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Abstract. We give an outline of the Nielsen coincidence theory emphasizing differences

between the oriented and non-oriented cases.

1. Introduction. The coincidence theory considers the following problem. Given a

pair of continuous maps between topological spaces f, g : M → N . Describe the coinci-

dence set C(f, g) = {x ∈ M ; fx = gx} of this pair. More precisely we are interested in

those properties of C(f, g) which do not change after homotopies of f and g.

This theory is a common generalization of two classical theories:

Fixed points (M = N and g = identity map). Then C(f, g) = Fix(f) = {x ∈ M ;

fx = x}) is fixed point set.

Roots (g constant gx ≡ y0 ∈ N). Then C(f, g) = f−1(y0).

We will give here the definition and some basic properties of the Nielsen coincidence

number N(f, g). It is a non-negative integer which is a homotopy invariant and a lower

bound of the cardinality of the coincidence set: N(f, g) ≤ #C(f, g). Our main idea is to

describe so called “defective classes” and exhibit them as the obstruction to generalizing

coincidence theorems to the non-orientable manifolds. This paper is not self-contained:

to make it short we often only sketch proofs omitting longer (usually technical) parts. For

details we send to the referenced papers. Our main idea is to inform briefly the reader

familiar with fixed point theory about generalizations of this theory to coincidences.

In sections 2, 3 we recall the definition of the Nielsen number in the oriented and

in the non-oriented case respectively. Then in section 4 we introduce defective classes.

In section 5 we consider the non-oriented manifolds but we make some assumptions on

one of the maps. This assumption allows us to extend the Lefschetz coincidence formula
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beyond the oriented case (section 6). In the last two sections we recall two effective

methods of computation of the Nielsen number: fibre maps and covering spaces. We

sketch fragments of these computations illustrating problems arising when we drop the

orientability assumption.

The first application of algebraic topology to coincidences was probably that by

Solomon Lefschetz in 1926 [L]. For a pair of maps f, g : M → N between oriented closed

manifolds of the same dimension he defined an integer number. This number, called the

Lefschetz number today, is denoted L(f, g) and satisfies

Theorem 1.1 (Lefschetz Coincidence Theorem). If f, g : M → N between oriented

manifolds of the same dimension and L(f, g) 6= 0 then any pair of maps f ′, g′ homotopic

to f, g has a coincidence point.

(Here the pairs are homotopic if f is homotopic to f ′ and g is homotopic to g′). Since

that time this theorem has been widely applied, mainly for fixed points (g = id). However

we would like to remind the reader that in the original form this theorem was formulated

for coincidences.

At the same time Jacob Nielsen introduced in [N1], [N2] a theory estimating the

number of fixed points. The main result of those papers may be formulated as follows.

For any self-map of a finite polyhedron f : M → M a non-negative integer N(f) is

defined (Nielsen number). This number satisfies three conditions:

• N(f) is a homotopy invariant,

• N(f) is a lower bound of the number of fixed points: N(f) ≤ #Fix(f),

• N(f) is computable in some situations.

Thus N(f) informs about the minimal number of fixed points in the homotopy class of

f . It is natural to ask about a similar lower bound of the number of coincidences of a

pair f, g : M → N .

2. Nielsen number in the oriented case. Such a generalization requires serious

restrictions on the spaces M and N . First we show how to define the Nielsen coincidence

number for pairs of maps f, g : M → N where M,N are closed oriented manifolds of the

same dimension. This was done by Helga Schirmer in her Ph.D. thesis in 1955 [Sch].

We start by defining the coincidence index. Let U ⊂ M be an open subset for which

U∩C(f, g) is compact. Consider a sequence of homomorphisms of homology groups (with

integer coefficients):

HnM → Hn(M,M − (U ∩ C(f, g)))
exc
= Hn(U,U − (U ∩C(f, g)))

(f,g)∗
−→

Hn(N ×N,N ×N − ∆N) → Z

where the first homomorphism is induced by the inclusion of pairs (M, ∅) ⊂ (M,M−(U ∩

C(f, g))), the second is the excision isomorphism, the third is induced by the map U ∋

x→ (fx, gx) ∈ N ×N and the last is the evaluation of the Thom class U ∈ Hn(N ×N)

corresponding to the given orientation of N . We define the coincidence index as the image

of the fundamental class zM ∈ Hn(M,Z) under this sequence of homomorphisms. We

write ind(f, g;U). Notice that ind(f, g;U) 6= 0 implies a coincidence point in U .



