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1. Introduction. One goal for Nielsen fixed point theory is the capturing of geo-
metric information in an algebraic form. The Reidemeister trace for a self-map f on a
finite, connected CW complex X is an alternating sum of algebraic traces involving the
cellular chains for the universal cover of X. This algebraic formal sum, when it is reduced,
has for each term the index of an algebraic Nielsen class multiplied by the class itself.
Thus the Nielsen number N(f) is the number of terms with non-zero coefficient, and the
Lefschetz number L(f) is the sum of the coefficients. Wecken proved in [We, part II] that
this connection between the algebraic sum and the geometric Nielsen number holds for
X a compact, connected polyhedron. Modern treatments of Wecken’s work extend this
connection to CW complexes (see [Hu]) and to finitely dominated spaces (see [G1]). We
provide a sketch of the proof for Wecken’s setting and discuss the modern treatments
in Section 3. We discuss the difficulties involved in calculating the Reidemeister trace
and mention some results that address these problems in Section 5. We also provide in
Section 6 references for papers that include definitions of Reidemeister traces for many
of the variations on Nielsen fixed point theory.

Reidemeister first defined the alternating sum of traces (see [R]) that Wecken named
the Reidemeister trace (“die Reidemeistersche Spureninvariante,” [We, part II]). Later
the trace was also called the generalized Lefschetz number. At the conference that gave
rise to these proceedings, it was generally agreed to return to the original name. Thanks
are due to R. Geoghegan for helpful conversations.

Just as the Lefschetz number is defined as an alternating sum of algebraic traces and
can provide information about the existence of a fixed point, the Reidemeister trace is
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defined as an alternating sum of algebraic traces and provides information about the
number of essential Nielsen classes and hence about the Nielsen number. In fact, the
Reidemeister trace is zero if and only if the Nielsen number is zero.

2. The definition of the Reidemeister trace. We provide first a sketch of the
necessary covering space theory. For details see [J2] or, for early sources, see [R] and [We].
We will concern ourselves here with polyhedra and discuss extensions to other spaces at
the beginning of Section 3.

Let X be a compact, connected polyhedron and let f : X→X be a map with φ : π→π
the homomorphism induced by f on π = π1(X). Let X̃ be the universal covering space
for X with p : X̃→X the covering transformation. We consider the action of π on X̃ to
be a left action, and we choose once and for all a lift of f , f̃ : X̃→X̃ and note that every
lift of f can be written uniquely as δ−1f̃ for some δ ∈ π. For any δ ∈ π, we also have
f̃ δ = φ(δ)f̃ . For every α ∈ π, the set pFix(α−1f̃) is either a Nielsen class of fixed points of
f or is the empty set. Whenever α, β ∈ π1(X) with pFix(α−1f̃) 6= ∅ and pFix(β−1f̃) 6= ∅,
we have the following. The Nielsen classes pFix(α−1f̃) and pFix(β−1f̃) are the same if
and only if there exists σ ∈ π for which β = σ ·α = φ(σ)ασ−1, which means that α and β
are in the same orbit of the (left) Reidemeister action. Let R(φ) be the set of orbits of this
action, including those that correspond to the empty set. These orbits have many names
including “Reidemeister classes,” “semi-conjugacy classes,” “twisted conjugacy classes,”
and simply “algebraic classes.” We have N(f) ≤ |R(φ)| ≤ |π1(X)|. Let ρ : π→R(φ) be
the function that sends α ∈ π to its algebraic class. Then ρ(α) corresponds to the set
pFix(α−1f̃). To each algebraic class is assigned either the index of the corresponding
Nielsen class or the value zero if the algebraic class corresponds to the empty set. This
completes the first step in translating into an algebraic form the geometric problem of
counting essential Nielsen classes. The Nielsen number equals the number of algebraic
classes with non-zero index.

To incorporate the index into the algebraic statement of the problem, the Reidemeister
trace of a map f is defined to be a particular element of the free Z-module Z(R(φ)). When
this formal sum is reduced so that each algebraic class appears at most once, then the
coefficient of each algebraic class equals the fixed point index of this class. Thus the
Nielsen number of f equals the number of terms in the reduced sum that have non-zero
coefficient.

Given that X is a polyhedron, we may assume without loss of generality that f
is simplicial because N(f) is a homotopy invariant. The simplicial structure of X̃ is
inherited from that of X so that p : X̃→X is simplicial, and we may also assume that f̃
is simplicial.

