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Abstract. We define a new cohomological index of Conley type associated to any bi-infinite
sequence of neighborhoods that satisfies a certain isolation condition. We use this index to study
the chaotic dynamics on invariant sets which decompose as countable unions of pairwise disjoint
(mod 0) compact pieces.

1. Introduction. The construction of the Conley index for discrete time dynamical
systems ([Mrl], [Mr2]) has been followed by an impressive number of results and applica-
tions in detecting chaotic behavior. Some of the advantages of using the Conley index are
the easy computability and the relatively strong description of the dynamics (in terms of
semiconjugacy to a shift space) it provides.

The desire of obtaining more and more accurate information on a wider range of
discrete dynamical systems displaying complicated behavior has led to the construction of
numerous versions of the index [DeMr], [MiMr1], [Sz1], [Sz2], [Gil], [Gi2], [Gi3]. Dealing
with a large number of fairly abstract Conley index types of invariants rather than a
simple one, as the original index intended to be, may seem frustrating. On the other
hand, the new techniques have paid off, in the sense of providing very precise descriptions
of chaotic systems.

In [Sz], Szymczak introduces a new technique of detection of chaos based on the
construction of the Conley index for decompositions of isolated invariant sets. He defines
an index for isolated invariant sets which admit decompositions as disjoint unions of
finitely many compact sets. His index can detect chaos by showing the existence of a
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semiconjugacy between the map itself (rather than a certain iterate of the map, like other
previous results [MiMr2]|, [CaKwMil], [CaKwMi2]) and the one-sided shift map on the
shift space that has as many symbols as the components of the decomposition.

The purpose of this paper is to adapt some of the techniques developed in [Gil],
[Gi2], [Gi3], in order to study countable decompositions of invariant sets which
are not necessarily isolated. The main example is the case of hyperbolic systems
with singularities (billiard systems) which we may study only from a topological point of
view. We generally assume the existence of a decomposition of a certain neighborhood of
an invariant set into countably many pairwise disjoint (mod 0) and compact pieces. Then
we can compute a cohomological invariant of Conley type for each bi-infinite sequence of
arbitrary “neighborhoods” from the decomposition. The fundamental properties usually
satisfied by the Conley index hold for this invariant, too.

It may seem unreasonable to compute the index of infinitely many bi-infinite sequences
of neighborhoods in order to detect chaotic behavior! However, considerably less infor-
mation is sufficient to obtain a local semiconjugacy to a shift space. Due to the fact that
the invariant sets we consider may fail to be isolated, our approach is essentially different
from that of Szymczak [Sz1]. In the case of an isolated invariant set, both techniques
provide the same information about the chaotic behavior of the system.

2. The construction of the index. Assume that X is a locally compact metric
space, f: X — X a homeomorphism and S a subset of X invariant with respect to f.
Note that S is assumed to be neither isolated nor compact. We say that two subsets A
and B of X are disjoint (mod 0) if the intersection ANB is nowhere dense. We will denote
by H* the Alexander-Spanier cohomology functor with coefficients in R, a principal ideal
domain and by £ the “extended” Leray functor from the category of graded directed
systems of modules and homomorphisms into its proper subcategory of graded directed
systems of modules and isomorphisms (see [Mrl1] and [Gi2]) for details).

If {V;}icz is a sequence of subsets of X, for each i € Z and n € N let

OI(V;) = () £*(Vits)
keZ
and
orwy= () FHiw)
—n<k<n

Let V denote a countable family of pairwise disjoint (mod 0) compact subsets of X

that covers S and satisfies the following property:

(2.1)  there exists n € N such that for any bi-infinite sequence {V; };icz of elements of V
oI™"(V;) CintV;, for all i € Z.
Any such a {V;}; is called an isolating neighborhood sequence. The collection of all iso-

lating neighborhood sequences will be denoted by W.
The following lemma is obvious, so we omit the proof.

LEMMA 2.1. If {Vi}icz and {W,}icz are isolating neighborhood sequences then
(1) If V; CW; for all i then OI™(V;) C OI™(W;) for all i and n.
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(2) If ny > ng > 0 then OI™(V;) C OI™(V;) for all i.

(3) If n1, na >0, OI"+72(V;) = OI™ (OI™(V;)) for all i.

(4) If n1, me >0, OI"(V;) CintV; for all i, then OI"t"2(V;) C int(OI™2(V;)) for
all 4.

(5) OI™(V;) is compact for all i and n.

DEFINITION 2.2. A sequence of compact pairs (N;, L;);ez with L; C N; C X is called
an index pair sequence if the following properties are satisfied for each ¢ € Z:

(1) There exists n > 0 such that OI™(cl(N; \ L;)) C int(N; \ L;) for some n € N and
all i € Z, thus {cI(N; \ L;)}; is an isolating neighborhood sequence.

(2) f(Li) N Nip1 C Lita.

(3) f(Ni\ Li) € Nit1.

We say that (N;, L;); is an index pair sequence for {V;}; if the following condition holds
instead of (1)( in particular (1’) implies (1)):

(1) OI™(V;) Cint(N; \ L;) C N; C intV; for some n € N and all i € Z.

