervals if:

(1)
⋃n

i=1 Ii ∈ I(<)

(2) π ∈ Ij , π′ ∈ Ik and j < k imply ¬(π′ < π).

The collection of adjacent n-tuples of intervals is denoted by In(<).

We say that I and J are noncomparable if (I, J) ∈ I2(<) and (J, I) ∈ I2(<). Two

elements π, π′ ∈ P are adjacent if {π, π′} ∈ I(<).

Definition (3.1). Let S be a compact, invariant subset of X . A Morse decomposition

of S is a collection M = {M(π)}π∈P of mutually disjoint, compact, invariant subsets of

S such that

(∗) if γ ∈ S \
⋃

π∈P M(π), then there exists π < π′ with γ ∈ C(M(π′), M(π); S).
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Definition (3.2). For each I ∈ I(<) we define the Morse set by

M(I) :=
⋃

π∈I

M(π) ∪
⋃

π,π′∈I

C(M(π′), M(π); S).

Notice that if S is an isolated invariant set, then each Morse set is also an isolated

invariant set.

Remark (3.3). An ordering on M satisfying condition (∗) is called an admissible

ordering. The homeomorphism (discrete dynamical system) defines an extremal admis-

sible ordering of M , denoted by <H and such that π <H π′ iff there exists a sequence

π = π0, π1, . . . , πk = π′ of distinct elements of P with C(M(πj), M(πj−1); S) 6= ∅ for

each j = 1, . . . k. Every admissible ordering of M is an extension of <H .

Remark (3.4). If (I, J) ∈ I2(<) then (M(I), M(J)) is an attractor-repeller pair in

M(IJ), where IJ := I ∪ J .

Definition (3.5). An index filtration for the admissible ordering of M is a collection

of compact sets N = {N(I)}I∈A(<) such that

(i) for each I ∈ A(<), (N(I), N(∅)) is an index pair for the attractor M(I),

(ii) for each I1, I2 ∈ A(<), N(I1∩I2) = N(I1)∩N(I2) and N(I1∪I2) = N(I1)∪N(I2).

Remark (3.6). Let J ∈ I(<) and assume that (I, J) is a decomposition of K ∈ A(<).

Then I ∈ A(<) and (N(K), N(I)) is an index pair for the Morse set M(J). Thus the

index filtration defines an index pair for each Morse set.

For the Morse set M(J) we will denote by C(J) the singular chain complex of the

quotient space N(K)/N(I). Passing to homology we obtain H(J), the singular homology

of this space and applying the Leray functor we get HI(J), the homological Conley index

of the Morse set M(J).

Let us formulate a natural

Proposition (3.7). For any given admissible ordering of M there exists an index

filtration.

In [BD] we prove the existence of index filtrations for admissible orderings that are

total orders. In the partially ordered case the construction can be made by adaptation

of the proof of [F1], Thm. 3.8. It is quite clear, at least in the case when our dynamical

system is a discretization of a continuous dynamical system.

Theorem (3.8) (see [F1], Section 4). Given N , an index filtration for the admissible

ordering of M, there is a collection of chain complexes and chain maps satisfying:

(i) for each I ∈ I(<) there is a chain complex C(I),

(ii) for each (I, J) ∈ I2(<) there are chain maps: C(I)
i
→ C(IJ)

p
→ C(J) such that

(a) i is injective and p ◦ i = 0,

(b) the chain map p̃ : C(IJ)/Im i → C(J) defined by p induces an isomorphism

in homology,

(c) if I and J are noncomparable then p ◦ i = id |C(I),

(d) if (I, J, K) ∈ I3(<) then the following braid diagram commutes:
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This diagram of chain complexes and chain maps is called the chain complex braid of

the index filtration and is denoted by C(N ).

Passing to homology and applying the Leray functor we obtain the homology index

braid of the admisssible ordering of the Morse decomposition, denoted by HI(<). It

consists of graded modules HI(I) for each I ∈ I(<) and maps between graded modules:

i : HI(I)→ HI(J), p : HI(IJ)→ HI(J), ∂ : HI(J)→ HI(I)
satisfying:

(1) . . .→ HI(I)
i
→ HI(IJ)

p
→ HI(J)

∂
→ HI(I)→ . . . is exact,

(2) if I and J are noncomparable, then p ◦ i = id |HI(I),

(3) if (I, J, K) ∈ I3(<) then the following braid diagram commutes:
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. . .
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We denote HI(<H) by HI(M).
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4. The connection matrix. A sequence of chain maps C1
i
→ C2

p
→ C3 is weakly

exact if

(1) i is injective and p ◦ i = 0,

(2) p̃ : C2/Im i→ C3 induces an isomorphism in homology.

