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Abstract. In this talk, we shall look at the application of Nielsen theory to certain ques-
tions concerning the “homotopy minimum” or “homotopy stability” of periodic orbits under
deformations of the dynamical system. These applications are mainly to the dynamics of surface
homeomorphisms, where the geometry and algebra involved are both accessible.

1. Introduction. Fixed point theory is a theory of mathematical equations. Many
equations can be written in the standard form x = f(x) for a suitable space X and a
map f : X → X. A solution to such an equation is called a fixed point of the map f .
The fixed point set of f is the set Fix f := {x ∈ X | x = f(x)}. We are concerned with
the existence, properties, computation, etc. of the fixed points. In topology, we are more
interested in the behavior of the fixed point set Fix f under deformations of the map f .
In other words, we study homotopy invariants relevant to the fixed point problem. A
problem challenging enough to attract the most attention is to find the minimal number
of fixed points for maps homotopic to a given map, i.e. to determine

MF [f ] := Min{# Fix g | g ' f : X → X}.
This is the main theme of the classical Nielsen fixed point theory.

In dynamics, the main concern is the behavior of the orbits of a map f , i.e. sets of the
form Of (x) := {fn(x) | 1 ≤ n < ∞}, among which the periodic ones play an important
role. So the study of the fixed points of the iterates of a map f (i.e. periodic points
or periodic orbits of f) is in order. Homotopy stability refers to dynamical behavior
that persists under deformation. For periodic orbits it means the presence of certain
types of such for all maps in a homotopy class. One can also ask whether there is a
map in the homotopy class that has only the forced complexity and no more, i.e. a
minimal representative with respect to the dynamical behavior in question. See [Bo1] for
an exposition.
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In this talk, we shall look at the application of Nielsen theory to certain questions
concerning the homotopy minimum of periodic orbits. These applications are mainly to
the dynamics of surface homeomorphisms, where the geometry and algebra involved are
both accessible.

The exposition is divided into four sections. To set the stage, Section 2 sketches the
Nielsen theory of periodic orbits, emphasizing the Lefschetz numbers and the Lefschetz
zeta function, rather than the Nielsen numbers. Section 3 deals with homeomorphisms of
compact surfaces and punctured surfaces. The asymptotic Nielsen number is identified
with the largest stretching factor in the Thurston canonical form. Minimal representatives
in isotopy classes are discussed. Section 4 is devoted to orientation preserving homeomor-
phisms of the plane, or more precisely, of the punctured disk. Here braids come into play.
After presenting the recipe for calculating the Lefschetz zeta function, the estimation of
asymptotic invariants is considered. The linking and braiding of periodic orbits will be
discussed in some detail. Section 5 focuses on the set of periods of a map. We shall
consider two aspects concerning this set, namely the degree of fixed point freedom and
the minimal set of periods.

2.Nielsen theory forperiodic orbits. The connection between Nielsen fixed point
theory and dynamics was first explored by Fuller in the pioneering work [Fu2]. We shall
describe the mapping torus approach of extending the classical Nielsen fixed point theory
to periodic orbits, as proposed in [J3]. See [Fr] and [GN] for other approaches.

We start with a review of the classical Lefschetz and Nielsen fixed point theorems and
then turn to iterates of maps. Instead of counting periodic points of f (i.e. fixed points of
fn), we count the periodic orbits of f and introduce the notion of periodic orbit classes.
This allows for a natural interpretation on the mapping torus Tf of f , and thus leads
to familiar algebraic machinery. Associated to matrix representations of the fundamental
group π1(Tf ), we introduce the notion of zeta functions of f . The zeta function is a formal
power series that encodes periodic orbit information of all periods. On the other hand it
is a rational function that is practically computable. The asymptotic growth rate of the
Nielsen numbers is a homotopy lower bound to the topological entropy (an important
measure of complexity in dynamics). Methods of its estimation are proposed.

2.1. The classical notions. Unless otherwise stated, we always assume that the space
X is a compact connected polyhedron.

A notion central to topological fixed point theory is the index of an isolated set of
fixed points. It generalizes the notion of multiplicity for solutions of polynomial equations.
See [B] or [D] for a modern treatment. The following Lefschetz Theorem is probably the
best known and most useful fixed point theorem.

Lefschetz-Hopf Theorem ([L], [H]). The algebraic sum L(f) of indices of all fixed
points of f is a homotopy invariant of f . It can be computed via homology

L(f) =
∑
q

(−1)qtrace(fq : Hq(X)→ Hq(X)).

Hence when L(f) 6= 0 every map homotopic to f must have a fixed point.
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The invariant L(f) is called the Lefschetz number of f . It is an algebraic count of
fixed points, not the number of geometrically distinct fixed points.

Example. For the torus T 2, the homology homomorphism f1 : H1(T 2) → H1(T 2)
is characterized by a 2 × 2 integral matrix A. Then L(f) = det(I − A), where I is the
identity matrix.

Another theory emerged from a beautiful result for the torus.

Nielsen-Brouwer Theorem ([N1], [Br]). In the homotopy class of a map f : T 2 →
T 2, the minimal number of fixed points is exactly |det(I −A)|.