The group of simplicial q-chains, Cq(X̃; Z) is a free module over the group ring Z[π].
The Z[π]-basis consists of one lift to X̃ of each q-cell of X. The Z-homomorphism induced
by f̃ , f̃q : Cq(X̃; Z)→ Cq(X̃; Z), is not quite a Z[π]-module homomorphism. We have for
every q-simplex ũ ∈ Cq(X̃; Z) and for every σ ∈ π, f̃q(σũ) = φ(σ)f̃q(ũ). We define Mq

to be the matrix for f̃q over Z[π], and we extend ρ linearly to ρ : Z[π] → Z(R(φ)). See
Section 4 for a discussion of the effect on the following definition of the choice of the lift f̃ .
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Definition 1. The Reidemeister trace is

R(f, f̃ ) :=
∑
q

(−1)qρ(traceMq) ∈ Z(R(φ)).

We warn the reader that some authors treat the action of π on the cells of X̃ as a
right action. Then we have f̃(x̃α) = f̃(x̃)φ(α) for α ∈ π, and two elements α and β in π

are in the same algebraic class if there is some σ ∈ π for which β = σαφ(σ−1).

3. The Reidemeister trace provides geometric information. We provide a
sketch of Wecken’s proof from [We, part II] that the Reidemeister trace, when reduced,
gives both the Lefschetz number and the Nielsen number when X is a compact, connected
polyhedron. Modern treatments of this result are in [G1] and [Hu]. Husseini, in [Hu],
extends the theorem to finite, connected CW-complexes. He also develops the theory
when H is a normal subgroup of π that is invariant under φ using the corresponding
intermediate covering space. This can be useful for distinguishing algebraic classes. See
Section 5. Husseini then provides conditions under which the Reidemeister trace can be
calculated at the level of homology. Geoghegan, in [G1], extends the following theorem
to finitely dominated spaces (a connected space X is finitely dominated if there is a
connected finite CW complex K and if there are maps X u→ K

d→ X for which d ◦ u '
idX ). Geoghegan connects the Reidemeister trace with shape theory and algebraic K-
theory. Specifically, he discusses connections with a K-theoretic conjecture of H. Bass.

Theorem 1 (Wecken). For X a compact, connected polyhedron and f : X → X a
map, we have

R(f, f̃ ) =
∑
α∈W

i(ρ(α))ρ(α),

where i(ρ(α)) is the fixed point index for the algebraic class ρ(α) and W is a transversal
for R(φ). Thus N(f) is the number of terms of R(f, f̃ ) with non-zero index once the sum
is in this reduced form, and L(f) is the sum of the coefficients.

Sketch of Proof. Using the Hopf approximation technique (see [Br] or [We, part I]),
we may assume without loss of generality that f is a simplicial map (from a subdivision
of the original simplicial complex to the original complex) with isolated fixed points so
that each fixed point is in a maximal simplex and no simplex contains two fixed points.

Once we assume that f has isolated fixed points as above, the lift f̃ has similar
properties. For each fixed point x of f , with x in the q-simplex u, there is a unique point
x̃ ∈ p−1(x) ∩ ũ, where ũ is the lift of u that is in the Z[π]-basis for Cq(X̃; Z). There is
a unique element α ∈ π for which f̃(x̃) = αx̃. This forces the chain in Cq(X̃; Z) that
equals f̃q(ũ) to contain as one of its terms either αũ, if f preserves the orientation of u,
or −αũ, if f reverses the orientation of u. The contribution of x to the Z[π]-trace of f̃q
is ±ρ(α) in the entry corresponding to the basis element ũ. The fixed point index of x is
(−1)q if f preserves the orientation of u and is (−1)q+1 if f reverses the orientation of u.
(See [G2].) Thus when the trace over Z(R(φ)) is multiplied by (−1)q in Definition 1, the
coefficient of ρ(α) in the diagonal entry of ρ(Mq) corresponding to ũ becomes the fixed
point index of x. It is certainly possible that ρ(α) appears again in a different diagonal
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entry of Mq. This would represent a fixed point of f that was Nielsen equivalent to x,
and thus we would have an algebraic class appearing more than once in the unreduced
Reidemeister trace.