Theorem (4.1) (see [F2], Prop. 2.2). If C1
i
→ C2

p
→ C3 is a weakly exact sequence

of chain complexes, then there exists a connection homomorphism ∂ : H(C1) → H(C3)

such that the sequence

. . .→ H(C1)
i
→ H(C2)

p
→ H(C3)

∂
→ H(C1)→ . . .

is exact.

Definition (4.2). A graded module braid over < is a collection G consisting of graded

modules and maps between the graded modules satisfying:

(1) for each I ∈ I(<) there is a graded module G(I)

(2) for each (I, J) ∈ I2(<) there are maps

i : G(I)→ G(IJ) of degree 0,

p : G(IJ)→ G(J) of degree 0,

∂ : G(J)→ G(I) of degree − 1,

which satisfy:

(a) . . .→ G(I)
i
→ G(IJ)

p
→ G(J)

∂
→ G(I)→ . . . is exact,

(b) if I and J are noncomparable, then p ◦ i = id |G(I),

(c) if (I, J, K) ∈ I3(<) then the following braid diagram commutes
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Theorem (4.3) (see [F1], Sect. 4).HI(<), the homology index braid of the admissible

ordering of M is a graded module braid.

Remark (4.4). A map θ : G → G′ between graded modules braids G and G′ over <

is a collection of module homomorphisms θ(I) : G(I) → G′(I), I ∈ I(<), such that for

each (I, J) ∈ I2(<) the following diagram commutes:

. . . G(I) G(IJ) G(J) G(I) . . .

. . . G’(I) G’(IJ) G’(J) G’(I) . . .

- - - - -

- - - - -

i p ∂

? ? ? ?

θ(I) θ(IJ) θ(J)

. . . G(I) G(IJ) G(J) G(I) . . .

. . . G’(I) G’(IJ) G’(J) G’(I) . . .

- - - - -

- - - - -

i p ∂

? ? ? ?

θ(I) θ(IJ) θ(J) θ(I)θ(I)

We say that G and G′ are isomorphic if θ(I) is an isomorphism for each I ∈ I(<).

Definition (4.5). A chain complex braid over < is a collection C consisting of chain

complexes and chain maps satisfying:

(1) for each I ∈ I(<) there is a chain complex C(I),

(2) for each (I, J) ∈ I2(<) there are maps

i : C(I)→ C(IJ), p : C(IJ)→ C(J),

which satisfy:

(a) C(I)
i
→ C(IJ)

p
→ C(J) is weakly exact,

(b) if I and J are noncomparable, then p ◦ i = id |C(I),

(c) if (I, J, K) ∈ I3(<) then the following braid diagram commutes:

C(I)

C(IJK)

C(K)

C(IJ)

C(JK)

C(J)

?

?

H
H

H
H

H
H

Hj

H
H

H
H

H
Hj

P
PP

P
PPPq
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�

��
��1

�
��

�
��)

�
�

�
�

�
���

i

p

i

i

p

p

p

i

Theorem (4.6) (see [F1], Sect. 4). C(N ), the chain complex braid of the index filtra-

tion, is a chain complex braid.

Remark (4.7). Upon passing to homology, a chain complex braid defines a graded

module braid. Namely, assume C is a chain complex braid over <. For each I ∈ I(<)

let H(I) be the homology of the chain complex C(I). If (I, J) ∈ I2(<) then we have a

weakly exact sequence

C(I)
i
→ C(IJ)

p
→ C(J).
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From Theorem 4.1 we obtain an exact homology sequence

. . .→ H(I)
i
→ H(IJ)

p
→ H(J)

∂
→ H(I)→ . . . .

Set HC equal to the collection consisting of the graded modules H(I) for each I ∈ I(<),

along with the maps i, p, ∂ from the above sequence for each (I, J) ∈ I2(<).

Theorem (4.8) (see [F2], Prop. 2.7). HC is a graded module braid.

Definition (4.9). If C is a chain complex braid then we call HC the graded module

braid generated by C. Furthermore, if G is any graded module braid isomorphic to HC

then we say that G is chain complex generated.

Let C = {C△(π)}π∈P be a collection of graded modules. Let I ⊂ P . Then a map

∆ :
⊕

π∈I C△(π)→
⊕

π∈I C△(π) can be regarded as a matrix

∆ =









...

. . . △π,π′ . . .
...









π,π′∈I

:









...

C△(π)
...









π∈I

→









...

C△(π)
...









π∈I

where each △π,π′ is a map from C△(π′) to C△(π).

Definition (4.10).

(a) △ is upper triangular if △π,π′ 6= 0 implies π ≤ π′,

(b) △ is strictly upper triangular if △π,π′ 6= 0 implies π < π′,

(c) △ is a boundary map if each △π,π′ is of degree −1 and △2 = 0.

Now we assume that ∆ :
⊕

π∈P C△(π) →
⊕

π∈P C△(π) is an upper triangular

boundary map. For each I ∈ I(<) set C△(I) =
⊕

π∈I C△(π), and for each I, J ∈ I(<)

let △(I, J) : C△(J)→ C△(I) be the map defined by the matrix








...