Nielsen later developed his theory [N2] for homeomorphisms of oriented closed surfaces
of genus g > 1. The central notion is that of a fixed point class. A fixed point class of
f : X → X is the projection of the fixed point set of a lifting f̃ : X̃ → X̃ of f , where
X̃ is the universal covering of X. Alternatively, two fixed points are in the same class if
and only if they can be joined by a path which is homotopic (relative to end points) to
its own f -image. Each fixed point class F is an isolated subset of Fix f , hence its index
ind(F, f) ∈ Z is defined. A fixed point class is called essential if its index is non-zero. The
number of essential fixed point classes is called the Nielsen number N(f) of f . Nielsen’s
theory was generalized to compact connected polyhedra by Wecken [W].

Nielsen-Wecken Theorem ([N2], [W]). N(f) is a homotopy invariant of f . Every
map homotopic to f must have at least N(f) distinct fixed points. Hence N(f) ≤MF [f ].

This theorem shows N(f) is a lower bound of the geometric count of fixed points.
However, it does not provide an effective way to compute N(f). Thus the problem of
determining MF [f ] splits into two: the more algebraic one of computing N(f), and the
more geometric one of investigating the equality or difference between N(f) and MF [f ].
For modern treatments of Nielsen fixed point theory, see the books [B], [J1] and [K].

2.2. Periodic orbit class via the mapping torus. A fixed point x of fn will be called
an n-point of f , {x, f(x), . . . , fn−1(x)} an n-orbit of f . It is called a primary n-orbit if it
consists of n distinct points, i.e. if n is the least period of the periodic point x.

A fixed point class Fn of fn will be called an n-point class of f .
We shall look at periodic orbits of f on the mapping torus. The mapping torus Tf of

f : X → X is the space obtained from X ×R+ by identifying (x, s+ 1) with (f(x), s) for
all x ∈ X, s ∈ R+, where R+ stands for the real interval [0,∞). On Tf there is a natural
semi-flow (“sliding along the rays”)

ϕ : Tf × R+ → Tf , ϕt(x, s) = (x, s+ t) for all t ≥ 0,

which is known as the “suspension semi-flow” of the map f in dynamics. A point x ∈ X
and a positive number τ > 0 determine an orbit curve ϕ(x,τ) := {ϕt(x)}0≤t≤τ in Tf . We
may identify X with the cross-section X × 0 ⊂ Tf , then the map f : X → X is just the
return map of the semi-flow ϕ.

Notation. Let Γ be the fundamental group Γ := π1(Tf ) and let Γc denote the set of
conjugacy classes in Γ. We shall regard Γc as the set of free homotopy classes of closed
curves in Tf , so that it is independent of the base point of Tf . Let ZΓ be the integral
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group ring of Γ, and let ZΓc be the free abelian group with basis Γc. We use the bracket
notation α 7→ [α] for both projections Γ→Γc and ZΓ→ZΓc. The norm in ZΓc is defined
by ‖

∑
i ki[γi]‖ :=

∑
i |ki| ∈ Z when the [γi]’s in Γc are all different.

Observe that x ∈ Fix fn if and only if on the mapping torus Tf the time-n orbit curve
ϕ(x,n) is a closed curve. We define x, y ∈ Fix fn to be in the same n-orbit class if and
only if the closed curves ϕ(x,n) and ϕ(y,n) are freely homotopic in Tf . Fix fn splits into
a disjoint union of n-orbit classes. It turns out that each n-orbit class is an f -orbit of
n-point classes.

Let On be an n-orbit class. Since for all x ∈ On the closed curves ϕ(x,n) are freely
homotopic in Tf , they represent a well defined conjugacy class [ϕ(x,n)] in Γ. This conjugacy
class will be called the coordinate of On in Γ, written

cdΓ(On) = [ϕ(x,n)] ∈ Γc.

Suppose m is a proper factor of n and m < n. When the n-orbit class On contains an
m-orbit class Om then cdΓ(On) is the (n/m)-th power of cdΓ(Om) because, for x ∈ Om,
the closed curve ϕ(x,n) is the closed curve ϕ(x,m) traced n/m times. This motivates the
definition that the n-orbit class On is reducible to period m if cdΓ(On) has an (n/m)-th
root, and that On is irreducible if cdΓ(On) is primary in the sense that it has no nontrivial
root.

Every n-orbit class On is an isolated subset of Fix fn. Its index is ind(On, fn), the
index of On with respect to fn. An n-orbit class On is called essential if its index is
non-zero.

For each natural number n, the (generalized) Lefschetz number (with respect to Γ) is
defined as

LΓ(fn) :=
∑
On

ind(On, fn) · cdΓ(On) ∈ ZΓc,

the summation being over all n-orbit classes On of f .
The number of non-zero terms in LΓ(fn) will be denoted NΓ(fn), and called the

n-orbit Nielsen number of f . It is the number of essential n-orbit classes, a lower bound
for the number of n-orbits of f . The norm ‖LΓ(fn)‖ is the sum of absolute values of the
indices of all the (essential) n-orbit classes. It equals the sum of absolute values of the
indices of all the (essential) n-point classes, because any two n-point classes contained in
the same n-orbit class must have the same index. Hence ‖LΓ(fn)‖ ≥ N(fn) ≥ NΓ(fn).

