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Abstract. The relationship between fixed point theory and K-theory is explained, both
classical Nielsen theory (versus K0) and 1-parameter fixed point theory (versus K1). In particu-
lar, various zeta functions associated with suspension flows are shown to come in a natural way
as “traces” of “torsions” of Whitehead and Reidemeister type.

1. Introduction. Consider the following facts:

1. In modern geometric topology, K-theoretic obstructions to achieving desirable
geometric goals sometimes occur. Examples include the Wall finiteness obstruction [Wa],
the Whitehead torsion of an h-cobordism [C], [RS] and [K], and the various Reidemeister
torsions associated with a suspension flow [M], [F], [GN2].

2. In recent papers [GN1−4] we have explained why n-parameter Nielsen Fixed Point
Theory is obstructed by an element of an nth Hochschild homology group. [For n = 0,
this says nothing new as the 0th Hochschild homology group is naturally isomorphic to a
familiar free abelian group employed in Nielsen theory.]
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3. For any associative ring S with unit, there is a K-theoretic trace:

Tr∗ : K∗(S)→ HH∗(S)

from the K-theory of S to the Hochschild homology of S.
4. It sometimes happens that a geometric problem is obstructed by an element α

in some K-group, while an obviously related fixed point problem is obstructed by the
Hochschild homology element Tr∗(α).

5. It sometimes happens that a fixed point problem is obstructed by a Hochschild
homology element β which is not in the image of the trace Tr∗.

6. On the other hand, it sometimes happens that β lies in the image of the trace
and in this manner one is led to an interesting K-theoretic obstruction which was not
previously evident.

We lay out these facts in this paper in some detail. Examples of Fact 4 are given in
§2 and §3, of Fact 5 in §2 and §5, and of Fact 6 in §4. While the necessary theorems have
already appeared in [G1] and [GN1−4], they have not been previously presented from the
point of view expressed here. This paper is an expanded version of the talk given by one
of us (Geoghegan) at the Warsaw meeting.

2. Classical Nielsen theory and K0. Let f : (K, v)→ (K, v) be a pointed cellular
map on a finite CW complex, inducing φ : G→ G on fundamental groups. Let Gφ be the
set of semiconjugacy classes with respect to φ, where g1, g2 ∈ G are semiconjugate if there
exists g ∈ G with g1 = gg2φ(g)−1. The Nielsen theory of f is encoded by the Reidemeister
trace R(f, v) ∈ ZGφ, the free abelian group generated by Gφ. The geometric definition
of R(f, v) is:

R(f, v) =
∑

fixed point classes F

ι(f,F)Φ(F) ∈ ZGφ

where Φ is the well-known injection of fixed point classes to semiconjugacy classes, and
ι(f,F) ∈ Z is the index of f at the fixed point class F (see [B] or [GN1, §1(B)]). Choose
an orientation for each cell of K. Let (K̃, ṽ) be the universal cover of (K, v), orient the
cells of K̃ compatibly with those of K, choose one cell in each G-orbit of cells to get a
free ZG-basis for the cellular chains C∗(K̃). The algebraic definition of R(f, v) is:

R(f, v) =
∑
k≥0

(−1)kq(trace(f̃k : Ck(K̃)→ Ck(K̃))) ∈ ZGφ

where q : ZG→ ZGφ extends the function which sends each g ∈ G to its semiconjugacy
class (see [GN1, §1(B)]). Here, C∗(K̃) is regarded as a right ZG module, and f̃k denotes
the ZG-matrix whose (i, j)th entry is the coefficient of the ith k-cell in the image of the
jth k-cell (considered as basis elements); see [GN1, §1(B)].

The assertion that these two definitions are equivalent is essentially due to Reidemeis-
ter [R] and Wecken [W]; see, for example, [G2] for a proof.

In this section we will assume that φ is the identity endomorphism 1 : G→ G, and G1

will denote the set of conjugacy classes of G. So R(f, v) ∈ ZG1. We recall the definition
of K0(ZG) and K̃0(ZG). Denote the isomorphism class of a finitely generated projective
ZG-module P by [P ]. The abelian group K0(ZG) is defined to be the free abelian group
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generated by all such [P ] modulo the relations [P ] + [Q] = [P ⊕ Q]. Let {P} be the
corresponding element of K0(ZG). There is a natural homomorphism Z → K0(ZG)
taking 1 to {ZG}. The cokernel, K̃0(ZG), is the reduced projective class group of the ring
ZG. We write π : K0(ZG)→ K̃0(ZG) for the quotient homomorphism. For us, the only
relevant property of K̃0(ZG) is distinguishing zero from non-zero elements: π({P}) = 0
if and only if P is stably free, i.eṫhe direct sum of P with some finitely generated free
module is a free module. See, for example, [Br, p.201].