. . . △π,π′ . . .
...









π∈I, π′∈J

If I ∈ I(<) then we denote △(I, I) by △(I).

Theorem (4.11) (see [F2], Prop. 3.2 and 3.3).

(a) △(I) is an upper triangular boundary map for each I ∈ I(<).

(b) C△(I) is a chain complex with boundary map △(I).

(c) If (I, J) ∈ I2(<) then the inclusion map i : C△(I) → C△(IJ) and the projection

map p : C△(IJ)→ C△(J) are chain maps.

Theorem (4.12) (see [F2], Prop. 3.4). Given an upper triangular boundary map

△ :
⊕

π∈P C△(π) →
⊕

π∈P C△(π) the collection, denoted C△, consisting of the chain

complexes C△(I) with boundary map △(I) for each I ∈ I(<) and the chain maps i, p

for each (I, J) ∈ I2(<), is a chain complex braid over <.

Let H△ be a graded module braid generated by C△, i.e. H△ = HC△. For simplicity

from now on we assume that all modules are over a field.
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Definition (4.13). Given G, a graded module braid over <, let

△ :
⊕

π∈P

G(π)→
⊕

π∈P

G(π)

be an upper triangular map. If H△ is isomorphic to G then △ is called a connection

matrix of G.

We denote the collection of connection matrices of G by CM(G) .

Theorem (4.14) (see [F2], Th. 3.8). If G is a chain complex generated graded module

braid then CM(G) 6= ∅.

5. The connection matrices for Morse decompositions. Let M = {M(π)}π∈P

be a Morse decomposition of the isolated invariant set S with admissible ordering <.

Then HI(<) is the homology index braid of <. The existence of connection matrices was

shown by Franzosa in the case of continuous dynamical systems (see [F1]). Now the same

conclusion can be drawn for discrete dynamical systems.

Theorem (5.1). The set CM(HI(<)) is nonempty.

Proof. Let us start with the observation that if X is a compact ANR than the

homology functor and the Leray functor commute (see [M3]). Now the theorem is an

easy consequence of Proposition 3.7 and Theorem 4.14.

We can now state the analogue of Theorem 2.2.

Theorem (5.2). If △ ∈ CM(HI(M)), π and π′ are adjacent in < and the entry

△π,π′ 6= 0 then C(M(π′), M(π); S) 6= ∅.

Proof. If π and π′ are adjacent in < then they are adjacent in <H . △π,π′ 6= 0

implies π <H π′. Therefore by the definition of the homeomorphism ordering there is a

sequence π = π0, . . . , πn = π′ of distinct elements of P with C(M(πj), M(πj−1); S) 6= ∅

for each j = 1, . . . , n. Since π and π′ are adjacent in <H , we see that n = 1. This gives

us C(M(π′), M(π); S) 6= ∅.

Example (5.3). This example is adapted from [M3]. Let D ⊂ R2 be a square and

f0 : D → D be a continuous map as indicated in Fig. 1. Extend f0 to a homeomorphism

f : S2 → S2 with a repelling point r outside of D.

Take M1 := Inv(D7 ∪ D8), M2 := Inv(D1 ∪ D2), M3 := {r}. It is easy to check

that M = {M1, M2, M3} is a Morse decomposition of S = S2 with the homeomorphism

ordering (1 < 2 < 3) and N = {Ni}3i=0 with N0 = ∅, N1 = D7 ∪ D8 ∪ P (P is the sum

of the striped areas), N2 = D1 ∪ D2 ∪ D7 ∪ D8, N3 = S2 is an index filtration for M .

Moreover, a simple verification shows that

HIk(M1) =

{

Q2 for k = 0

0 otherwise

HIk(M2) =

{

Q for k = 1

0 otherwise

HIk(M3) =

{

Q for k = 2

0 otherwise



CONNECTION MATRIX THEORY 77

Fig. 1

Let us compute the connection matrix of the above Morse decomposition. Because we have

chosen field coefficients, the connection matrix is strictly upper triangular (see Def. 4.13).

HI1(M21) is easily seen to be trivial; therefore so must be H∆1(12). Since the homology

indices HI1(M1) and HI0(M1) are nontrivial, it follows that ∆12 6= 0. It is not difficult

to see that it is the only nonzero entry of ∆. Thus CM(M ; Q) consists of one matrix and

it is of the form




0 ∗ 0

0 0 0

0 0 0





where ∗ indicates the only nonzero entry. Then since M2 and M1 are adjacent in the

homeomorphism ordering it follows that C(M2, M1) is nonempty.

Remark (5.4). Similar results have been obtained independently by David Richeson.

Although his approach gives more detailed conditions for the existence of the connecting

orbits, we think that in several cases it is sufficient to use our methods.
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