Similarly define the irreducible Lefschetz number

LIΓ(fn) :=
∑

irreducible On

ind(On, fn) · cdΓ(On) ∈ ZΓc,

the summation being over all irreducible n-orbit classes On of f .
Let NIΓ(fn) be the number of non-zero terms in LIΓ(fn), called the irreducible n-

orbit Nielsen number of f . It is the number of irreducible essential n-orbit classes, a lower
bound for the number of primary n-orbits.

The basic invariance properties, such as the homotopy invariance and the commuta-
tivity property, are similar to that for fixed points (cf. [J1, §§I.4–5]). For example:
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Homotopy invariance. Suppose f ' f ′ : X → X via a homotopy {ft}0≤t≤1. The
homotopy gives rise to a homotopy equivalence Tf ' Tf ′ in a standard way. If we identify
Γ′ = π1(Tf ′) with Γ = π1(Tf ) via this homotopy equivalence, then LΓ′(f ′n) = LΓ(fn) for
all n, hence also NΓ′(f ′n) = NΓ(fn), LIΓ′(f ′n) = LIΓ(fn) and NIΓ′(f ′n) = NIΓ(fn).

Remark. When n = 1, LΓ(f) is, in spirit, the same as the classical invariant called
the Reidemeister trace ([R], [W]) and later called the generalized Lefschetz number by
some authors (e.g. [FH]). The difference is algebraic. We use ordinary conjugacy classes
in π1(Tf ) instead of the so called Reidemeister conjugacy classes in π1(X).

2.3. The trace formula and the Lefschetz zeta function. So far LΓ(fn) is defined as a
formal sum organizing the index and coordinate information of the periodic orbit classes.
Its importance lies in its computability.

Pick a base point v ∈ X and a path w from v to f(v). Let G := π1(X, v) and let
fG : G→ G be the composition

π1(X, v)
f∗→ π1

(
X, f(v)

) w∗→ π1(X, v).

Let p : X̃, ṽ → X, v be the universal covering. The deck transformation group is
identified with G. Let f̃ : X̃ → X̃ be the lift of f such that the reference path w lifts to a
path from ṽ to f̃(ṽ). Then for every g ∈ G we have f̃ ◦ g = fG(g)◦ f̃ (cf. [J1, pp. 24–25]).

Assume that X is a finite cell complex and f : X→X is a cellular map. Pick a cellular
decomposition {edj} of X, the base point v being a 0-cell. It lifts to a G-invariant cellular
structure on the universal covering X̃. Choose an arbitrary lift ẽdj for each edj . These lifts
constitute a free ZG-basis for the cellular chain complex of X̃. The lift f̃ of f is also a
cellular map. In every dimension d, the cellular chain map f̃ gives rise to a ZG-matrix
F̃d with respect to the above basis, i.e. F̃d = (aij) if f̃(ẽdi ) =

∑
i aij ẽ

d
j , aij ∈ ZG.

For the mapping torus, take the base point v of X as the base point of Tf (recall that
X is regarded as embedded in Tf ). Let Γ = π1(Tf , v). By the van Kampen Theorem, Γ
is obtained from G by adding a new generator z represented by the loop ϕ(v,1)w

−1, and
adding the relations z−1gz = fG(g) for all g ∈ G:

Γ = 〈G, z | gz = zfG(g) for all g ∈ G 〉.

Note that the homomorphism G→ Γ induced by the inclusion X ⊂ Tf is not necessarily
injective.

In this notation, we can adapt the Reidemeister trace formula ([R], [W]) to our map-
ping torus setting and get a simple formula.

Trace formula for Lefschetz numbers. For the Lefschetz numbers we have

LΓ(fn) =
∑
d

(−1)d[tr(zF̃d)n] ∈ ZΓc,

where zF̃d is regarded as a matrix in ZΓ.

Suppose a group representation ρ : Γ → GLl(R) is given, where R is a commutative
ring with unity. Then ρ extends to a ring representation ρ : ZΓ → Ml×l(R), where
Ml×l(R) is the algebra of l × l matrices in R.
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Define the ρ-twisted Lefschetz number

Lρ(fn) := tr (LΓ(fn))ρ =
∑
On

ind(On, fn) · tr (cdΓ(On))ρ ∈ R

for every natural number n, the summation being over all n-orbit classes On.
We now define the (ρ-twisted) Lefschetz zeta function of f to be the formal power

series
ζρ(f) := exp

∑
n

Lρ(fn)
tn

n
.

It has constant term 1, so it is in the multiplicative subgroup 1 + tR[[t]] of the formal
power series ring R[[t]].

Clearly ζρ(f) enjoys the same invariance properties as LΓ(fn). As to its computation,
we obtain from the trace formula the following

Determinant formula for the Lefschetz zeta function . ζρ(f) is a rational
function in R.

ζρ(f) =
∏
d

det
(
I − t(zF̃d)ρ

)(−1)d+1

∈ R(t),

where (zF̃d)ρ means the block matrix obtained from the matrix zF̃d by replacing each entry
(in ZΓ) with its ρ-image (an l × l matrix), and I stands for suitable identity matrices.

By the trace and determinant formulas and the homotopy invariance, we have the

Twisted version of the Lefschetz fixed point theorem. Let f : X → X be a
map and ρ : π1(Tf )→ GLl(R) be a representation. If f is homotopic to a fixed point free
map g, then Lρ(f) = 0. If f is homotopic to a periodic point free map g, then ζρ(f) = 1.