The independence of the Reidemeister trace from the various choices made (the choice
of simplicial structure, the choice of the transversal W , etc.) must be noted. We omit the
details here.

4. Properties of the Reidemeister trace. The Reidemeister trace R(f, f̃ ) is in-
dependent of the choice of the lift f̃ of f in the sense that the coefficient of ρ(α) in
R(f, f̃ ) equals the coefficient of ρ(γα) in R(f, γf̃ ). Similarly, the Reidemeister trace is a
homotopy invariant. Two homotopic maps have the same Reidemeister trace if the lifts
are chosen to be homotopic as well via a lift of the original homotopy. Specifically, given
the homotopy H from f to g, and given the chosen lift f̃ , we choose the lift of H to have
H̃0 = f̃ . Then we have just said that if g̃ = H̃1, the coefficient of ρ(α) is the same in the
two Reidemeister traces. If the lift g̃ is instead equal to γH̃1, then the coefficient of ρ(α)
in R(f, f̃ ) equals the coefficient of ρ(γα) in R(g, γH̃1 ).

The Reidemeister trace satisfies a commutativity property. Given two finite, con-
nected CW complexes, X and Y, and given maps f : X→Y and g : Y→X, we have
R(g ◦ f, g̃ ◦ f̃ ) = R(f ◦ g, f̃ ◦ g̃ ). This follows from the fact that g(Fix(f ◦g)) = Fix(g◦f)
and the fact that there is a corresponding bijection between the two sets of geometric
fixed point classes.

5. The calculation of the Nielsen number. Two challenges face those who want
to calculate the Nielsen number of a map by first finding the Reidemeister trace of the
map. First, some workable means of finding the algebraic trace must be determined. Then
the trace must be reduced so that each algebraic class appears at most once.

For X a non-simply connected, closed surface and for f a self-map on X, Fadell and
Husseini prove the following in [FHu2]. Let J(φ) be the Jacobian for φ using the Fox
calculus from [CF] and using the usual generators for π. Let 5(α) indicate the gradient
in the Fox calculus for a word α in the free group with the same generators as π. Fadell
and Husseini prove that

R(f, f̃ ) = ρ (1− trJ(φ) +A) ,

where A is the unique element of Z[π] that satisfies A(5R) = φ(5R)J(φ). An algorithm
for calculating A when X has negative Euler characteristic is developed in [DHT], where
methods for calculating A for other surfaces are also discussed.

Let X be a pushout space and let f be a pushout map. This means that there are
finite connected CW complexes A,X1, X2 so that A is a subcomplex of X1 and there are
cellular maps i1 : A ↪→ X1, i2 : A→X2 so that X := X1

⊔
i2
X2. There are also cellular

self-maps fA, f1, f2 on the obvious spaces so that f := f1
⊔
fA
f2. In this setting, Ferrario

develops in [F1] a formula for R(f, f̃ )in terms of the Reidemeister traces of fA, f1, and f2.
This is useful for quotient spaces, union of spaces, connected sums, and wedge products.

We turn next to the problem of reducing the Reidemeister trace. Distinguishing al-
gebraic classes is very difficult. It is related to the conjugacy problem in combinatorial
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group theory, and there is no method that is guaranteed provide an answer. We illustrate
this difficulty with a simple example from [DHT], and then we list some methods for
distinguishing classes that are often useful.

Example 1. Let X = T 2#T 2, the double torus or handcuff space, so that π1(X) =〈
a, b, c, d : aba−1b−1cdc−1d−1

〉
. Let n ≥ 2, with f : X→X chosen so that the homo-

morphism induced by f is φ : π1(X)→π1(X) given by φ(a) = c−n+1d−1, φ(b) = dcn,

φ(c) = a, and φ(d) = b. Using the method of Fadell and Husseini described above, we
find that the Reidemeister trace is R(f, f̃ ) = ρ(1) + ρ(bab−1a−1) for any n. But is this
reduced? To determine whether the Nielsen number of f is 1 or 2, we must determine
whether the group elements 1 and bab−1a−1 are in the same orbit of the Reidemeister
action (given by σ ·α = φ(σ)ασ−1). After [DHT] went to press, a solution to the problem
was provided by Kelly. Before discussing the solution, we consider various techniques.