REMARK 2.3. If S is an isolated invariant set, V' is an isolating neighborhood and
(N, L) is an index pair for S, then we may set V; := V and (IV;, L;) := (N, L) for all
i € Z, obtaining {V;}; an isolating neighborhood sequence and (N;, L;); an index pair
sequence for {V;}; (the condition OI™(cl(N; \ L;)) C int(N; \ L;) for some n is easily
satisfied since X is a locally compact metric space). Therefore, we can say that isolating
neighborhoods and index pairs are particular cases of isolating neighborhood sequences
and index pair sequences, respectively.

THEOREM 2.4 (Existence of index pair sequences). If {V; }; is an isolating neighborhood
sequence then there exists (N;, L;); an index pair sequence for {V;},.

PROOF. Since {V;}; is an isolating neighborhood sequence, there exists n € N such
that OI™(V;) C intV;, for all i € Z. Define:
N; := OI"(Vy)
L; = OL™(V;) := {z € N; | there exists k,0 < k <n + 1, such that f*(z) & intVi s}

for each i € Z. We would like to check that (N;, L;); satisfies the axioms (1’), (2) and (3)
from Definition 2.2, so it constitutes an index pair sequence.

(1) N\Li= () Vi) [ fFintVig).
—n<k<—1 0<k<n+1
By Lemma 2.1, OI?"*1(V;) C OI™*(intV;) C int(N; \ L;). On the other hand, it is
clear that N; C intV;, thus (1) is verified.
(2) If y € f(L;) N Nit1, then y = f(z) for some z € L;. Since y € N;;1, either
Yy e Ni+1 \ Li—i—l ory e Li+1- If Yy e Ni+1 \ Li—i—l then
LS ﬂ FEWVigr) 0 ﬂ FH(intVigs).

—n+1<k<0 1<k<n+2

On the other hand, since x € L;, f*(z) & Vi for some k € {0,1,...n — 1}. It follows
that = f9(z) ¢ intV;, which is a contradiction to = € L; C N; C intV;.
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(3) If y = f(N; \ L;) then y = f(x) for some = € N; \ L;, so
f(z) € ﬂ FEVigisr) N ﬂ FRntVig k)

—n—1<k<—2 —1<k<n
thus y = f(z) € OI"(Viy1) = Niy1. =

ExaMPLE 2.5. The Smale’s U-horseshoe is obtained by continuously transforming the
square @ of vertices A, B, C, D into the horseshoe shaped region of vertices f(A), f(B),
f(C), f(D) as in Figure 2.1. The two components of f~1(Q) N Q are denoted by V and
V1. There are no extra assumptions of uniformly stretching and shrinking of the edges
but we do require that:

(2.2) FNV) AV 0 F(V) € intV

for any choice of 4,j,k € {0,1} (these conditions are obviously satisfied if we impose
hyperbolicity on the dynamical system). Under this condition, the invariant set S of Q
is an isolated invariant set (not necessarily a Cantor set) and its cover is V = {Vj, V4 }.

If a = (a;)icz is any bi-infinite sequence of symbols in {0,1}, then {V,, }icz is an
isolating neighborhood sequence: for n =1, OI™(V,,) C intV,, due to (2.2). Now define
No, = V,, and Lo, = Ny, \ f~(intN,,,,) for all i € Z. This makes (Ng,, Lq,)icz an
index pair sequence for {V,, }icz.

Vi

f() f(Vo)

Vo

A B
fey f)  f(A) f(B)
Fig. 2.1. The U-horseshoe

ExaMPLE 2.6. We will consider a dispersed billiard in a two-dimensional domain of
R? or of the two-dimensional torus (see [BuSi], [Bu]). Let @ denote a two-dimensional
open bounded connected domain on R? or on the two-dimensional torus with Euclidean
metric, whose boundary is a finite union of smooth non-self-intersecting curves either
closed or having common end-points. There exists a framing of each boundary curve by
unit normal vectors pointing inside @. For a dispersed billiard, by definition, the curvature
of each component of the boundary is strictly positive. We will consider the dynamical
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Fig. 2.2. The dispersed billiard system

system corresponding to the inertial motion of a particle inside ) with elastic reflection
at the boundary (see Figure 2.2.).

This is modeled as follows. Let M be the unit tangent bundle over Q, m: M — @ the
natural projection and M; the set of all points x of the boundary of M such that x is not
orthogonal to n(q), where ¢ = 7(z). The position ¢ and the velocity v of the particle at the
boundary are described by a unit vector x = (¢,v) € My, while T'(z) represents position
and velocity in the instant right after the first reflection. We may restrict ourselves to M
in order to obtain T: M7 — M; a well defined map. Bunimovich and Sinai have proved
the existence of a countable Markov partition for dispersed billiards (see [BuSi]). The
invariant set S of M (or of M) is not isolated. Let us denote V = {V4,Va,...,V;,,...} the
collection of all of the rectangles of the partition. If a = (a;),.4 is a bi-infinite sequence
of symbols in {1,2,...,n,...} then {V,, };cz is an isolating neighborhood sequence: for
m =1, OI™(V,,) C intV,, for all i € Z. Again we can define N,, = V,, and L,, =
Ng, \ f~(intN,,,,) obtaining (Ng,, L,,); an index pair sequence for {V;, }icz.