NIELSEN COINCIDENCE THEORY 191

This definition has the following geometric interpretation. We recall that if V is an

oriented closed n-manifold, zV ∈ Hn(V ) denotes its fundamental class and i : V → N×N

is a map transverse to the diagonal ∆N then the evaluation of the Thom class on the

homology class i∗(zV ) ∈ Hn(N×N) is the algebraic sum of intersection points of the map

i with ∆N . In the above sequence defining the coincidence index (for U = M) we obtain

the evaluation of the Thom class of N at (f, g)∗(zM ) where the map (f, g) : M → N ×N

is given by (f, g)(x) = (f(x), g(x)). Thus the coincidence index may be interpreted as the

algebraic number of intersections of the map (f, g) with the diagonal ∆N.

Now we define an equivalence relation on the coincidence set C(f, g) (Nielsen relation).

Two points x, y ∈ C(f, g) are equivalent if there exists a path ω joining them (i.e. ω(0) =

x, ω(1) = y) such that the paths fω and gω are fixed end point homotopic. This relation

divides the coincidence set into equivalence classes (Nielsen classes). It is easy to see that

each Nielsen class is a closed-open subset of C(f, g). In particular their number is finite

since C(f, g) is compact.

The Nielsen classes can be also interpreted as follows. Let us fix universal coverings

pM : M̃ → M and pN : Ñ → N . As in the case of fixed points one may check that a

subset A ⊂ C(f, g) is a Nielsen class if and only if there exist lifts f̃ , g̃ : M̃ → Ñ of f, g

respectively satisfying A = pM (C(f̃ , g̃).

For any closed-open subset A ⊂ C(f, g) we take an open set U satisfying U∩C(f, g) =

A and we define the index of this set as ind(f, g;U). We write ind(f, g;A) = ind(f, g;U).

It is easy to check that this definition does not depend on the choice of U . We call a

Nielsen class essential if its index is not zero and we define the Nielsen number N(f, g)

of the pair f, g as the number of essential classes. Clearly

N(f, g) ≤ #C(f, g).

On the other hand N(f, g) is a homotopy invariant:

Lemma 2.1. If f0, g0 and f1, g1 are homotopic pairs of maps between oriented closed

manifold then N(f0, g0) = N(f1, g1).

Sketch of proof. Let ft, gt be a required pair of homotopies. Let A0 be a Nielsen

class of f0, g0. For any t ∈ [0, 1] we define

At = {x ∈M ; there exists a path ω : I → M such that ω(0) ∈ A0, ω(1) = x and the

paths s→ fst(ω(s)) and s→ gst(ω(s)) are homotopic in N}. Notice that

• At is a Nielsen class of ft, gt or is empty.

• A =
⋃

t∈I At is a clopen subset of
⋃

t∈I C(ft, gt).

• For any t0 ∈ I there exist an open set U ⊂M and ǫ > 0 such that U∩C(tt, gt) = At

for any t ∈ (t0 − ǫ, t0 + ǫ).

Now we may apply the neighbourhood U in the sequence defining ind(ft, gt;At) and

we get that all these indices are equal for t ∈ (t0 − ǫ, t0 + ǫ). Thus the function

[0, 1] ∋ t→ ind(ft, gt;At) ∈ Z

is locally constant on [0,1] hence it is constant and ind(f0, g0;A0) = ind(f1, g1;A1).

Now we see that the correspondence A0 ↔ A1 defines a bijection between essential

Nielsen classes of pairs f0, g0 and f1, g1, which implies N(f0, g0) = N(f1, g1).
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The next question is whether the above Nielsen number is the best lower bound of

the number of coincidences in a homotopy class. H. Schirmer proved [Sch] the following

generalization of the Wecken theorem:

Theorem 2.2. Let M,N be closed oriented topological manifolds of dimension n ≥ 3.

Then for any pair of maps f, g : M → N there exists a pair f ′, g′ which has exactly N(f, g)

coincidence points.

In the proof given in [Sch] the maps f, g are replaced by a transverse pair and then

the Whitney trick is used to reduce the number of coincidence points to the minimal

one.

3. Nielsen number on non-oriented manifolds. Let us drop the orientability

assumption on M and N . Then the Nielsen relation divides C(f, g) into classes and it re-

mains to define essential classes. In section 5 we show that one may extend the coincidence

index to pairs f, g satisfying some additional conditions. However the following example

suggests that such an extension is not possible in general (without losing homotopy and

localization properties [Dl]).