We return to the general situation with X a finite CW complex, and we consider
techniques for distinguishing algebraic classes. Given α, β ∈ π with both ρ(α) and ρ(β)
appearing in R(f, f̃ ), we must determine whether ρ(α) = ρ(β). Note that we always have
ρ(α) = ρ(φ(α)), and thus ρ(α) = ρ(φn(α)) for all n ∈ N. Thus we can calculate the
images of α under iterates of φ to see whether any are equal to β.

If H is a normal subgroup of π for which φ(H) ⊆ H, we can consider the induced
action on π = π/H. See [McC]. If the images α and β in π are in distinct algebraic classes
of the induced action of π on itself, then we know that ρ(α) and ρ(β) are also distinct.
This is particularly useful when π is the abelianization of π. For any abelian fundamental
group, the set R(φ) corresponds to Coker(1 − φ). This process is refined and developed
for certain fundamental groups by Ferrario in [F2].

One method that can in some cases determine very quickly that two algebraic classes
ρ(α) and ρ(β) are equal is to use a computer algebra system such as Magma [BC] to
calculate, for a given α ∈ π considered as an element of the corresponding free group, the
word σ · α as σ ranges over all words of length at most n for some n ∈ N. The computer
can compare σ · α to β. See [Wa] for an algorithm that distinguishes classes for certain
maps on surfaces with boundary.

At times bounds on L(f) (which is the sum of the coefficients in the Reidemeister
trace) can help to distinguish algebraic classes. Jiang and Guo in [JG] prove that when f
is a self-homeomorphism on M a closed connected surface with the Euler characteristic
χ(M) less than zero, then

|L(f)− χ(M)| ≤ N(f)− χ(M).

If all coefficients in the unreduced sum R(f, f̃ ) are positive, then this inequality
provides bounds on the number of terms in R(f, f̃ ) that can be combined. This result
was used in Example 4 of [HK]. In [K], Kelly extends this inequality and others to certain
classes of self-maps f of compact, connected surfaces with boundary for which f is not
homotopic to a homeomorphism. In [J3] this is extended to all maps.

Finally we return to Example 1. We must determine whether the group elements 1
and bab−1a−1 are in the same orbit of the Reidemeister action. For this example, we
did not find quotient groups helpful. The computer algebra system Magma [BC] told us
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that 1 is not φ-conjugate to bab−1a−1 using a word of length 8 or less, but even if the
computer can be trusted to be correct, this does not help us. The answer, suggested by
Kelly, can be found by applying the following fact from [JG]. For X a compact surface
with χ(X) < 0, and for f a self-homeomorphism of X, let i(ρ(α)) be the fixed point index
of the algebraic class ρ(α). Then 2χ(X)− 1 ≤ i(ρ(α)) ≤ 1. Thus in this example we have
−5 ≤ i(ρ(α)) ≤ 1, so that [1] cannot equal [bab−1a−1]. So N(f) is 2. The techniques of
Ferrario in [F2] were also able to distinguish these two classes.

6. Other Reidemeister traces. We have omitted many theoretical results con-
cerning the Reidemeister trace and have emphasized those that at this time are directly
helpful for the calculation of the Nielsen number. Also, just as there are several types
of Nielsen fixed point theories, there are several corresponding Reidemeister traces. We
summarize the work done for the latter.

For relative Nielsen theory, defined by Schirmer [S] on a pair (X,A) where homotopies
are relative to A, the relative Reidemeister trace is developed by Norton-Odenthal and
Wong in [NW]. They include examples of calculations of the relative Nielsen number
using the relative Reidemeister trace, and they discuss a connection with the fixed point
theory of fiber preserving maps.

Local Nielsen theory, first developed in [FHu1], involves an open subset U ⊆ X and a
map f : U→X. A local Reidemeister trace is defined in [FHa] and further developments
appear in [Ha].

For one-parameter fixed point theory, where F : X × I→X and Fix(F ) = {(x, t) :
F (x, t) = x}, Geoghegan and Nicas have developed a Reidemeister trace that can detect
periodic orbits of flows. See [GN1] and [GN2] and also their paper that appears in this
volume.

A Reidemeister trace for equivariant Nielsen fixed point theory is being developed by
Wong [Wo]. In [J1], Jiang uses the mapping torus and the Reidemeister traces of iterates
of a map f to estimate the growth rate of the sequence of Nielsen numbers {N(fn)}.
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