If A is an idempotent m × m ZG-matrix, the image of A : ZGm → ZGm is a pro-
jective ZG-module; conversely if P is a finitely generated projective ZG-module it is a
direct summand of a free module ZGm, and the projection of ZGm onto the submodule
P of ZGm is represented by an idempotent matrix. So elements of K0(ZG) can be
regarded as equivalence classes {A} of idempotent ZG-matrices A. The homomorphism
A 7→ trace(A) 7→ q(trace(A)) well-defines the K-theoretic (or Hattori-Stallings) trace
Tr0 : K0(ZG)→ ZG1. For a proof that this is well-defined see [St, §1].

When is R(f, v) in the image of Tr0? A partial answer is: When f is a homotopy
idempotent, i.e. f is homotopic to f2, as we now explain.

Let f be a homotopy idempotent. We say that f splits if there exist a (not necessarily
finite) CW complex X and maps d : K → X and u : X → K such that d ◦ u ' idX
and u ◦ d ' f . In that case X is a finitely dominated complex (the existence of K, u
and d with K finite and d ◦ u ' idX being the definition). We may assume (giving X a
basepoint) that u and d are basepoint preserving maps. It is a straightforward theorem
that if f ' f2relv then f splits. A much harder theorem of Hastings and Heller asserts
that the “rel v” is unnecessary:

Theorem [HH]. If f is a homotopy idempotent on a finite dimensional CW complex
K then f splits.

For another proof see [BG].
So a homotopy idempotent f : (K, v)→ (K, v) always gives rise in this way to a finitely

dominated complex X; indeed X is unique up to homotopy equivalence. Conversely, given
X, a homotopy idempotent f = u ◦ d : (K, v)→ (K, v) can always be chosen which splits
through X and satisfies f# = 1 : G → G. Finally, if f ′ : (K ′, v′) → (K ′, v′) is another
homotopy idempotent splitting through X then R(f, v) and R(f ′, v′) encode the same
information (same Nielsen numbers, same indices, canonically corresponding fixed point
classes). For more on all this, see [G1].

In view of what has been said, we will assume in what follows that u and d induce
isomorphisms on fundamental groups and we will identify π1(K, v) with π1(X,x) via d#,
calling both groups G.

Next, we discuss the Wall obstruction σ(X) ∈ K̃0(ZG) of a finitely dominated space
X whose fundamental group is G. This is defined in [Wa]; for a helpful relevant discussion,
see [Br, ch. 8], especially page 201.

Theorem [Wa]. σ(X) = 0 if and only if X has the homotopy type of a finite complex.

Choose A so that π({A}) = σ(X), and consider Tr0({A}) ∈ ZG1. If I is a k × k
identity matrix then π({A}) = π({A ⊕ I}) and Tr0({A ⊕ I}) = Tr0({A}) + k[1], so the



140 R. GEOGHEGAN AND A. NICAS

sum of the coefficients in Tr0({A}) is not determined by σ(X), but can be any integer.
The following theorem is essentially proved in [G1]:

Theorem 2.1. If π({A}) = σ(X) and A is chosen so that the sum of the coefficients
in Tr0({A}) is the Euler characteristic χ(X) then R(f, v) = Tr0({A}) ≡ q(trace(A)).

In summary, the Reidemeister trace of a homotopy idempotent on a finite complex
always lies in the image of the K-theoretic trace Tr0 : K0(ZG)→ ZG1.

The Strong Bass Conjecture [Ba] asserts that the image of this trace is always a
multiple of the trivial conjugacy class [1] ∈ G1 ⊂ ZG1. This conjecture is known to be
valid for some large classes of groups (see [G2] for references). When this holds for G, it
follows that for any map f : (K, v) → (K, v) (not necessarily a homotopy idempotent)
inducing the identity on the fundamental group G, R(f, v) is in the image of the trace
if and only if the Nielsen number N(f) = 0 or 1 and when N(f) = 1 the only essential
fixed point class is that of the basepoint.

When f does not induce the identity on the fundamental group (and is not “equiva-
lent” to a map g which does, i.e. f = r ◦s and g = s◦r) it is not clear to us if K0 of some
other ring might replace K0(ZG) giving R(f, v) in the image of some sort of K-theoretic
trace.