Example 3.1. Consider the projective plane RP 2 = D2/ ∼ as the quotient space of

the 2-disk D2 = {z ∈ C; |z| = 1} where z ∼ z′ iff |z| = |z′| = 1 and z′ = −z. Define maps

f, g : RP 2 → RP 2 by f [z] = [0], g[z] = [z2]. Then C(f, g) = {[0]} and the restriction of

these maps to a neighbourhood of [0] has index ±2 (the sign depends on the chosen local

orientations). On the other hand the homotopy gt[z] = [tz2] contracts g to a constant

map. Thus f, g is homotopic to a coincidence free pair.

However there exists a coincidence semi-index which allows defining essential classes

in the non-oriented case. The definition of this semi-index, inspired by [Ji2], is given

in [DJ] and [Je4]. We will here sketch the construction of the semi-index for smooth

manifolds as in [DJ]. This construction can be reformulated for topological manifolds by

using microbundles instead of tangent bundles [Je4].

Consider a pair of maps f, g : M → N between closed smooth manifolds. This pair

will be called transverse if the maps f, g are smooth in a neighbourhood of C(f, g) and

the map M ∋ x→ (fx, gx) ∈ N ×N is transverse to the diagonal ∆N ⊂ N ×N [H]. One

may check that the pair f, g is transverse iff for any coincidence point x ∈ C(f, g) the

difference of the tangent maps Txf − Txg : TxM → TfxN is an epimorphism. By general

theorems any pair is homotopic to a transverse pair [H].

Let f, g : M → N be a transverse pair of maps between closed smooth n-manifolds.

Then any coincidence point is isolated in C(f, g). Let x0, x1 ∈ C(f, g) and let ω be a

path establishing the Nielsen relation between these points. Let α0 denote an orientation

of the vector space Tx0
M and let α1 be the orientation of Tx1

obtained under the shift of

α0 along ω. Let β0 denote the orientation of Tfx0
N obtained as the image of α0 by the

isomorphism Tfx0
−Tgx0

. Let β1 be the shift of β0 along fω (or equivalently gω). We will

say that ω establishes the R-relation between the points x0 and x1 if the image of α1 under

the isomorphism Tfx1
− Tgx1

is opposite to the orientation β1. We call two coincidence

points x, y (from the same Nielsen class) R-related if there exists a path establishing the
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R-relation between them. We will then write xRy. Notice that the R-relation is not an

equivalence relation. In fact the relation opposite to it is an equivalence relation.

Consider a subset A ⊂ C(f, g) of a transverse pair f, g. Let us present its elements as

A = {x1, y1, . . . , xk, yk; z1, . . . zs}

where xiRyi for i = 1, . . . , k but ziRzj for no i 6= j. The elements z1, . . . , zs are called

free in this presentation. One may check that the number of free elements is the same

for all presentations of A [DJ]. Now we may define the semi-index of A as the number of

free points: |ind|(f, g;A) = s.

Lemma 3.2. Let F,G : M×I → N be a pair of transverse homotopies and let Nielsen

classes A0, A1 of pairs f0, g0 and f1, f1 correspond to each other under this homotopy.

Then

|ind|(f0, g0;A0) = |ind|(f1, g1;A1).

Sketch of proof. By the transversality C(F,G) is a one-dimensional submanifold

in M × I.

�
�

�
�

M × 0

M × 1

It turns out that:

• If both ends of a component ω ⊂ C(f, g) are contained in M × 0 (or M × 1) then

these ends are R-related as coincidence points of f0, g0 (or f1, g1) (the R-relation is

determined by the path pω where p : M × I → M denotes the natural projection).

• If ω, ω′ ⊂ C(F,G) are components with ends ∂ω = {(x0, 0), (x1, 1)}, ∂ω′ =

{(y0, 0), (y1, 1)} then x0Ry0 implies x1Ry1 (if α establishes x0Ry0 then (pω)−1 ∗α∗

(pω′) establishes x1Ry1).

These two properties give rise to presentations of A0 and A1 with the same number of

fixed points.

Thus the essential classes of f0, g0 are in a bijection with the essential classes of f1, g1.

Corollary 3.3. Let F,G : M × I → N be a pair of transverse homotopies between

pairs f0, g0 and f1, g1. Then

N(f0, g0) = N(f1, g1).

This corollary allows us to extend the definition of the coincidence semi-index to

an arbitrary continuous pair f, g. Let A ⊂ C(f, g) be a Nielsen class. Let f ′, g′ be a
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transverse approximation of f, g and let A′ ⊂ C(f ′, g′) be the corresponding class. We

define

|ind|(f, g;A) = |ind|(f ′, g′;A′).