The same conclusion holds if we assume that V represents only a partition of M; into
countably many pairwise disjoint (mod 0) compact pieces satisfying the condition:

(2.3) STV OV 0 (V) € intV,
for any choice of i,j,k € {1,2,...,n,...}, without being properly a Markov partition.

In the sequel, we construct a Conley index type of invariant for each isolating neighbor-
hood sequence generated by the decomposition V, in order to obtain a detailed description
of the dynamics on S.

On W we define an equivalence relation: {V;},cz ~ {V/}iez if there exists m > 0 such
that OI™(V;) C intV/ and OI™(V/) C intV; for all i € Z. We will denote the equivalence
class of {V;}; in W by [{Vi}:]. Two index pairs (N;, L;); and (N/, L}); are said to be
equivalent, (N;, L;); ~ (N/,L});, if there exists m > 0 such that OI"™(cl(N; \ L;)) C
int(N]\ L) and OI™(cl(N]\ L})) C int(N; \ L;) for all i € Z. Tt follows that, if (N;, L;);
and (N/,L}); are two index pair for the same {V;}; € W, then (N;, L;); ~ (N], L});.
Moreover, if (N;, L;); is an index pair for {V;};, (IV/, L}); is an index pair for {V/}; and
[V ~ AV i then (N, Li)i ~ (N L)
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Now consider an equivalence class [{V;};] € W/ ~, an isolating neighborhood sequence
{Vi}i € [{V:}:] and an index pair sequence (N;, L;); for {V;};. We proceed to the following
construction:

Step 1. Consider the restriction of f:

fni: (Niy Li) — (Niga U f(Ni), Liga U f(Li))

which induces the homomorphism

S HY (Niga U f(N3), Liga U f(Li)) = H*(Ni, Li).

Step 2. By the condition (2) of Definition 2.2 and the strong excision property for the
Alexander-Spanier cohomology (see [Sp], p. 318), the inclusion

It (Nis Li) = (Nig1 U f(Ni), Liga U f(Li)
induces an isomorphism
I H (Niga U f(Ni), Liga U f(Li)) — H*(Ni, Li).
Step 3. Now we define the transfer map
Fy,: H*(Niy1, Liv1) — H*(N;, Ly),
where F = fx o (&) "
At this point we have obtained a system of R-modules and connecting homomorphisms
Fy. F]f,iil
(2.4) co. — H*(Nijy1,Liy1) — H*(N;, L;)) — H*(Nj—1,Li—1) — ...
Now we apply a Leray functor and we obtain

(2.5) s My 25 M, N

where all M; are R-modules and x; are R-module isomorphisms.

Consider the direct limit lim M; of the modules M; which is isomorphic to each of
the M; and let lim x; be any o;e of the automorphisms of lim M; induced by the isomor-
phisms x;. - -

DEFINITION 2.7. The Conley index Con*([{V;};]) for [{V;};] is defined to be either the
directed system of R-modules and isomorphisms in (2.5)

(2.6) s Miyy X N

or the pair

(CH*({Vi}]), x"{Vibil) := (i M;, lim, x7)
and extends naturally to a definition of the index for the isolating neighborhood sequence
{V:}i and for the index pair sequence (N;, L;);.

THEOREM 2.8 (The Conley index is well defined). If (N;, L;); is an index pair sequence
for {Vi}; € [{Vi}i] and (N[, L) is an index pair sequence for {V;}; € {Vi}i] {(Vi}i ~
{V/}i) then Con*((N;, L;);) and Con*((N/,L});) are isomorphic.

PROOF. Step 1. Assume that (N;, L;); and (N7, L}); satisfy the following conditions:
(2.7) (N;,L;) C (N/,L}) forallicZ
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Note that the condition
(2.9) N/\L,CN;\L; foralliecZ

implies the condition (2.8).
The inclusion map
kit (N7 \ L) U Ly, Li) — (N}, L)

induces an isomorphism due to the strong excision property of the Alexander-Spanier
cohomology
kf:H*(N{,L,) — H*((N!\ L) U L;, L;).
Now define the mapping
Iy gt (NP \ L) U Liy Li) — (Nig1 U f(N3), Liga U f(Li))
which is well defined by (2.8) and induces the homomorphism
SNt N H T (Nigr U f(NG), Liga U f(Li)) — H*((N]\ Lj) U Li, Ly).
Also consider
Iy o ki (N]\ L) U Li, Li) — (Njq U F(N]), Liyy U f(L))
which induces the homomorphism
ki o fR HY(Nipy U F(N), Ligq U f(L5)) — H*((Nj \ Lj) U Ly, Ly).

~ ~ ~ ~

To simplify notation, we set up (Ni+1, Li+1)i := (Nig1Uf(Ni), Lis1Uf (Li))i, (N1, Ligq)i
= (Nlyy U F(ND), Ly U F(LY)s amd (N, L) o= (N \ L) U L, Ly).