Finally, we remark that from an algebraic point of view, it is useful to view ZG1 as
the 0th Hochschild homology group HH0(ZG) of the ring ZG. This could be avoided up
to now, but must be confronted in the next section.

3. The s-Cobordism Theorem and a related one-parameter fixed point
problem. In this section we recall 1-parameter Nielsen theory and the s-Cobordism
Theorem, and we relate the two via the K-theoretic trace.

3(A). One-parameter Nielsen fixed point theory. Let F : M × I →M be a homotopy
where M is a compact oriented manifold. We consistently work in the smooth or PL
category. Pick a basepoint v ∈M . Identify π1(M×I, (v, 0)) with G ≡ π1(M, v) using the
isomorphism induced by the projection map p : M × I → M . Define Fix(F ) = {(x, t) ∈
M × I | F (x, t) = x}; its elements are the fixed points of F .

Assume F (v, 0) = v and that F induces the identity 1 : G→G. Two fixed points (x, t)
and (y, t′) of F are in the same fixed point class if for some path ν from (x, t) to (y, t′),
the loop (p ◦ ν)(F ◦ ν)−1 is homotopically trivial. This defines an equivalence relation
on Fix(F ). Just as in the classical case, there is an injective function Ψ from the set of
fixed point classes of F to the set, G1, of conjugacy classes: the class containing (x, t) is
mapped to the conjugacy class C containing gC ≡ [(p ◦µ)(F ◦µ)−1], where µ is any path
from the basepoint (v, 0) to (x, t). It is easy to check that Ψ is well–defined and injective,
that F has only finitely many fixed point classes, and that fixed points in the same path
component of Fix(F ) are in the same fixed point class. Moreover, with the same notation,
let ω be a loop in Fix(F ) ⊂ M × I based at (x, t), and let h = [µωµ−1] ∈ G; then h lies
in the centralizer, Z(gC), of gC .

By transversality, we can perturb F rel M×{0, 1} so that Fix(F ) consists of transverse
circles in the interior of M × I which, for all but finitely many values of t, cross M ×{t}



FIXED POINT THEORY AND TRACE 141

transversely, and other path components of fixed points each of which meets M ×{0, 1}.
If (x, t) lies in such a circle crossing M×{t} transversely, orient the circle in the direction
of positive time if ι(Ft, x) is positive, and in the other direction if it is negative; see
[DG,§8 and §11] for details.

We are only interested in the circles, indeed in circles not in the same fixed point
class as any fixed points in M × {0, 1}. 1 Let V be such a circle, let (x, t) ∈ V , let µ be
a path in M × I from (v, 0) to (x, t), and let ω be the loop based at (x, t) obtained by
traversing V once in the direction of its orientation. With notation as above, we have,
as previously indicated, that the corresponding element, h, of G lies in Z(gC). In this
way, we associate with V an element of H1(Z(gC)) ∼= (Z(gC))ab. If there are two circles
V1 and V2 in the same fixed point class, we reach the same centralizer Z(gC) from both
circles provided the path used for (x1, t1) ∈ V1 is µ, and the path used for (x2, t2) ∈ V2

is µν, where p(ν)F (ν)−1 is homotopically trivial; we treat any (finite) number of circles
similarly. Thus, for each fixed point class, F, of F which does not meet M × {0, 1}, we
have defined an element ι(F,F) ∈ H1(Z(gC)), where gC ≡ [p(µ)F (µ)−1] represents the
conjugacy class C, and Ψ(F) = C.

The transverse intersection invariant of F is:

R(F, v) =
k∑
j=1

ι(F,Fj) ∈
⊕
C∈G1

H1(Z(gC))

where F1, . . . ,Fk are the fixed point classes of F which do not meet M × {0, 1}. Note
that since F0(v) = v, the fixed point class of v is not among the Fj ’s.

Now,
⊕

C∈G1
H1(Z(gC)) should remind the reader of⊕

C∈G1

H0(Z(gC)) ∼=
⊕
C∈G1

Z ∼= ZG1

in §2; these direct sums have the following algebraic reformulation.
The Hochschild homology groups of an associative ring with unit, S, are the homology

groups of a certain chain complex which in degrees 2, 1, 0 is given by:

· · · −→ S ⊗ S ⊗ S d2−→ S ⊗ S d1−→ S

s1 ⊗ s2 ⊗ s3 7→ s2 ⊗ s3s1 − s1s2 ⊗ s3 + s1 ⊗ s2s3

s1 ⊗ s2 7→ s2s1 − s1s2.