If f ′′, g′′ is another transverse approximation and A′′ is the corresponding Nielsen class

then there is a transverse homotopy from f ′, g′ to f ′′, g′′ sending A′ to A′′. By the

above corollary |ind|(f ′, g′;A′) = |ind|(f ′′, g′′;A′′) hence the extension of the definition

is correct.

If the manifolds M and N are oriented and the maps f, g are transverse then

ind(f, g;x) = ±1 at any coincidence point x. Moreover analysis of the R-relation shows

that for two points x0, x1 ∈ C(f, g) from the same Nielsen class, x0Rx1 iff ind(f, g;x0) =

−ind(f, g;x1). Thus we obtain

Corollary 3.4. In the oriented case the semi-index of any Nielsen class A equals

the absolute value of the coincidence index:

|ind|(f, g;A) = |ind(f, g;A)|.

Consider again the general (non-oriented) situation. We call a Nielsen class essential

if its semi-index is not zero and we define the Nielsen number N(f, g) of the pair f, g as

the number of essential classes. By the above corollary the definition is consistent with

the oriented case.

Theorem 3.5. Any pair of maps f, g : M → N between closed smooth manifolds has

at least N(f, g) coincidence points.

Proof. This is evident when the pair f, g is transverse. In the general case assume

that #C(f, g) = k < N(f, g). For any x ∈ C(f, g) we choose a contractible neighbourhood

Wx of fx = gx ∈ N . Then we take a neighbourhood Vx of x ∈M so small that f(clVx)∪

g(clVx) ⊂ Wx. Let ft, gt be a compact homotopy supported in
⋃

{Vx;x ∈ C(f, g)} from

f, g to a transverse pair. Since this homotopy may be arbitrarily small, we may assume

that ft(clVx) ∪ gt(clVx) ⊂ Wx hence C(f, g) ∩ Vx belongs to one Nielsen class. Now the

transverse pair f1, g1 contains at most k non-empty classes contradicting N(f1, g1) =

N(f, g) > k.

Remark 3.6. The coincidence semi-index does not have the additivity property: if

for example x, y are R-related then

|ind|(f, g : {x, y}) = 0 < 1 + 1 = |ind|(f, g : {x}) + |ind|(f, g : {y}).

One the other hand as in the oriented case the Nielsen number is the best lower bound

in dimensions greater than or equal to three.

Theorem 3.7. Let M,N be closed smooth manifolds of dimension n ≥ 3. Then for

any pair of maps f, g : M → N there exists a pair f ′, g′ which has exactly N(f, g)

coincidence points.

The proof follows that in the oriented case. We use a local version of the Whitney

lemma [DJ]. This theorem also holds for topological manifolds [Je4].
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4. Self-reducing coincidence points. Consider the following question. Can a co-

incidence point x reduce itself: xRx? This means the existence of a loop α based at x

such that fα ∼ gα and exactly one of the loops α or fα preserves orientation. Such an

x will be called a self-reducing coincidence point.

Example 4.1. Let f, g : M → Sn where M is a non-orientable n-manifold (n ≥ 2).

Let α be a loop reversing orientation of M and based at x0 ∈ C(f, g). Since Sn is

simply-connected, fα and gα are contractible, which gives x0Rx0.

Lemma 4.2. If a Nielsen class A contains a self-reducing point x0 then any two points

in A are R-related.

Proof. Let a path α establish x0Rx0 and let β establish the Nielsen relation between

x0 and another point x1 ∈ A. If β does not establish x0Rx1 then α ∗β does. Thus x0Rx1

for any x1 ∈ A. On the other hand if αi establishes x0Rxi (i = 1, 2) then α−1
1 ∗ α0 ∗ α2

establishes x1Rx2.

Thus if a Nielsen class A of a transverse pair f, g contains a self-reducing point then

|ind|(f, g;A) =

{

0 if #A is even,

1 if #A is odd.

The self-reducing property can also be expressed by the fundamental groups. We de-

note by π+
1 (M ;x0) the subgroup of elements preserving orientation and put C(f#, g#)x0

= {α ∈ π1(M ;x0); fα = gα)} (for x0 ∈ C(f, g)). Then it is easy to check that

x0Rx0 iff f−1
# (π+

1 (N ; fx0)) ∩ C(f#, g#)x0
6= C(f#, g#)x0

∩ π+
1 (M ;x0).

Definition 4.3. A Nielsen class A of a pair of continuous maps is called defective if

for some (hence any) point x0 ∈ A, x0Rx0.

One may check that defectiveness is a homotopy invariant property. Obviously in

the orientable case no Nielsen class is defective. In the next sections we will show that

defective classes make the non-oriented case essentially different from the oriented case.