Example 1. When R = Z and ρ : Γ → GL1(Z) = Z is trivial (sending everything
to 1), then Lρ(f) ∈ Z is the ordinary Lefschetz number L(f), and ζρ(f) is the classical
Lefschetz zeta function ζ(f) := exp

∑
n L(fn)tn/n introduced by Weil.

Example 2. Suppose H is a commutative group and ρ : Γ→ H is a homomorphism.
Take R = ZH. Then ρ extends to ρ : ZΓ → GL1(ZH) = ZH. Then Lρ(fn) ∈ ZH and
ζρ(f) is a rational function in ZH.

In particular, we can take H = H1(Tf ) to be the abelianization of Γ, regarded as
a multiplicative group. It is the direct product of coker(f∗ : H1(X) → H1(X)) (also
regarded multiplicatively) with the infinite cyclic group generated by z. Let ρ : Γ → H

be the projection. Then Lρ(fn) ∈ ZH is the central invariant of homological Nielsen
theory, in which two n-orbits are regarded as equivalent if and only if they represent the
same homology class in Tf . The coordinate of such a homological n-orbit class lies in H.
Lρ(fn) ∈ ZH is the formal sum of such coordinates, with integer coefficients the indices
of the classes. ζρ(f) ∈ ZH(t) is the generating function of the sequence {Lρ(fn)}.

Remark. Our Lefschetz zeta function is essentially the same as the twisted Lefschetz
function of David Fried [Fr]. He first introduced it using f -invariant abelianizations of
π1(X), and showed that it is a certain Reidemeister torsion of the mapping torus Tf .
Then he adopted the Reidemeister torsion approach with respect to a flat vector bundle
(which is equivalent to a matrix representation of the fundamental group).
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2.4. Asymptotic invariants. The growth rate of a sequence {an} of complex numbers
is defined by

Growth
n→∞

an := max{1, lim sup
n→∞

|an|1/n}

which could be infinity. When Growth an > 1, we say that the sequence grows exponen-
tially.

We define the asymptotic Nielsen number of f to be the growth rate of the Nielsen
numbers

N∞(f) := Growth
n→∞

N(fn) = Growth
n→∞

NΓ(fn),

where the second equality is due to the obvious inequality NΓ(fn) ≤ N(fn) ≤ n ·NΓ(fn).
And we define the asymptotic irreducible Nielsen number of f to be the growth rate of
the irreducible Nielsen numbers

NI∞(f) := Growth
n→∞

NIΓ(fn).

We also define the asymptotic absolute Lefschetz numbers

L∞(f) := Growth
n→∞

‖LΓ(fn)‖ ,

LI∞(f) := Growth
n→∞

‖LIΓ(fn)‖ .

All these asymptotic numbers are finite and share the invariance properties of LΓ(fn).
The asymptotic invariants measure the growth of the number of periodic orbits. In

practice, the estimation of these growth rates is often easier than the estimation for a
specific period n.

A Method of Estimation. Suppose R = C and ρ : Γ → U(l) is a unitary repre-
sentation. Let r be the minimum modulus of the zeros and poles of the rational function
ζρ(f). Then

L∞(f) ≥ 1
r
.

The asymptotic Nielsen number provides a homotopy lower bound for the topological
entropy which measures the dynamical complexity of maps.

Entropy Theorem ([I]). Suppose X is a compact polyhedron and f : X → X is
a map. Then for any map g : X → X homotopic to f , the topological entropy h(g) ≥
logN∞(f).

3. Surface homeomorphisms. Thurston’s surface theory lies at the foundation of
the study of surface homeomorphisms. In §3.1 we discuss the asymptotic invariants for
self-homeomorphisms of aspherical surfaces.Results on minimal representatives in isotopy
classes are then given. §3.2 talks about the Nielsen theory for self-homeomorphisms of
punctured surfaces which is very useful in applications.

3.1. Compact aspherical surfaces. Let X be a compact connected aspherical surface
and let f : X → X be a homeomorphism. The main result of this section is easier when
X is the disc, the annulus, the Möbius strip, the torus or the Klein bottle. So we shall
assume χ(X) < 0.
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Thurston Theorem ([T], see also [FLP]). Every homeomorphism f : X → X is
isotopic to a homeomorphism ϕ such that either

(1) ϕ is a periodic map, i.e. ϕm = id for some m; or
(2) ϕ is a pseudo-Anosov map, i.e. there is a number λ > 1 and a pair of trans-

verse measured foliations (Fs, µs) and (Fu, µu) such that ϕ(Fs, µs) = (Fs, 1
λµ

s)
and ϕ(Fu, µu) = (Fu, λµu); or

(3) ϕ is a reducible map, i.e. there is a system of disjoint simple closed curves γ =
{ γ1, · · · , γk } in intX such that γ is invariant by ϕ (but the γi’s may be permuted)
and γ has a ϕ-invariant tubular neighborhood U such that each component of
X \ U has negative Euler characteristic and on each (not necessarily connected)
ϕ-component of X \ U , ϕ satisfies (1) or (2).

The ϕ above is called the Thurston canonical form of f . In (3) it can be chosen so
that some iterate ϕm is a generalized Dehn twist on each component of U . Such a ϕ, as
well as the ϕ in (1) or (2), is called standard in [JG, §3.1]. Its fixed point classes are well
understood. E.g. “almost every” essential fixed point class has index ±1, so that we have
the inequality

|L(f)− χ(M)| ≤ N(f)− χ(M).