We have the following commutative diagram with descending vertical arrows inclusion
maps:

fNi o~ o~ Zd o~ ~ iNi+1
<= (Ni, L) —> (Nis1, Liz1) —> (Nip1, Lig1) < (Nig1, Lip1) —> -+

i NN i i
i ki NTTOT lel ° ki A7/ T iN1{+1 / ’
<= (N}, L) <—— (N[, L}) ——> (N}, Liy) <— (Nipp, Ligy) <—-

The cohomology functor H* applied to the above diagram produces the following
commutative diagram:

* . 1k “k
~ id ~ ~ Nt

I N
+o>H*(Ni, L) <= H*(Niy1, Liy1) <= H*(Nig1, Liga) —> H*(Niy1, Liy1) >+

i* TN N i* i*
* v _k¥o f;\‘[, . N %%
s >HY (N}, L) ——>H*(N;, Li) <— "H*(N[,y, Lj ) —>H" (N1, Ligy) <+
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After removing H*(Nji1, Lit1), H*(]VZ-’H, E;H) and H*(N;, L;) from the above dia-
gram, we obtain:
;\K[i—l F;\}z
R S H*(Nifl,Lifl) < H*(NZ,LZ> < H*(NiJrl,LiJrl) < .-

e o

e HY Ny ) e NG L) < HY (N L) <
where the slanted arrows are the homomorphisms (kj_;) "o fx, LN o(iy,) " and (kf) o
fNiN © (in,,,) ", respectively. .

According to [Gi2] the objects (H*(Ny, L;), Fiy;, )i and (H*(N{, L}), F}.,)i are linked,
thus L((H*(Ni, L;), Fy,)i) and L((H*(N{, L;), F'{,)i) are isomorphic. '
Step 2. Assume that (N;, L;); and (N], L), saéisfy the following conditions:

(2.7) (N;,L;) C (N, L)) for all i € Z

(2.10) Li=L;forallieZ
Define the index pair sequences {(A¥, B¥);cz}ren by:
A9 = N/
B) = L U(f " (Lit1) N N})
A?F = N; U OI*(N})

B = LU (1<O<kfj(Li+j> NOT(ND)

AP = NG U (DN, ) NOTR(ND))

B = Lo () f (L) O (N)
1<j<k+1
forallk € N and i€ Z.

Note that (AT BF+*1) C (A% BF) for all k > 0 and i € Z and there exists m such
that A" = N; for all i € Z.

One can check that f(AF\ BF) C AF1 U (A1), thus each pair {(AFT BEF),

(A¥ BF);} is as in Step 1 and consequently,
Con*((AFT! BFY)) = Con* ((AF, BF),), for all k.

Moreover, {(N;, Li)i, (A7, B™);} and {(N/, L.);, (A?, BY);} are also as in Step 1, so

we conclude that
Con*((Nl, Ll)z) = Con*((Nll, L;)l)

Step 3. Assume that the sequences (N;, L;); and (N/, L}); satisfy only (2.7). Define
(N} LY); == (Ni, N; N L}); and (N2 L?); := (N; U L}, L.);. One can check that both
(N}, L}); and (N2, L?); are index pair sequences.
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We have the following commutative diagram of inclusions:

iNl,N?
(NilaLzl) (NfaLg)
iN;,N} iN2, N
iNi’Nl{ i
(Ni, L;) (N, L)

Note that N}' \ Lj = N7\ L} = N; \ L} for all 4, so i1 y2 induces an isomorphism
for the cohomologies o
ijv.l,N?:H*(Nz?aL?) - H*(NilﬂLzl)'
The pair of index pair sequences {(N;, L;);, (N}, L});} satisfies the conditions (2.7)
and (2.9) and the pair {(N?, L?);, (N/, L});} satisfies (2.7) and (2.10).
Applying the Leray functor to the following diagram,

i*N.l,NZ
H*(N{, L;) — H*(NE, L)
i, 2 N2y
H*(Ni, Ly) H*(Nj, L)

by Step 1 and Step 2 we conclude that
Con*((Nl, Ll)z) = Con*((Nll, L;)l)

Step 4. Suppose that (N;, L;); is an index pair for {V;}; € [{V;}i]. There exists n > 0
such that OI™(V;) Cint(N; \ L;) C cl(N; \ L;) CintV; CV; for all i € Z.

Let (Ni#, Lf&)z be the index pair sequence defined by:

N} = o)
L¥ =0L™(V;) :=={x e N*:3k € {0,1,...,n+ 1} with f*(z) & intVi 4}.
Now we define the index pair sequence (N?, L?); by:
N:=Niv () (Vi)
—n<k<0
and
L:={zxeN:3ke{0,1,...,n+1} with f*¥(z) € Vipr}

and the index pair sequence (N7, N? N L;);.