5. Orientation true maps. Consider the sequence defining the coincidence index

(section 2). If M is non-orientable then Hn(M ;Z) = Z2 hence the homomorphism can

be non-zero only when we use Z2 coefficients. Then we obtain

Hn(M ;Z2) → Hn(M,M − (U ∩ C(f, g));Z2)
exc
= Hn(U,U − (U ∩ C(f, g));Z2)

(f,g)∗
−→

Hn(N ×N,N ×N − ∆N ;Z2) → Z2

where the last homomorphism is the evaluation of the Z2-Thom class U2 ∈ Hn(N ×

N ;Z2). The image of the unique non-zero element zM ∈ Hn(M ;Z2) (Thom class) is

called the index modulo 2. This index is defined for all manifolds and is a homotopy

invariant satisfying the additivity property. We will denote it by ind2(f, g;U). Now it is

easy to observe that if the maps f, g are transverse in U then

ind2(f, g;U) =

{

0 if #C(f, g) is even,

1 if #C(f, g) is odd.
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It is also easy to observe that in the oriented case the unique epimorphism Z → Z2

sends ind(f, g;U) to ind2(f, g;U). Unfortunately this index loses all “even” information

about C(f, g).

Example 5.1. Let p : S2n → RP 2n denote the natural covering map. Since S2n ⊂

R2n+1, we will denote its points by (z1, . . . , zn, t) ∈ Cn × R. Consider the pair p, p :

RP 2n → S2n. This pair has one non-empty Nielsen class. After a homotopy

S2n ∋ (z1, . . . , zn, t)
pt

→ [eπitz1, . . . , e
πitzn, t] ∈ RP 2n

the coincidence set is reduced to the two points (0, . . . , 0, 1), (0. . . . .0,−1) ∈ S2n and the

pair p, pt is transverse. Thus ind2(p, p) = 0. On the other hand one may check that the

above two coincidence points do not reduce, which implies that |ind|(p, p) = 2. (The last

may also be proved for n ≥ 2 as follows. Suppose that these two points are R-related.

Then N(f, g) = 0 and by the Wecken theorem (2n ≥ 3) there is a homotopy of the pair

p, p to a coincidence free pair. This homotopy lifts to a homotopy of id, id (of S2n) to a

coincidence free pair. But the last is impossible since L(id, id) = χ(S2n) = 2 6= 0.)

Nevertheless there exists an extension of the coincidence index beyond the non-

oriented case. This extension however requires some restrictions on the maps. We will

have to assume that one of the maps considered, say g, is orientation true, i.e. for any

loop α in M , α preserves orientation iff gα does. Notice that then no class of f, g (f

arbitrary) is defective. Notice that g is orientation true iff g∗(wi(N)) = w1(M) where w1

stands for the the first Stiefel-Whitney class. Consider the local system of abelian groups

ΓM on M : ΓM (x) = Hn(M,M − x;Z) and the action of π1M on ΓM (x) is given by

α ◦ θ =

{

θ if α preserves orientation,

−θ if α reverses orientation.

Then Hn(M ; ΓM ) = Z and we may fix a generator zM ∈ Hn(M ; ΓM ) (fundamental class).

We notice that if a map g : M → N is orientation true then g induces a homomorphism

g∗ : Hn(M ; ΓM ) → Hn(N : ΓN ) [Sp1].

For a pair f, g, with g orientation true, we consider the sequence of homomorphisms

Hn(M ; ΓM ) → Hn(M,M − (U ∩ C(f, g)); ΓM )
exc
= Hn(U,U − (U ∩ C(f, g)); ΓM )

(f,g)∗
−→ Hn(N ×N,N ×N − ∆N ;Z × ΓN ) → Z

and we define the coincidence index of the pair f, g as the image of the fundamental class

zM under the above sequence (the induced homomorphism (f, g)∗ is defined since g is

orientation true). In the oriented case the local systems are constant hence we obtain an

extension of the ordinary index from section 2. The analogy between these two indices

extends to the Lefschetz numbers and is described in the next section.

6. Lefschetz formula. The Lefschetz formula establishing equality between the in-

dex and an alternating sum of traces is the fundamental tool in effective computations in

Nielsen theory. We will formulate this formula for coincidences in the oriented case after

[V] and then we will generalize this formula to the pairs f, g where g is orientation true.