Since iterates of standard maps are standard, we can also obtain information about the
periodic orbit classes. E.g. when n > −2χ(X), every essential irreducible n-point class
has index ±1, hence the equality

‖LIΓ(fn)‖ = n ·NIΓ(fn).

We have the following results.

Asymptotic invariants.

NI∞(f) = N∞(f) = LI∞(f) = L∞(f) = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the Thurston
canonical form of f (λ := 1 if there is no pseudo-Anosov piece).

For the question of isotopy minimum, by a careful construction we have

Minimum fixed points ([JG]). Every homeomorphism f : X → X of a closed
surface is isotopic to a homeomorphism ϕ : X → X which has the minimum number
of fixed points in the isotopy class. This number is N(f) if X is orientable and f is
orientation preserving. In the general case the minimum number is the relative Nielsen
number N(f ;X, ∂X) introduced by Schirmer [S].

Minimum periodic orbits, oriented case (cf. [Bo2]). Suppose X is orientable.
Every orientation preserving homeomorphism f : X → X is isotopic to a homeomorphism
ϕ : X → X which has, for every period n, the minimum number of primary n-orbits in
the isotopy class. This minimum number is NIΓ(fn) for every n.

For a general surface homeomorphism, we can prove a weaker result by combining the
techniques of [JG] and [Bo2].
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Minimum periodic orbits, general case. Suppose f : X → X is a surface home-
omorphism. Then

(1) f is isotopic to a homeomorphism ϕ : X → X which has the minimum number of
primary n-orbits in the isotopy class, for all n > −3χ(X).

(2) for any given period n, f is isotopic to a homeomorphism ϕn : X → X whose
number of primary n-orbits is the minimum in the isotopy class.

The minimum number referred to is NIΓ(fn) for all n.

The Thurston theory is very useful in applications because it is computable. Algo-
rithms for determining the Thurston canonical form of any given surface homeomorphism
have been developed. We don’t have time to describe them here. The interested reader is
referred to the original papers [BH1, BH2, BGN, FM, Lo].

Remark. When f : X → X is a homeomorphism of a surface X, the mapping torus
Tf is a 3-manifold. The following geometric notions were introduced in dynamics [AF].

Two primary n-orbits of f are strong Nielsen equivalent if and only if their time-n orbit
curves are freely isotopic (instead of homotopic) as closed curves in Tf . The equivalent
classes are called strong n-orbit classes.

An isotopy {ht} : f ' g : X → X between two homeomorphisms naturally induces a
homeomorphism H : Tf → Tg between the mapping tori. A strong n-orbit class A of f
corresponds to a strong n-orbit class B of g under {ht}, if the isotopy class of the former
orbit curves corresponds to that of the latter orbit curves under H. In terms of paths, this
means there is an isotopy {h′t} : f ' g : X → X (which is required to be a deformation
of the given isotopy {ht}), and a path c : I → X from a point a ∈ A to a point b ∈ B
such that, for all t ∈ I, c(t) is in a primary n-orbit of h′t. A strong n-orbit class of f is
unremovable if it corresponds to some strong n-orbit class under any isotopy of f .

These notions were intended as a refinement to the Nielsen theory of periodic orbits in
that isotopy is much stronger than homotopy for closed curves in 3-manifolds, hence an
orbit class splits into a disjoint union of strong orbit classes. But the minimality results
stated above indicate that an unremovable strong n-orbit class coincides with an essential
irreducible n-orbit class. Thus, as far as the isotopy minimality problem is concerned,
this refinement is not necessary.

3.2. Punctured surfaces. Let X be a connected compact surface and let P be a
nonempty finite set of points (punctures) in the interior of X. Assume that χ(X)−|P | < 0
where |P | denotes the cardinality of P . Let f : X,P → X,P be a homeomorphism. We
shall be concerned with periodic orbits of f in X \ P . We shall refer to the punctured
map f \ P : X \ P → X \ P .

Thurston’s theory works for punctured surfaces [FLP]. Although the space X \ P
is non-compact, Nielsen fixed point theory (which is for compact polyhedra) can be
adapted to work in this setting of punctured homeomorphisms. For details see [J3]. Thus
everything in §3.1 has a punctured version and the same statements hold.

As a sample, let MIn(f \ P ) be the minimum number of primary n-orbits of h \ P
for any homeomorphism h : X,P → X,P isotopic to f rel P , and define MI∞(f \ P ) to
be the growth rate Growthn→∞MIn(f \ P ). Then we have:



212 B. JIANG

Punctured asymptotic invariants.

MI∞(f \ P ) = N∞(f \ P ) = λ,

where λ is the largest stretching factor of the pseudo-Anosov pieces in the Thurston
canonical form of the punctured map f \ P (λ := 1 if there is no pseudo-Anosov piece).

Consequently, as in §2.4, N∞(f \ P ) can also be estimated if we are given a unitary
representation of Γ = π1(Tf\P ) = π1(Tf \ Tf |P ).

Entropy Theorem. For any homeomorphism f : X,P → X,P , we have

h(f) ≥ logN∞(f \ P ).

Equality holds when f \ P is in Thurston canonical form.

The theory above has many concrete applications in dynamics. See [HJ] and [J3] for
examples. The next section will discuss the punctured disk in more detail.