We will have the following inclusions of index pair sequences:
(2.11) (N7, N7 0 Li)i © (N3, Li)i
(2.12) (N7, L9)i © (N7, N} N Ly);
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(2.13) (NZ,L¥); € (N2, LY),;
Applying Step 3 for each of them, we finally conclude that

L((H™ (Niy L), FR,)i) = L(H (N L), Fa)i):

Step 5. Suppose that the index pair sequences (N;, L;); for {V;}; € [{V;}i] and
(N],L}); for {V/}; € [{V/}4], respectively, do not satisfy any extra assumptions. By
Step 4 we have that

Con™*((N;, L;);) =~ Con™((OI™ (V;), OL™ (V;))
if ny is large enough and

Con™((N}, L;)i) ~= Con™ ((OI"*(V{), OL™ (V)
if no is large enough.

On the other hand, OI"™(V;) C int(V]) for m large and so ((OI™(V;), OL™(V;)); is
an index pair sequence for {V'};. This implies that

Con™((OI" (V;), OL™ (V;)) = Con™ ((OI"* (V/), OL"™ (V)
if n1, no are large enough. Thus
Con*((Ni, Li);) =~ Con*((N}], L});).
This ends the proof of the theorem. =m
EXAMPLE 2.9. We return to the horseshoe and the billiard system in Example 2.5

and Example 2.6, respectively . For both of the examples, for all (a;); and i € Z we

compute:
Z fork=1

Hk(NamLai):{ .
0 otherwise

The system (2.4) at level 1 becomes:
(2.14) oz gz g
and is the zero object of S at every other level. The system (2.14) already represents a
graded directed system of modules and isomorphisms so it stays the same after applying
the functor £. Thus the Conley index Con*[{V,, }i] of [{Va, }4] is zero at every level k # 1

and at level k = 1 takes the form of the system (2.18) or of the pair (Z, +id).

3. Properties of the index. We will show that the fundamental properties satisfied
by the Conley index in general still hold for this index.

THEOREM 3.1 (Wazewski property). If Con*({V;};) isnot isomorphic to 0, then there
exists a point x € Vo with fi(z) € Vi for all i € Z, i.e. OI(Vy) # 0.

PROOF. Suppose by contradiction that OI(Vy)=0. By the finite intersection property,
there exists n > 0 such that OI"™ (V) = (). There also exists m > n such that OI"™(V;) C
intV; for all i € Z. As in the proof of Theorem 2.4, we can obtain (N;, L;);cz an index
pair sequence for {V;}; with N; = OI"™(V;). Tt implies that (No, Lo) = (0,0). Thus the
directed system of R-modules and homomorphisms (2.4) becomes:

FZ’C’ FXW 0 F;\klfz
(31) H*(NQ,LQ) 4 H*(Nl,Ll) 4 0— H*(N_l,L_l) — H*(N_Q,L_g)...
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Applying L to this graded directed system of modules and homomorphism we obtain:
(3.2) o005 0-%0-S0. ..
contradiction to our hypothesis. m

THEOREM 3.2 (Summation property). Assume that {V;};,{V/}; € W, thus there exists
n, n' >0, such that OI™(V;) C intV; and OI" (V/) C intV} for all i € Z. Suppose that
VinV! =0 and OI™(V; UV/) = OI™(V;) UOI™(V/) for some m > n,n' and all i € Z.
Then {V; UV} € W and Con*({V; UV/};) =2 Con*({Vi}i) @ Con*({Vi }).

PROOF. OI™(V; UV/) = OI™(V;) U OI™(V/) C int(V;) U int(V!) C int(V; U V)
for all ¢ € Z shows that {V; UV/}; € W. Let (N;, L;); be an index pair sequence for
{0IY(V;))}i ~ {Vi}i and (N/, L}); an index pair sequence for {OI*(V/)}; ~ {V/};. One
can prove that (]Vz, Ez)z = (N; UN/,L; UL,); is an index pair sequence for {V; U V/},.
Since H*(N;, L;) = H*(N;, L;) & H*(N!, L}) and F% = Fy, @ Fy,, when we apply the

K2

Leray functor (see Proposition 2.2.3 in [Gi3]) we obtain
L((H"(Ni, Li), FZ)i) = LO(H" (N, L), Fi,)i) @ L((H™ (N, L7), FRy)i)
which concludes our proof. m

The continuation property holds under special conditions on the nature of the index
pair sequence {V;};. If § > 0 and A is a closed subset of X, A(d) will denote the closed
d-neighborhood of A defined by

A@6) = | B(x,9)
z€A
where B(z,0) = {y € X | d(z,y) < §}. Note that if A is closed the A(J) is also closed.
Denote:
Wo =Wo(f) == {{Vi}icz | Vi is compact, | J, V; is relatively compact
and there exists d1,d2 > 0 and m € N such that
OI7(Vi(61))(d2) C intV; for all i € Z}.

Here OI7*(V;(61)) means {z € X | f'"*(z) € Viy;(61) for all j € {—m,...,m}}. Tt
is clear that if {V;}; € Wy then {V;(61)}; € Wy and {Vi}; ~ {Vi(d1)}; for 61 > 0 small
enough.

Let A be a compact interval in R and f: A x X — A x X a homeomorphism which is
parameter preserving, i.e. f({A\} x X) C {A\} x X for each A € A. The map f\: X — X
is defined by f(\, ) = (X, fa(x)) for each A € A and it is a homeomorphism of X.