Suppose that f, g : M → N are maps between closed oriented n-manifolds. For any

k = 0, . . . , n we define a sequence of homomorphisms of (co-) homology groups with
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rational coefficients:

Hk(N ;Q)
f∗

−→ Hn(M ;Q)
DM−→ Hn−k(M ;Q)

g∗

−→ Hn−k(N ;Q)
D

−1

N−→ Hk(N ;Q)

where DM , DN denote Poincaré isomorphisms. Denote this composition by

θk = g∗D
−1
M f∗DN .

Let trθk denote the trace of the self-homomorphism θ of the finite dimensional Q-space

Hk(N ;Q). We define the Lefschetz number of the pair f, g as

L(f, g) =

n
∑

k=0

(−1)ktrθk.

Theorem 6.1 (Lefschetz coincidence formula). For any pair of maps between closed

oriented manifolds f, g : M → N ,

L(f, g) = ind(f, g).

In the non-oriented case the homomorphisms θk cannot be defined since there is

no Poincaré isomorphism Hk(M ;Q) = Hn−k(M ;Q) in general. Nevertheless there is a

natural isomorphism (Poincaré duality) [Sp2], [GJ]

DM : Hk(M ;Q) → Hn−k(M ; ΓM ⊗ Q).

Now we assume that g is orientation true and we may define a sequence of homomor-

phisms

Hk(N ;Q)
f∗

−→ Hn(M ;Q)
DM−→ Hn−k(M ; ΓM ⊗ Q)

g∗

−→ Hn−k(N ; ΓN ⊗ Q)
D

−1

N−→ Hk(N ;Q)

As in the oriented case we denote θk = g∗D
−1
M f∗DN and we define the Lefschetz

number L(f, g) =
∑n

k=0(−1)ktrθk.

Now section 6 from [V] can be reformulated [GJ] to give the proof of

Theorem 6.2 (Lefschetz coincidence formula in the non-oriented case). For any pair

of maps between closed manifolds f, g : M → N with g orientation true,

L(f, g) = ind(f, g).

7. Defective classes and obstruction theory. The problem “deform the pair f, g :

M → N to a coincidence free pair” is equivalent to “deform the map M ∋ x→ (fx, gx) ∈

N × N outside the diagonal ∆N ⊂ N × N”. To the last question one may apply the

obstruction theory. E. Fadell and S. Husseini presented such an approach for fixed points

(f = id) in [FH]. Then R. Dobreńko generalized it to coincidences in the oriented case [D].

The obstruction which he obtained can after some natural isomorphisms be interpreted

as the formal sum
∑

A

ind(f, g;A) ·A ∈ ⊕AZ

where the summation is over the set of Reidemeister classes of the pair f, g [D]. Recently

D. L. Gonçalves described this obstruction in the general case [G]. Here we present the

main points of this description since it also reflects the role of defective classes.
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The obstruction to deforming the above map (f, g) into N × N − ∆N yields an

obstruction o(f, g) ∈ Hn(M ;Z[π]) where Z[π] denotes the local system in which π1M

acts on π = π1N by the formula

α ◦ θ = sgn(g#(α)) · f#(α) · θ · g#(α)−1,

α ∈ π1M , θ ∈ π1N [FH], [D], [G]. Then

Hn(M ;Z[π]) ≈ ⊕Z⊕ Z2

where the components are indexed by Reidemeister classes: non-defective classes cor-

respond to Z-summands while defective classes correspond to Z2-summands. Moreover

under this isomorphism

o(f, g) =
∑

A

kA · A ∈ ⊕Z ⊕ Z2

where kA = ±|ind|(f, g : A). More exactly if M,N are orientable then there is a natural

isomorphism under which kA = ind(f, g;A) and we get the formula from [D]. Such a

formula also holds if we assume that one of the maps is orientation true. In the general

case however there is no natural isomorphism and the sign of kA depends on the choice

of the isomorphism Hn(M ;Z[π]) ≈ ⊕Z ⊕ Z2.

8. Fibre maps. Computations of the Nielsen fixed point number turned out to be

hard in general. In 1967 R. Brown considered a fibre map of a locally trivial fibre bundle

and asked about a relation among the Nielsen numbers of: the total map, its restriction

to the fibre and the map of base spaces (“product formula”) [B]. This problem was also

treated in numerous papers in the 70s and finally Chen Ye You found a necessary and

sufficient condition for this formula [Y]. This result gave later formulae for the Nielsen

number of self-maps of tori, nilmanifolds, certain solvmanifolds and some other K(π, 1)

spaces.

It turns out that the result of You can be modified to coincidences in the oriented

case [Je1] but its natural extension without the orientability assumption is not valid [Je2].