In particular, HH0(S) = coker(d1) and HH1(S) = ker(d1)/ image(d2). When S = ZG
there are isomorphisms HHi(ZG) ∼=

⊕
C∈G1

Hi(Z(gC)) for all i ≥ 0 (see [GN1−4] for a
detailed description). These isomorphisms are canonical once the representatives gC of
the conjugacy classes C have been chosen. This suggests that it may be useful to regard
R(F, v) as an element of HH1(ZG).

3(B). K1, the Whitehead group, and Whitehead torsion. Let S be a ring with unit,
let GL(n, S) denote the general linear group consisting of all n × n invertible matrices

1 The reason for this is that in the remaining fixed point classes the distinction between circles
and other fixed points is not invariant under homotopy rel M×{0, 1}. For example, a transverse
arc of fixed points beginning and ending in M × {0, 1} might merge with a transverse circle in
the same fixed point class after a homotopy rel M × {0, 1}.
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over S, and let GL(S) be the direct limit of the sequence GL(1, S) ⊂ GL(2, S) ⊂ · · ·. A
matrix in GL(S) is called elementary if it coincides with the identity except for a single
off-diagonal entry. The subgroup E(S) ⊂ GL(S) generated by the elementary matrices
is precisely the commutator subgroup of GL(S) (see [C]) and the abelian quotient group
GL(S)/E(S) is, by definition, K1(S). If A ∈ GLn(S) the image of A in K1(S) is called
the torsion of A.

Now let U ⊂ S∗ be a subgroup of the group of units of S. Assume S has the property
that any two bases of a finitely generated free module have the same cardinality. Declare
two bases of a finitely generated free module to be equivalent if the change of basis matrix
represents an element of K1(S) which lies in the image of the natural map U → K1(S).
Define KU

1 (S) ≡ coker(U → K1(S)). Let (C, ∂) be a finitely generated chain complex of
right modules over S such that each Ci is free with a given equivalence class of bases.
Suppose that C is acyclic. Let δ : C → C be a chain contraction. Define Codd ≡

⊕
iodd Ci

and Ceven ≡
⊕

ieven Ci. The restriction of ∂+ δ to Codd is an isomorphism Codd → Ceven

and so its matrix with respect to bases chosen from each of the given equivalence classes
defines an element of K1(S). The image of this element in KU

1 (S) is independent of
the choice of representatives of the equivalence classes of bases (see [C]); it is called the
torsion of (C, ∂) with respect to U . The important case for the purpose of this section is
S = ZG and U = ±G. In this case Wh(G) ≡ K±G1 (ZG) is called the Whitehead group of
G and the torsion of an acyclic complex (C, ∂) as above is called its Whitehead torsion.

An h-cobordism (M ;M0,M1) is a manifold M with two boundary components M0

and M1 both of which are strong deformation retracts of M . The torsion of (M ;M0,M1)
is the Whitehead torsion, τ(M), of the relative cellular chain complex C∗(M̃, M̃0) with
respect to a CW structure on the triad (M ;M0,M1). In [RS] one finds a proof of:

Theorem (s-Cobordism Theorem). If dimM ≥ 6 and M is compact, (M ;M0,M1)
is PL homeomorphic to (M0 × I,M0 × {0},M0 × {1}) if and only if τ(M) = 0.

The same theorem is true in the smooth category, see [K].

3(C). The K-theoretic trace. The K-theoretic trace (or Dennis trace) Tr1 : K1(S)→
HH1(S) is defined as follows. If α ∈ K1(S) is represented by an invertible n× n matrix
A, then Tr1(α) is represented by the Hochschild 1-cycle

∑
i,j Aij ⊗ (A−1)ji.

Consider the diagram

K1(ZG) Tr1−→ HH1(ZG) ∼=
⊕

C∈G1
H1(Z(gC))

π ↓
Wh(G)

where π is the obvious quotient. The feature to note is:

Proposition 3.1. If α, β ∈ K1(ZG) are such that π(α) = π(β) then Tr1(α)−Tr1(β)
can only be non-zero in the component of the trivial conjugacy class [1] ∈ G1.

3(D). The K-theoretic trace and Nielsen fixed point theory. Let (M ;M0,M1) be an
h-cobordism with M compact. Let F : M × I → M be a strong deformation retract of
M onto M0. Then we can perturb F rel M × {0, 1} (using relative transversality and ad
hoc methods) so that Fix(F ) = (M ×{0})∪ (M0 × I)∪ transverse circles as described in
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(B). Now, (M × {0}) ∪ (M0 × I) as well as, perhaps, some circles are in the fixed point
class of the basepoint v. We are only interested in the other circles, namely the ones that
make up the components of R(F, v). Those are the ones that cannot disappear under
perturbation of F relM × {0, 1}.