LeMMA 3.3. If {Vi}i € Wo(fu) for some p € A, then there exists n > 0 such that
{Vi}i € Wo(f) for all A € (= mn, p+ ).

PROOF. Let 01,02 > 0 and m € N such that OI}Z: (Vi(261))(d2) C intV; for all i € Z
and cl(|J; Vi(01)) is compact. Since f is uniformly continuous on A x cl(|J, V;i(261))
then, there exists n > 0 (with n < d2) such that for all A € A with |A — u| < n and
all x,y € cl(lJ; Vi(261)) with d(x,y) < n it follows that d(f}(z), f;;(y)) < 01 for all
ne{-m,...,m}.

If x € OIF; (Vi(61))(n) for some i € Z, then there exists y € O} (V;(d1)) with
d(z,y) <n, hence f{(y) € Vitn(d1) for alln € {—m,...,m}, so f}(z) € V;4,(261) for all
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n € {-m,....,m}, thusz € OIf" (Vi(261)) C intV;. In conclusion OIF} (V;(61))(n) € intV;
forallieZand A€ (u—n,u+mn). n

THEOREM 3.4. If {fy}x is as above and there exists {V;}; an isolating neighborhood
sequence in Wo(fx) for all X € A, then Con*({Vi}s, fr) does not depend on X € A.

PROOF. Let 61,02 > 0 and n € N such that OI™(V;(361))(d2) C intV; for all i € Z.
We can assume that §; = d2. Since f is uniformly continuous on A x cl(|J, V;(361)),

(3.3)  there exists 6 > 0 (with § < 01) such that if z,y € cl(UJ, Vi(361)) with d(z,y) < 0,
then d(f}i (x), fi(y)) < 61 for all k € {—8n,...,8n}.

Applying the uniform continuity of f on A x cl(|J; Vi(361)) one more time we obtain
that:

(3.4)  there exists n > 0 such that if |\ — p| < n and = € cl({J;(Vi(301)z)) then
d(f5(x), ff(z)) <6 for all k € {—8n,...,8n}.

For convenience, we will fix y € A and denote f,, by f from now on. Define:
N; := OI"(V;),
L;:=OL"(V;) ={z € N; | 3k € {0,...,n + 1} such that f*(z) € intVi},
N = 01" (Vy),
Ll :=0L™(V;) ={xz € N} | 3k € {0,...,5n + 1} such that f¥(z) & intVi 4},
N2 :=N;
L?:={x € N; |3k c€{0,...,7n + 1} such that f*(x) & Visr},

for all i € Z.
We claim that for every A € (u—n, u+n) there exists an index pair sequence (N}, L});
for {V;}; with respect to fy such that:

(3.5) (N}, Li)i © (N LY)i € (N7, LY
and the inclusions
ii : (Nzl’Lzl)Z — (NzAaLi\)Z and .71 : (Nz)\aLi\)Z — (NzQaLg)l

induce morphisms between objects of S

(3.6) iy s (H* (N}, LY), ﬁg)i%(H*(Nilei), N1 )i
(3.7) i (H*(NZ, L), J’C/g)z'%(H*(N?,L?), N
Define

N} =cd(N\L)N () £ (Vigr(01))
—4n<k<0

L} =N})n{z e N} |3ke{0,...,6n+ 1} such that f*(x) & intViy s}

for each i € Z and each X € (u—n, u+n). The fact that (N}, L}); and (N2, L?); are index
pair sequences for {V;}; with respect to f satisfying (N}, L}); € (N2, L?); and (N2, L});
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is an index pair sequence for {V;}; with respect to f follow similarly. It remains to
prove (3.5).

If x € N} then f*(z) € Vi for all k € {—5n,...,5n} in particular z € OI*"T1(V;) C
c(N; \ L;) and f¥(x) € Viyg(6y) for all k € {—4n,...,0} thus = € cl(N; \ L;) N
N anenco [ " (Vigr(V(61))) = N. Suppose that = € L} and 2 € N} \ L} so = €
N} (N*\ L)), consequently

ze () Vi@ () R @tVie(V(6))),

—4n<k<0 0<k<6n+1

in particular f§(z) € Viyr(61) for all k € {—4n,...,6n+1}, hence f*(z) € OI" (Vitr(61))
C intViyy, for all k € {=3n,...,5n + 1}, thus f*¥(x) € intViyy, for all 0 < k < 5n + 1,
concluding that x € N}\ L}, contrad1ct1on We have checked that (N}, L}); C (N2, L});.
If € N}, then 2 € cl(N; \ L;) C N2. If z € L), then z € N} C Nf and there
exists j € {0,...,6n 4+ 1} with f](z) ¢ int(Vir;(61)) thus f7(z) ¢ intViy, for some
j€{0,...,6n+1} C {0,...,7n+1}. We have checked that (N}, L}); C (N2, L?);, which
ends the proof of (3.5).