We will not formulate here the corresponding conditions but we will only discuss the so

called “index product formula” (8.1). This formula holds in the oriented case (we sketch

the proof) but it fails in non-oriented case (we give a counter-example). In fact it turns

out that this index product formula (and as a consequence the “product formula” for the

Nielsen numbers) holds if there is no defective class [Je2].

First a few words on the “Nielsen number product formula”. Let p : E → B, p′ :

E′ → B′ be fibre bundles whose base spaces and fibres are closed oriented manifolds of

respectively equal dimensions. Consider a pair of fibre maps, i.e. a commutative diagram

E
f,g
−→ E′

p ↓ p′ ↓

B
f̄ ,ḡ
−→ B′

Choose a coincidence point from each essential class of C(f̄ , ḡ):

xi ∈ Ai ⊂ C(f̄ , ḡ), i = 1, . . . , k = N(f̄ , ḡ).
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Then the “product formula” takes the form

N(f, g) = N(f1, g1) + . . .+N(fk, gk)

where fi, gi denote the restrictions of f, g to the fibres Ebi
→ E′

fbi
where Eb = p−1(b).

Now we prove the index product formula in the oriented case (Thm 5.5 in [Je1]).

Theorem 8.1. Consider the above diagram where all the spaces involved are closed

oriented manifolds of respectively the same dimensions. Let A ⊂ E be a Nielsen class of

f, g, let Ā ⊂ B be a Nielsen class containing pA and let b ∈ pĀ. Then

ind(f, g;A) = ind(f̄ , ḡ; Ā) · ind(fb, gb;A ∩Bb).

Sketch of proof. Since index is a homotopy invariant, we may assume that C(f, g)

is finite. By the Homotopy Covering Property we may assume that C(fb, gb) is finite for

any b ∈ C(f̄ , ḡ). Moreover by the local triviality we may assume that for any x ∈ C(f, g)

there exist euclidean neighbourhoods U, V, Ū , V̄ satisfying x ∈ U ⊂ E, fx = gx ∈

V ⊂ E′, Ū = pU ⊂ B, V̄ = pV ⊂ B′, U ≈ Ū × Rn, V ≈ V̄ × Rn and f(x) =

(f̄(x̄), φ(t)), g(x) = (ḡ(x̄), ψ(t))) where x = (x̄, t) ∈ Ū ×Rn ≈ U . Now

ind(f, g;x) = ind(f̄ , ḡ; x̄)ind(φ, ψ; t).

On the other hand we notice that N(fb, gb;Eb ∩A) are equal for all b lying in the same

Nielsen class of f̄ , ḡ. Now by additivity of the index

ind(f, g;A) =
∑

x∈A

ind(f, g;x) =
∑

x̄∈Ā

(

∑

x∈Ex̄∩A

ind(f, g;x)
)

=
∑

x̄∈Ā

(

∑

(x̄,t)∈Ex̄∩A

ind(f̄ , ḡ; x̄)
)

· ind(fx̄, gx̄; t)

=
(

∑

x̄∈Ā

ind(f̄ , ḡ; x̄)
)

·
(

∑

(x̄,t)∈Ex̄∩A

ind(fx̄, gx̄; t)
)

=
(

∑

x̄∈Ā

ind(f̄ , ḡ; x̄)
)

· ind(fb, gb;A ∩ Eb) = ind(f̄ , ḡ; Ā) · ind(fb, gb;A ∩ Eb)

for a fixed b ∈ Ā.

Notice that the above proof is not valid for the semi-index because then the additivity

property does not hold. The following example shows that this formula is not true in

general.

Example 8.2. Let M be a non-orientable two-dimensional connected 2-manifold. It

may be regarded as a CW-complex with a unique 2-cell. Let f ′ : M → S2 be a map

sending the 1-skeleton to a point y1 ∈ S2 and the interior of the 2-cell homeomorphically

onto S2 − y1. Let g′ : M → S2 denote the constant map with g′(M) = y0 6= y1. Then

the pair (f ′, g′) is transverse and C(f, g) consists of a single point x0. This point is self-

reducing hence it forms a defective class (compare Ex. 4.1). On the other hand consider

the maps f̄ , ḡ : S2 → S2 where f̄ = idS2 , ḡ(x, y, z) = (−x,−y, z). This pair is also

transverse and (f̄ , ḡ) = {(0, 0, 1), (0, 0,−1)} = {b0, b1} are two Nielsen equivalent points

which are not R-related (since S2 is orientable). Notice that |ind|(f ′, g′) = 1, N(f ′, g′) = 1
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and |ind|(f̄ , ḡ) = 2, N(f̄ , ḡ) = 1. Consider the diagram

S2 ×M
f,g
−→ S2 × S2

p1 ↓ ↓ p1

S2 f̄ ,ḡ
−→ S2

where f = f̄ × f ′, g = ḡ × g′ and p1 denotes the projection on the first factor. Then

C(f̄ × f ′, ḡ × g′) = {(b0, x0), (b1, x1)} and the two points are Nielsen equivalent. Each

of them is self-reducing (since so is x0 ∈ C(f ′, g′)) hence |ind|(f, g) = 0 6= 2 · 1 =

|ind|(f̄ , ḡ) · |ind|(f ′, g′)|.