Here is the main theorem of this section.

Theorem 3.2. If π(α) = τ(M) then the projection of Tr1(α) away from the compo-
nent of the trivial conjugacy class is equal to R(F, v).

In other words, apart from an ambiguity over the trivial conjugacy class (analogous to
the ambiguity in getting {A} from σ(X) in Theorem 2.1), the one-parameter fixed point
problem contained in our setup is the “trace problem” associated with the h-cobordism
problem. Note that if M is homeomorphic to M0 × I and if F is the “projection” (i.e.
F ((y, u), t) = (y, ut) where (y, u) ∈ M0 × I) then Fix(F ) = M × {0} ∪ M0 × I, so
R(F, v) = 0.

Proposition 3.1 and Theorem 3.2 are proved in [GN1, §7].

4. Torsion and zeta functions. Let f : (K, v)→ (K, v) be a pointed cellular map
on a finite CW complex, inducing φ : G→ G on fundamental groups. In this section we
do not assume that φ is the identity. A periodic point of period m is a fixed point of the
m-fold iterate fm. If F is a fixed point class of the map fm, so are f(F), . . . , fm−1(F),
and the corresponding m-periodic orbit class of f is

⋃m−1
j=0 f j(F), where f0(F) ≡ F. Note

that the fixed point classes f i(F) and f j(F) are either identical or disjoint.
One classifies m-periodic orbit classes algebraically thus: the relation g ∼ φ(g) well-

defines an equivalence relation on the set Gφm ; write Gφm/〈φ〉 for the set of equivalence
classes. By analogy with Φ in §2, there is an injective function Φ′ from the set of m-
periodic orbit classes of f to the set Gφm/〈φ〉. Define

R̄(fm, v) =
∑

m-periodic
orbit classes O

ι(fm,O)Φ′(O) ∈ Z[Gφm/〈φ〉].

The obvious quotient homomorphism takes R(fm, v) to R̄(fm, v), the effect being to
coalesce the distinct fixed point classes of fm which are in the same m-periodic orbit
class of f , adding up the fixed point indices of the distinct pieces. The Lefschetz-Nielsen
series of f is the sequence (R̄(fm, v)) ∈

∏
m≥1 Z[Gφm/〈φ〉]; we will see in Theorem 4.1

that the Lefschetz-Nielsen series is the “trace” of an interesting element of K-theory and
that this fact implies the rationality of various zeta functions associated with the map f .

Let ZGφ[[t]] denote the φ-twisted power series ring over ZG, consisting of formal power
series

∑
m≥0 umt

m in the indeterminate t, with um ∈ ZG, subject to the multiplication
rule tg = φ(g)t where g ∈ G. If A is a square ZG-matrix and I is the identity matrix
of the same size then the matrix I − At is invertible in the ring of ZGφ[[t]]-matrices;
its inverse is

∑
m≥0(At)m. This simple observation turns out to be important. Define

∆(f, v) ∈ K1(ZGφ[[t]]) to be the element represented by the invertible matrix c(f) ≡∏
k≥0(I − f̃kt)(−1)k+1

. The matrix c(f) depends on choices (of lifts, orientations etc., see
§2) but its torsion, ∆(f, v), does not [GN2, Proposition 5.2].
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We have a trace Tr1(∆(f, v)) ∈ HH1(ZGφ[[t]]), but to obtain the Lefschetz-Nielsen
series, we must compose this with a certain canonical homomorphism

P+ : HH1(ZGφ[[t]]))→
∏
m≥1

Z[Gφm/〈φ〉]

which we now define.
For n ≥ 0, let C1,n be the abelian subgroup of ZGφ[[t]] ⊗ ZGφ[[t]] (the group of

Hochschild 1-chains on ZGφ[[t]]) generated by tensors of the form yta ⊗ ztb where y, z ∈
ZG and a+b = n, and let C2,n be the abelian subgroup of ZGφ[[t]]⊗ZGφ[[t]]⊗ZGφ[[t]] (the
group of Hochschild 2-chains on ZGφ[[t]]) generated by tensors of the form uta⊗vtb⊗wtc
where u, v, w ∈ ZG and a + b + c = n. Note that the Hochschild boundary operator d2

(see §3(A)) maps C2,n into C1,n. Define

HH1,n(ZGφ[[t]]) ≡ ker(d1 : C1,n → ZGφ[[t]])/ image(d2 : C2,n → C1,n).