4. The punctured disk. As a model of the type of problems that can be tackled by
Nielsen theory, we focus on the study of orientation preserving self-homeomorphisms of
the 2-dimensional disk. Braid groups and their representations play a central role in the
calculation of the Nielsen theory invariants.

4.1. The setting. Let X be the disk D2. Let f : D2→D2 be an orientation preserving
homeomorphism and let P ⊂ intD2 be a set of r points with f(P ) = P . Let H = {ht}t∈I :
id ' f : D2 → D2 be an isotopy from the identity map to f .

The set S := {(ht(x), t) ∈ X × I | x ∈ P} is a geometric braid in D2 × I which
represents a braid σ in Artin’s r-string braid group Br (cf. [Bi, p. 6] or [M, Ch. 4]).

Since we shall allow isotopy rel P , without loss we may assume that f and H are the
identity on the boundary ∂D2. The isotopy H is not uniquely determined by the map
f , but up to an isotopy from the identity map to itself, thus the braid σ is determined
up to multiplication by “full twists”. Note that the center Z of Br is the infinite cyclic
subgroup generated by the “full twist” produced by the 2π-rotation of the plane (cf. [Bi,
p. 28]). So the braid σ is uniquely determined mod Z.

Let M be the punctured disk D2 \ P . Then f \ P is a homeomorphism M → M .
The automorphism fG : π1(M) → π1(M) can be computed in terms of the braid data
σ. Then representations of Γ = π1(Tf \ Tf |P ) can be found and Lefschetz zeta functions
computed, so that the estimation methods in §2.4 can be applied to obtain information
on periodic orbits of f \ P .

4.2. The algebraic recipe for computations. The fundamental group G = π1(M) is the
free group Fr of rank r, with standard generators {a1, · · · , ar}. Artin’s braid group Br has
standard generators {σ1, · · · , σr−1} and relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < r−1
and σiσj = σjσi if |i− j| > 1.

The braid σ ∈ Br determines the isotopy class of the map f by “sliding the plane
down the braid”, hence it determines the automorphism fσ : G→ G. The correspondence
from σ to fσ is actually a faithful representation of Br into the (right) automorphism
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group AutFr, given by (cf. [Bi, p. 25] or [M, p. 86])

σi :


ai 7→ aiai+1a

−1
i ,

ai+1 7→ ai,

aj 7→ aj if j 6= i, i+ 1.

The automorphism fσ : G→ G induced by f is determined by the images a′i := fσ(ai),
i = 1, · · · , r. The fundamental group Γ = π1(Tf |M ) has a presentation

Γ = 〈 a1, · · · , ar, z | aiz = za′i, i = 1, · · · , r 〉.

There is a natural abelian representation of Γ. The conjugacy classes of the generators
{ai} are represented by small circles around the punctures, hence permuted by the action
of the braids. So we can always define a homomorphism θ : Γ→ A, where A is the infinite
cyclic group A := 〈a〉, by sending all ai to the generator a and sending z to 1. The group
algebra ZA is the ring Z[a±1] of integral Laurent polynomials in the variable a. The
homomorphism θ : Γ→ A can be regarded as a representation θ : Γ→ GL(1,Z[a±1]).

Now M has the homotopy type of a bouquet X ′ of r circles corresponding to the
basis elements, and f has the homotopy type of a map f ′ : X ′ → X ′ which induces the
same homomorphism G→ G. By the homotopy type invariance of the invariants, we can
replace f with f ′ in computations.

As pointed out in [FH], in the trace formula the matrices of the lifted chain map f̃ ′

are

F̃0 = (1), F̃1 = D :=
(
∂a′i
∂aj

)
,

where D is the Jacobian matrix in Fox calculus (see [Bi, §3.1] or [M, Ch. 8] for an
introduction). Then, by the trace formula, in ZΓc we have

LΓ(f) = [z]−
r∑
i=1

[
z
∂a′i
∂ai

]
, LΓ(fn) = [zn]− [tr(zD)n] .

Under the representation θ : Γ→ A, we have

Lθ(f) = tr zθ − tr(zD)θ ∈ Z[a±1],

ζθ(f) =
det(I − t(zD)θ)

det(I − tzθ)
∈ Z[a±1](t).

Thus, the Fox Jacobian D of fσ is the key to the Lefschetz zeta function. The corre-
spondence from σ to (zD)θ is exactly the famous Burau representation of the braid group
into matrices in Z[a±1]: (cf. [Bi, p. 118] or [M, p. 193])

B : Br → GL(r,Z[a±1]), σi 7→


I

1− a a
1 0

I

 ← i-th row

which is reducible to the reduced Burau representation ([Bi, p. 121] or [M, p. 225])



214 B. JIANG

B′ : Br → GL(r − 1,Z[a±1]), σi 7→


I

1 0 0
a −a 1
0 0 1

I

 ← i-th row.

Hence from §2.3 we see

Lθ(fn) = 1− trB(σ)n = − trB′(σ)n ∈ Z[a±1],

ζθ(f) =
det(I − tB(σ))

1− t
= det(I − tB′(σ)) ∈ Z[a±1](t).

4.3. Exponential growth and topological entropy. By §2.4 we know the number of
periodic orbits grows exponentially and the topological entropy is positive if we have
N∞(f \ P ) > 1.