It turns out that the defective classes are the unique obstruction: theorem (3.13) in

[Je2] states that if neither Ā nor any class in E ∩ A is defective then the analogous

semi-index product formula holds. This gives rise to a generalization of the “product

formula” to the non-oriented case [Je2;4.3].

9. Nielsen number and covering spaces. Another method of computing Nielsen

number is lifting the given maps to covering spaces and finding relations between their

Nielsen numbers. More precisely we consider a commutative diagram

M̃
f̃ ,g̃
−→ Ñ

p ↓ ↓ q

M
f,g
−→ N

where all the spaces involved are closed n-manifolds and p, q are regular coverings. A

relation between N(f, g) and the Nielsen numbers of lifts is described in [Je3] (Thm.

2.5). Here we will sketch a very special case of this theorem (Corollary (2.6) in [Je3]).

Theorem 9.1. If π1N = Z2, Ñ is the two-fold connected cover and no Nielsen class

of f, g is defective then

N(f, g) =

{

N(f̃ , g̃) if f# 6= g#,

N(f̃ , g̃) +N(f̃ , βg̃) if f# = g#,

where β is the involution of the two-fold cover Ñ .

Proof. We may assume that the pair f, g is transverse. Then any pair of lifts is also

transverse. Suppose that a path ω establishes the Nielsen relation between two coincidence

points x0, x1 ∈ C(f, g) and assume that p−1(x0)∩C(f̃ , g̃) = {x̃01, . . . , x̃0k} is not empty.

Let ω̄i be the lift of ω starting from x̃0i. Then p−1(x1) ∩ C(f̃ , g̃) = {ω̃1(1), . . . , ω̃k(1)}.

If moreover ω establishes the R-relation between x0 and x1 then ω̃i establishes the R-

relation between ω̃i(0) and ω̃i(1) (i = 1, . . . , k) (since p, q are local homeomorphisms).

This implies that if a Nielsen class A ⊂ C(f, g) is not essential then

|ind|(f̃ , g̃; (p−1A) ∩ C(f̃ , g̃)) = 0.

Now assume that A is essential. By the above we may assume that A = {x0, . . . , xl}

and no two points are R-related. Suppose that p−1(x0) ∩ C(f̃ , g̃) = {x̃01, . . . , x̃0k} is not

empty. As above we may denote p−1(xi)∩C(f̃ , g̃) = {x̃i1, . . . , x̃ik} and we notice that no

x̃is, x̃jt are R-related, since otherwise this would imply xiRxj (to get this contradiction



NIELSEN COINCIDENCE THEORY 201

for i = j we need the assumption that xi is not self-reducing). Thus for any essential

class A ⊂ C(f, g)

|ind|(f̃ , g̃; (p−1A) ∩ C(f̃ , g̃)) = 0 iff p−1A ∩C(f̄ , ḡ) = ∅.

On the other hand notice that π1Ñ = 0 hence C(f̃ , g̃) is one Nielsen class (possibly

empty), which implies that (p−1A)∩C(f̃ , g̃) = C(f̃ , g̃) or is empty. Combining the above

two results we get

N(f̃ , g̃) = 1 iff |ind|(f̃ , g̃) 6= 0 iff p(C(f̃ , g̃)) ⊂ C(f, g) is essential.

It remains to notice that:

• If f# 6= g# then there is only one Nielsen class C(f, g) = p(C(f̃ , g̃)).

• If f# = g# then there are two Nielsen classes A0 = p(C(f̃ , g̃)) , A1 = p(C(f̃ , βg̃)).

The above arguments are not valid for defective classes. However in some particular

cases the defective classes can be effectively detected by the use of the modulo 2 Lef-

schetz number. For example if C(f, g) is exactly one Nielsen class and is defective then

|ind|(f, g) = L2(f, g). This observation and Theorem 2.9 allow one to derive formulae for

the coincidence Nielsen number for maps into the real-projective spaces [Je3].
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