The homomorphism ZGφ[[t]]⊗ ZGφ[[t]]→
∏∞
n=0 C1,n given by( ∞∑

i=0

yi t
i
)
⊗
( ∞∑
j=0

zj t
j
)
7→
( ∑
i+j=n

yi t
i ⊗ zj tj

)∞
n=0

,

where yi, zj ∈ ZG, induces a homomorphism

HH1(ZGφ[[t]])→
∏
n≥0

HH1,n(ZGφ[[t]]).

Define a homomorphism Jn : C1,n → ZG as follows. Given a generating 1-chain yta ⊗
ztb ∈ C1,n, let Jn(yta ⊗ ztb) = a yφa(z). Suppose β = uta ⊗ vtb ⊗ wtc ∈ C2,n. Then
Jn(d2β) = b(vφb(w)φb+c(u) − uφa(v)φa+b(w)). Since vφb(w)φb+c(u) − uφa(v)φa+b(w)
maps to zero in Z[Gφn/〈φ〉], it follows that Jn induces a homomorphism:

jn : HH1,n(ZGφ[[t]])→ Z[Gφn/〈φ〉].

Define P+ : HH1(ZGφ[[t]])→
∏∞
n=1 Z[Gφn/〈φ〉] to be the composite:

HH1(ZGφ[[t]])→
∏
n≥0HH1,n(ZGφ[[t]])

proj−−−→
∏
n≥1HH1,n(ZGφ[[t]])∏

n
jn

−−−→
∏∞
n=1 Z[Gφn/〈φ〉].

The image of ∆(f, v) under Tr1 is the element of HH1(ZGφ[[t]]) represented by the
Hochschild 1-cycle: ∑

k≥0

(−1)k+1
∑
i,j

(I − f̃kt)ij ⊗
( ∑
m≥0

(f̃kt)m
)
ji
.

More importantly,

Theorem 4.1. The image of ∆(f, v) under

P+ ◦ Tr1 : K1(ZGφ[[t]])→
∏
m≥1

Z[Gφm/〈φ〉]

is the Lefschetz-Nielsen series of f , (R̄(fm, v)).

This is Theorem 5.6 of [GN2].
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To relate this to zeta functions, consider a linear representation ρ : G → GLr(S)
where S is a commutative ring with unit and ρ ◦ φ = ρ. The ρ-twisted Lefschetz number
of f is defined to be the image, L(f, ρ), of R(f, v) under the homomorphism induced by
ρ. In detail, ρ induces ρ̄ : ZG → Mr(S), the ring of r × r matrices over S, and hence
ρ∗ ≡ trace ◦ρ̄ : ZG→ S. Define L(f, ρ) =

∑
k≥0(−1)k trace(ρ∗(f̃k)) ∈ S, where ρ∗ maps

ZG-matrices to S-matrices entry by entry. The homomorphism ρ induces a function
Gφ → GLr(S) because ρ ◦ φ = ρ, so L(f, ρ) coalesces the components of

R(f, v) =
∑

fixed point classes F

ι(f,F)Φ(F)

to give first an S-matrix, and then an element of S, namely the trace of that S-matrix.
The representation ρ induces a homomorphism K1(ZGφ[[t]])→ K1(S[[t]]). The image

of ∆(f, v) is ∆(f, ρ) represented by c(f, ρ) ≡
∏
k≥0(I − ρ∗(f̃k)t)(−1)k+1

. Applying the
determinant homomorphism det : K1(S[[t]])→ S[[t]] we obtain

det ∆(f, ρ) =
∏
k≥0

det(I − ρ∗(f̃k)t)(−1)k+1
∈ S[[t]].

Define the ρ-twisted zeta function, ζ(f, ρ) ∈ S[[t]], to be exp
(∑∞

m=1
1
mL(fm, ρ)tm

)
. Then

“rationality of the zeta function” is expressed by:

Theorem 4.2. det ∆(f, ρ) = ζ(f, ρ).

Theorem 4.2 is a direct consequence of Theorem 4.1. The homomorphism ρ̄ induces

Z[Gφm/〈φ〉]→Mr(S) trace−−→ S

which maps R̄(fm, v) to L(fm, ρ); in fact, it induces a homomorphism

K1(ZGφ[[t]])→
∏
m≥1

Z[Gφm/〈φ〉]→ S[[t]]

which maps ∆(f, v) 7→ (R̄(fm, v)) 7→ ζ(f, ρ). Theorem 4.2 follows from the fact that this
homomorphism equals ∆(f, v) 7→ ∆(f, ρ) 7→ det ∆(f, ρ). The details can be found in
[GN2, §5(B)].