In §4.2, take a to be a complex number of modulus 1. We obtain a unitary representa-
tion ρ : Γ→ U(1). Now (zD)ρ is obtained from the matrix B(σ) in Z[a±1] by regarding it
as a function of the unimodular complex variable a. Then we have the twisted invariants

Lρ(fn) = − trB′(σ)n ∈ C, ζρ(f) = det(I − tB′(σ)) ∈ C(t).

Hence from the lower estimation of §2.4 we get

N∞(f \ P ) ≥ max
|a|=1
{spectral radius of B′(σ)}.

The case r = 3 attracts most attention. It can be shown [Ko1] that

N∞(f \ P ) = spectral redius of B′(σ)|a=−1.

In geometric terms, we have

Generic exponential growth for 3-braids (Cf. [Ma], [J2]). The number of
n-orbit classes of f \ P grows exponentially in n (i.e. N∞(f \ P ) > 1), with the only
exception when the 3-braid σ is conjugate in B3/Z to σm1 (m ∈ Z), (σ1σ2)±1 or σ1σ2σ1.

Here Z is the center of B3, the infinite cyclic group generated by the full twist
(σ1σ2)3 = (σ1σ2σ1)2. Note that the only exceptional 3-braids are the simplest ones that
would be called twists rather than braids in non-mathematical language. Thus the dy-
namical phenomenon “period three implies chaos” in dimension 1, although no longer
true in dimension 2, still persists in a subtle way.

As a concrete example, look at the 3-braid σ = σ1σ
−1
2 ∈ B3 discussed in [GST]. One

can calculate that

ζθ(f) = det(I − tB′(σ)) = 1− (1− a− a−1)t+ t2.

Take a = −1, then we get the zeta function ζρ(f) = 1 − 3t + t2 and its smallest root is
r = (3−

√
5)/2. Hence we get

MI∞(f \ P ) = N∞(f \ P ) = (3 +
√

5)/2, h(f) ≥ log((3 +
√

5)/2).

4.4. Linking of periodic orbits. Now consider the setting of §4.1 from a geometric
point of view. Under the isotopy H = {ht}t∈I : id ' f : D2 → D2, the punctures P
sweep out the geometric braid S := {(ht(x), t) ∈ D2 × I | x ∈ P} in the cylinder D2 × I
which represents the r-braid σ ∈ Br. Identify the top and bottom of the cylinder via the
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identity map of D2 to form the solid torus T = D2 × S1, and embed it in the Euclidean
space R3 in an unknotted way. (Note that such embeddings are not unique up to isotopy
but may differ by framing.) Then S becomes an oriented link P (the “closed braid” of
the braid σ) lying in T . Likewise, an n-point x of f gives rise to an oriented closed curve
Ox (primary if x is a primary n-point) wrapping n times around T . So we can study the
geometry of the link in T consisting of P and Ox. We shall say that Ox is linked to P if
Ox in T \ P is not homotopic to a closed curve in the boundary ∂T .

Remark. The isotopy H gives rise to a homeomorphism from the mapping torus Tf
to the solid torus T , which sends the link Tf |P ⊂ Tf to the link P ⊂ T and sends the
closed curve ϕ(x,n) to the closed curve Ox. So we may alternatively think in terms of the
mapping torus.

Of particular interest is the case when P is a single periodic orbit (r ≥ 2 and f acts
transitively on P ) and x is a fixed point (n = 1). Is there always a fixed point x whose
orbit Ox is linked to P? The answer is yes, as first shown in [Ko2]. The proof is actually
very simple. Collapsing ∂D2 to a point ∞ and blowing up the punctures P , we form a
sphere with r holes and extend f to g. Since g permutes the boundary curves of the holes,
the Lefschetz number of g is easily seen to be 2. From §3.1 we see N(g)≥L(g) = 2. Thus
g has at least one fixed point x that is in a different fixed point class than ∞. This x
must be a fixed point of f and has the required property.

We can also consider the linking number between Ox and P. In view of the fram-
ing problem mentioned above, strictly speaking this linking number is well defined only
mod nr.

The linking number is related to the Burau representation and the Lefschetz number
Lθ(fn) = − trB′(σ)n ∈ Z[a±1] discussed in §4.2. Reviewing all the relevant definitions,
we can see that a nonzero term ka` in Lθ(fn) guarantees the existence of an essential
n-orbit Ox whose linking number with P is exactly the exponent `. (And the coefficient
k is the total contribution from the indices of all such n-orbits.) This connection was first
noticed in [Ma].

Franks has posed the following question which is known as the linking number problem
(see [BF, p. 24]): Suppose P is a single periodic orbit of f . Does there exist a fixed point
of f about which the orbit P has nonzero linking number?

This problem fits into our setting above with r ≥ 2, n = 1 and f acts transitively on
P . If Lθ(f) = − trB′(σ) ∈ Z[a±1] has a term with nonzero exponent, then the answer to
Franks’ question is yes. In this way it is proved in [Gu] that there exists a periodic orbit
Q of f of period n < d r2e such that the linking number of P about Q is nonzero. So the
answer to the linking number problem is known to be yes for r ≤ 4. For larger r it is still
open.