Now we would like to prove (3.6) and (3.7). In order to do this, fix Kk € (u—n, p+n)
and prove that for all A € (u — ), u + 1), the following inclusions hold:

(3-8) f/\(Nilei) (N+1Ufi<( ) z+1Ufn(LK))
INNFLLE) C (N2 U F(ND), Ly, U f(LD))

It is enough to prove that fy(N}!) C fo(NF), fa(L}) C fo(LE), fA(N}) € f(N?) and
FA(LE) C f(L2) for all i € Z.

i fA(Nil) C fu(Nf) = f;:lfA(Nil) CNf. Ity e f;:lfA(Nil)a then f;lfn(y) € Nilv
soy = [ fa(y) € N (6) = OIF" (Vi) ().

We claim that OI3"(V;)(6) € OI*™(V;). Indeed, if z € OI}"(Vi)(6), then there exists
z with d(z,2) < § and z € OI3™(V;), hence f¥(2) € Viyy, for all k € {~5n,...,5n} so
fE(2) € OI™(Viyy) for allkze{ 4n, ..., 4n}, thus f¥(z) € OI"(Vigy)(61) C VM for all
k € {—4n,...,4n}, in other words = € 014"( i), ending the proof of the above claim.

Thus y € OI*™(V;) € el(Ni \ Li) N\ _yn<p<o fr " (Vitr(61)) = N

o [a(Li) C fu(Lf) = [ fa(Li) € LT

Ify € fo (L), then £ fuly) € L, soy = fi7' fuly) € L1(6).

We claim that L}(§) € L%, which will prove our inclusion. Since N}(§) C NF, it
is enough to prove that (N1 \ LE)Y() NN C N}\ LL Take z € (N}!\ L“)( JNN} C
N} (NN ﬂ0<k<6n+1 fi ¥ (Vigr(61))(9). There exists 2 € ﬂ—n<k<6n+1 FiF(Vier(61))
with d(z,2) < 6, hence f¥(2) € Viyx(d1) for all k € {—n,...,6n + 1}, so fk(z) €
Viyk(201) for all k € {—n,...,6n + 1}, thus f*(x) € OI"( 1+k)(351) C intViyy for all
k€ {0,...,5n +1}. We obtain that z € N}' N (Nocpesnps f~ 7 (ntVigx) = N} \ L. This
ends the proof of the claim.

The other two inclusions follow similarly.

We obtain a homotopy commutative diagram with vertical rows inclusions
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1

(N}, LHY—> (N} U F(ND), LEU f(LY))
f/*c,N.N

(N, L)—> (NF U fo(NF), Lf U fu(L5))

Ji Ji

(N2, L3)—> (N? U f(N?), L7 U f(L}))
for every i € Z.

Since f, and f are homotopic, applying the Alexander-Spanier cohomology functor
to the above diagram and extending it to the right and to the left provides us with the
following commutative diagram:

fan N
- >H* (N}, L) <——H*(N} U f(N}'), Lj U f(Lj))—> H*(N}’, L)< -

(2 (2 (2

o SH*(NF, L) < HY(NF U fo(NF), LE U fu(L5)) —> H* (NF, LE )< -

K2

Ji Ji Ji

* sx

I Un2
c>H* (N2, L2) < H* (N2 U f(N2), L2 U f(L2))——i> H*(N2, L)< - -

After removing H*(Njy U f(N}), Liy U f(L;)), H* (N U fo(NF), LE U fu(LE)),
H*(NZ U f(N?),L?,, U f(L?)) from the above diagram, we obtain a commutative dia-
gram as below:

Fa Fya
< HY(N{_y, Li_)<——— H*(N},L}) <—— H*(Nj;, Li,))<

K2

i1 (2 Yit1

* *
F, o FkaN."

e HY(Ny, Ly )«——— H*(NF, LF) «<——"H*(Nfyy, L)<

-3k

Jio1 Ji j:+1

Fis Fi
i—1 3
e B N2y, Iy ) e HY(N2,LB) < HY (N, L)<
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It follows that L(if o jF) = L(i}) o L(jF) is an isomorphism, thus £(i}) and L(j]) are
injective and surjective homomorphisms, respectively.
Since

L((H* (N}, Lj), Fyp)i) 2 L((H* (N?, L), Fy)i)
we conclude that L((H*(NJ,Ly), Fye)i) = L((H*(N}, L}), F1)q), for all k € (u—n,

1+ mn). A compactness argument extends the above isomorphisrln toallof A. m

4. Detection of periodic orbits and chaos. For the rest of the section all of the
considered sets are ANR’s. The following theorem is a version of Theorem 1 in [Sr] and
an extension of Theorem 4 in [Mr2]. For the definitions and properties of the fixed point
index and Lefschetz number, the reader is invited to see [Gr].

THEOREM 4.1. Let (N;, L;); be an index pair sequence such that (N;, L;) = (Nitk, Litx)
for somek € ZT and alli € Z. If Lef(FjoFyo... Fy_|) # 0 then there exists x; € N;\L;
such that f(x;) = xjqi for all j € {0,1,...,k—1}, so fn, , © fn, o -..0 [N, has a fized
point in Ny \ Lo. Thus the periodic orbit {z;}; is a subset of S.