Note that when S = Z, r = 1 and ρ(G) = {1} ∈ Z then L(f, ρ) = L(f), the Lefschetz
number of f , and ζ(f, ρ) is the familiar Lefschetz zeta function exp

(∑∞
m=1

1
mL(fm)tm

)
of Milnor [M]. Other choices give the zeta functions appearing in [GN2], [J], and [F].

In view of this, we regard the Lefschetz-Nielsen series as a “non-abelian” analogue of
the zeta function. The invariant ∆(f, v) was introduced by us in [GN2] and is an example
of Fact (6) in the Introduction. We discovered it through our study of Tr1(∆(f, v)). This
is explained in [GN2], where we also show that ∆(f, v) depends only on the homotopy
class of f and on the simple homotopy type of K.

5. First-order Euler characteristics

5(A). More on one-parameter Nielsen fixed point theory. Let F : K × I → K be a
cellular homotopy where K is a finite CW complex and F0 = F1 = idK . Just as in §3(A),
we set G ≡ π1(K, v) and identify G with π1(K×I, (v, 0)); here, v is a vertex of K. And just
as in §2, we consider the cellular chains C∗(K̃) and C(K): F induces a chain homotopy
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{Dk : Ck(K)→ Ck+1(K)}, and F̃ induces a chain homotopy {D̃k : Ck(K̃)→ Ck+1(K̃)}.
Precisely: D̃k(ẽ) = (−1)k+1F̃k(ẽ×I) and Dk(e) = (−1)k+1Fk(e×I) where e is any k-cell
of K (with a chosen orientation as in §2). 2

We also have the boundary maps {∂k : Ck(K) → Ck−1(K)} and {∂̃k : Ck(K̃) →
Ck−1(K̃)}. If g0 ∈ G is represented by the loop F ({v} × I) then F̃1(ẽ) = ẽg−1

0 ; here g−1
0

appears rather than g0 because the natural left action of G has been turned into a right
action.

The chain homotopy relations give matrix equations:

D̃k−1∂̃k + ∂̃k+1D̃k = I(1− g−1
0 ) and Dk−1∂k + ∂k+1Dk = 0

where I is a suitable identity matrix.
It is convenient to write D̃ ≡

⊕
k(−1)k+1D̃k and ∂̃ ≡

⊕
k ∂̃k, with similar definitions

for D and ∂. Then

trace(D̃∂̃ − ∂̃D̃) = (1− g−1
0 )χ(K) and D∂ − ∂D = 0

where χ(K) is the Euler characteristic of K.

Proposition 5.1. The Hochschild 1-chain
∑
i,j ∂̃ij ⊗ D̃ji is a cycle.

Proof. (Compare [GN3, Proposition 2.4].) The image of
∑
i,j ∂̃ij ⊗ D̃ji under the

Hochschild boundary (d1 of §3(A)) is (1− g−1
0 )χ(K). If χ(K) = 0 the conclusion follows.

At any rate (1− g−1
0 )χ(K) is a boundary, so it represents zero in HH0(ZG), and hence

if χ(K) 6= 0 we must have g−1
0 = 1.

5(B). First-order Euler characteristics. Let ΓK ≡ π1(KK , id). Thus γ ∈ ΓK is repre-
sented by F γ : K × I → K as in (A). We write D̃γ and Dγ for the corresponding chain
homotopies. By Proposition 5.1 we may define a function X̃1(K) : ΓK → HH1(ZG) by

X̃1(K)(γ) = homology class of
∑
i,j

∂̃ij ⊗ D̃γ
ji.

There is a left action of ΓK on HH1(ZG) given at the level of chains by γ(g1 ⊗ g2) =
g1 ⊗ g2η(γ)−1; here, g1, g2 ∈ G and η : ΓK → G takes γ to the element of G represented
by the loop F γ(v, · ). The image of η is called the Gottlieb subgroup of π1(K, v) and lies
in the center, Z(G), of G.

Thus we may regard HH1(ZG) as a left ΓK-module, and it is easy to see that:

Proposition 5.2. The function X̃1(K) is a derivation, i.e.,

X̃1(K)(γ1γ2) = X̃1(K)(γ1) + γ1X̃1(K)(γ2)

for all γ1, γ2 ∈ ΓK .