The next statement is also a version of Corollary 1 in [Sr] and partially extends
Theorem 2.3 in [MiMr2] and Theorem 1.1 in [CaKwMi].Let x denote the ordinal number
of V and let ¥ denote the space of all bi-infinite sequences of symbols in {1,2,...,x}
and o the shift map. Let A = {ai;}; jeq1,2,....x} be a k x & (possible infinite) matrix with
entries in {0,1} and ¥4 = {a = (a;)iez € ¥ | aa,a,,, = 1 for all i in Z}. Consider the
restriction o4 of 0 on X 4.

COROLLARY 4.2. Let {N;, Li}ic(1,2,...x} be a sequence of pairwise disjoint (mod 0)
compact sets and suppose that (Ng,, Lo, )icz s an index pair sequence for every a € X 4.
If CH*((Na,, La,)i) # 0 for all a € ¥ 4 then there exists S C Ny UNa U...UN, an
invariant set with respect to f and a surjective map ¢: S — X 4 such that the following

diagram commutes:

s L g
ool
Sa 2A vy,

Moreover, if CH™((Ng,, La,)i) = (R, isomorphism) or CH™((Nq,, La,)i) = (Mg, id)
for some m and some nonzero R-module M, and CH'((Na,,Lq,)i) = 0 for all | # m
then the preimage of each periodic orbit in X4 contains a periodic orbit for f with the
same period.

The proofs for Theorem 4.1 and Corollary 4.2 are very similar to that of Theorem 1
and Corollary 3 in [Sr], therefore they are omitted. Details can be found in [Gi3].

Compared to Theorem 1.1 in [CaKwMi], this corollary produces a semi-conjugacy
of (S, f) (rather than (S, f?) for some d) and a shift-space, providing a more detailed
description of the dynamics. Compared to Corollary 3 in [Sr], it has the advantage of using
data independent of the choice of compact pairs and invariant under small perturbations
of the map.
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We restate the above corollary in an over-restrictive but easier to apply form:

COROLLARY 4.3. Let {Bi}icq1,....n} @ countable collection of pairwise disjoint compact
sets satisfying

(4.1) FYB)NB; N f(By) CintB; for alli,j,l € {1,...,x}
Define the matriz A = (vij)ijeq1,..x} 0Y
ay = {1 VIBINB £
’ 0 otherwise
For every i,j,1 € {1,...x} satisfying cijajy = 1 define N; :== B;, L; := B; \ f~(intB;),
Nj == Bj, Lj == B; \ f~'(intB)) and F};: H*(N;, L;) — H*(Nj, L;) the transfer map
as constructed in Section 2.

Assume that
Hk(Ni,Li)ZHk(Nj,Lj):{R fork:%m
0 otherwise
and
Fk.:{id fork=m
7 0  otherwise

for some m > 0.

Then {Ba,}; is an isolating neighborhood sequence for every a € X4, Con*({Ba, }:) =
(R,id) for k = m and Con*({By,}:;) = 0 for k # m and there exists an invariant set
S C By U...U By and a semi-conjugacy ¢: S — X4 such that ¢po f = o4 o f and the

preimage of each periodic orbit for o contains a periodic orbit for f.

EXAMPLE 4.4. We will apply Corollary 4.3 to study the dynamics on a topological
horseshoe with singularities. Again, we consider the square Q) of vertices A, B, C, D and
a continuous map f defined everywhere except the top edge C'D which acts as follows.
First, it stretches the square in the vertical direction keeping the base AB fixed and
shifting the top C'D to infinity. Second, it shrinks non-uniformly each horizontal leaf:
the more the square gets stretched in the vertical direction, the more it gets shrunk in the
horizontal direction. Third, it folds the resulting strip infinitely many times, as it would
follow the shape of the graph of sin(1/x), approaching the horizontal left-hand side edge,
without ever touching it. Thus, @ N f(Q) consists of countably many rectangles of length
converging to zero. The inverse map f~! is defined everywhere except the left-hand side
edge AD of the square. Thus, f~(Q)NQ consists of countably many rectangles of width
converging to zero. See Figure 4.1.

Let us denote the collection of these latest rectangles by V = {Vj, V1, Va,...}. The
map f extends to a homeomorphism of the two dimensional sphere S? the union of the
edges AD and CD. Let S denote the set of the singularities of f. The invariant set .S of
f is a subset of %\ ;e f7*(S), it has infinitely many components and it may or may
be not a Cantor set. There exist points in S arbitrarily close to the set of singularities S.
This type of behavior is very similar to that of non-uniformly hyperbolic systems with
singularities [KrTr]. However, we do not require any hyperbolicity of the system. We do
require only:

(4.2) YV NV N (Vi) CintV;
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e
-
( ] H m

Fig. 4.1. The horseshoe with singularities
for all 4,5,k € {0,1,2,...}
(43) HE, (Vi Vi \ S ntv)) = {22 Tor =2
Fgg_:{z'd for k=2
I 0 otherwise
for all i, 4, € {0,1,2,...}. We have chosen Z; coefficients for simplicity.

Under the above conditions, by Corollary 4.3 we obtain the existence of a semicon-
jugacy ¢:s — ¥ (where ¥ represents the full-shift space on symbols {0,1,2,...} ) with
the properties that ¢ o f = o o f and the preimage of each periodic orbit for o contains
a periodic orbit for f.

(4.4)
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