If M is a left ΓK-module then the cohomology group H1(ΓK ,M) is naturally identi-
fied with the quotient, Der(ΓK ,M)/ Inn(ΓK ,M), of derivations modulo inner derivations

2 We use the following sign convention. If ẽ is an oriented k-cell of K̃ then D̃k(ẽ) is the
(k + 1)-chain (−1)k+1F̃∗(ẽ× I) ∈ Ck+1(K̃), where ẽ× I is given the product orientation. This
is consistent with the convention that if Ei,ε is the face of the cube In = [0, 1]n obtained by
holding the ith coordinate fixed at ε = 0 or 1, then the incidence number [In : Ei,ε] is (−1)i+ε.
At the level of cellular n-chains, we have ∂nIn =

∑
i,ε[I

n : Ei,ε]Ei,ε.
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(recall that a derivation ΓK → M is inner if it is of the form γ 7→ (1 − γ)m for some
m ∈M). We denote the image of a derivation Θ : ΓK →M in H1(ΓK ,M) by [Θ].

The enhanced first-order Euler characteristic of K is the cohomology class:

χ̃1(K) ≡ [X̃1(K)] ∈ H1(ΓK , HH1(ZG)).

To explain why we call this invariant “enhanced” we digress to define a simpler invari-
ant with which χ̃1(K) should be compared. The homology of G with integer coefficients
can be computed from a chain complex which in degrees 2, 1, 0 is:

· · · → ZG⊗ ZG
d′
2−→ ZG

d′
1−→ Z

where d′2(g1⊗g2) = g2−g1g2+g1 for g1, g2 ∈ G and d′1(g) = 1 for g ∈ G. [This is obtained
from the Hochschild complex of §3(A) by replacing the rightmost tensor factor of ZG by
Z, i.e. H∗(G) ∼= HH∗(ZG,Z) whereHH∗(ZG,Z) is Hochschild homology with coefficients
in the trivial bimodule Z.] Let A : ZG→ Gab extend the “abelianization” homomorphism
G → Gab ≡ H1(G). There is a natural homomorphism ε : HH1(ZG) → H1(G) defined
by ε({

∑
i nig1,i ⊗ g2,i}) = A(

∑
i nig1,i) where

∑
i nig1,i ⊗ g2,i is a Hochschild cycle and

{·} denotes Hochschild homology class. The homomorphism ε induces:

ε∗ : H1(ΓK , HH1(ZG))→ H1(ΓK , H1(G)) ∼= Hom(ΓK , H1(G)).

In [GN3] we defined the first-order Euler characteristic of K to be the homomorphism
χ1(K) : ΓK → H1(G) given by χ1(K) = A(

∑
i,j ∂̃ijDji). The comparison with χ̃1(K) is:

Proposition 5.3. ε∗(χ̃1(K)) = χ1(K).

These first order Euler characteristics appear to be useful new invariants. Applications
of χ1(K) to group theory are given in [GN3] and to geometry in [GNO], while applications
of χ̃1(K) to differential topology and to 3-dimensional Seifert fibered spaces are given in
[GN4].

Remark. The invariant χ1(K) is a natural object from the point of view of algebraic
topology; over a field of coefficients F, χ1(K; F) can be expressed homologically in terms
of cap (or cup) products (see [GN3]) and higher analogs χn(K; F), n > 1 can be defined
and calculated [GNO].

5(C). The trace. Here is a simple observation (see [GN4, Proposition 1.4]):

Proposition 5.4. The image of the composite homomorphism:

±G→ K1(ZG) Tr1−→ HH1(ZG)

lies in the component of HH1(ZG) ∼=
⊕

C∈G1
H1(Z(gC)) corresponding to the trivial

conjugacy class [1].

Proposition 5.4 implies that when Wh(G)=0 the image of Tr1 : K1(ZG)→HH1(ZG)
is concentrated in the component corresponding to the trivial conjugacy class. On the
other hand, in [GN4, §6] we give examples of finite complexes K which have the following
properties:

(1) K triangulates a closed aspherical 3-manifold.
(2) Wh(G) = 0.
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(3) K admits the structure of an oriented Seifert fibered space and the element γ ∈ ΓK
given by the S1-action on K associated to this Seifert fibered space structure is such that
X̃1(K)(γ) is not concentrated in the component of the trivial conjugacy class.

Moreover, in these examples the third property persists after passage to the cohomol-
ogy class χ̃1(K). More precisely, Tr1 : K1(ZG) → HH1(ZG) extends to a ΓK-module
homomorphism Tr′1 : ZΓK ⊗K1(ZG)→ HH1(ZG) and χ̃1(K) is not in the image of the
induced homomorphism (Tr′1)∗ : H1(ΓK ,ZΓK ⊗K1(ZG))→ H1(ΓK , HH1(ZG)).
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