4.5.Braiding of periodic orbits. We have seen that in our setting of §4.1, periodic orbits
appear as braids. Strictly speaking, the braid is determined only up to multiplication by
full twists and up to conjugacy in the appropriate braid group. The notion of braid type
is introduced to reflect this geometric indeterminacy. The set of all braid types will be
denoted by BT.
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By analogy with the Sharkovskĭı ordering in 1-dimensional dynamics, a partial order
was introduced into BT by Boyland [BF]. Let β, β′ be braid types. We say β forces β′,
write β < β′, if any orientation preserving homeomorphism of the disk that has a set of
periodic orbits representing β must have a set of periodic orbits representing β′. This is
clearly a partial order.

The algorithmic approach to surface homeomorphisms (mentioned in §3.1) is clearly
very useful in the study of braid types and the forcing order. We restrict ourselves to
comments from an algebraic point of view.

The abelianized Lefschetz zeta function is equivalent to the Alexander polynomial of
the link obtained by closing the braid, so it is too weak for determining the braid type.
The Lefschetz zeta function associated to a representation corresponds to the twisted
Alexander polynomial (see [Li, JW, Wd]) whose strength in knot theory is being un-
veiled (see [KL]). The Lefschetz numbers LΓ(fn) ∈ ZΓc, without the loss caused by
representations, should contain more information about the braid types, for which new
algebraic tools are needed.

5. The set of periods. Let f : X → X be a map. We denote by Per f the set
of periods of all primary periodic orbits of f . The topology of the space X and the
homological and homotopical properties of the map f will impose restrictions to the set
Per f .

There are many interesting questions about the set Per f .

5.1.Degree of fixed point freedom. Following Nielsen [N3], we define the degree of fixed
point freedom of a map f , denoted DF (f), to be the maximum integer m such that f ,
f2, . . . fm−1 are all fixed point free. In other words,

DF (f) := min Per f.

It is understood that DF (f) =∞ if Per f is empty, i.e. if f has no periodic orbits.
We then define the degree of freedom for homeomorphisms of a space X, denoted

DFH(X), to be the maximum of DF (f) for all self-homeomorphisms f : X → X:

DFH(X) = max{DF (f) | f a self-homeomorphism of X}.

When X is an orientable manifold, similarly define DFH+(X) and DFH−(X) to be
the maximum of DF (f) for all orientation preserving and orientation reversing self-
homeomorphisms f : X → X respectively.

Fuller, in [Fu1], proved the following result; see also [Ha] and [B, p. 45].

Fuller Theorem. Let f be a homeomorphism of a compact polyhedron X onto itself.
If the Euler characteristic χ(X) 6= 0, then f has a periodic point with period not greater
than the maximum of βodd :=

∑
k odd βk(X) and βeven :=

∑
k even βk(X), where βk(X)

denotes the k-th Betti number of X.
Hence, for compact connected manifolds,

DFH(X) =
{

max{βodd, βeven} if χ(X) 6= 0,
∞ if χ(X) = 0.
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For closed surfaces, there is an earlier result by Nielsen [N3] which was recently ex-
tended by Dicks-Llibre [DL] and Wang [Wa2]. We shall denote the orientable closed
surface of genus g by Fg, and denote the nonorientable closed surface of genus q by Nq.

Degree of Freedom, closed surfaces.

(1) DFH+(Fg) = 2g − 2 if g ≥ 2.

(2) DFH−(Fg) =
{

2g − 2 if g > 2,
4 if g = 2.

(3) DFH(Nq) =
{
q − 2 if q > 3,
2 if q = 3.

The closed surfaces left out are the simplest ones with χ ≥ 0 for which the answer is
well known.

Similar questions for surfaces with boundary are being studied. A new result of Moira
Chas [C] gives upper bounds that are independent of the number of boundary compo-
nents.

Degree of Freedom, bounded surfaces. Let Fg,b be the orientable surface of
genus g with b boundary components, g ≥ 2 and b > 0. Then

(1) DFH+(Fg,b) ≤ 4g + 2; equality holds when b ≥ 6g + 6.

(2) DFH−(Fg,b) ≤
{

4g − 4 if g is odd, equality holds when b ≥ 6g − 6;
4g + 4 if g is even, equality holds when b ≥ 6g + 10.

Note that the upper bounds given are exactly the maximum order of periodic maps
on the closed surfaces (cf. [Wa1]).

5.2. Minimal set of periods. Define the minimal set of periods in the homotopy class
of the map f : X → X by

MPer f :=
⋂
g'f

Per g.

The case of surface homeomorphisms is studied in [FL]. The complete answer has
been worked out for the 2-torus T 2 in [ABLSS], and for the 3-torus T 3 in [JL]. For higher
dimensional tori, we have the following general information.

Characterization of MPer f . Let f : T r → T r be a torus map. Then the following
three conditions are equivalent:

(1) m 6∈ MPer f ;
(2) NIΓ(fm) = 0;
(3) either N(fm) = 0 or N(fm) = N(fm/p) for some prime factor p of m.

The condition (2) was proved in [Y], the sharper condition (3) was given in [JL].

Trichotomy. Let f : T r → T r be a torus map. Then MPer f is in one of the
following three (mutually exclusive) types, where the letters E, F and G are chosen to
represent “empty”, “finite” and “generic” respectively:

(E) MPer f is empty if and only if det(I −A) = 0;
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(F) MPer f is nonempty but finite if and only if all the eigenvalues of A are either
zero or roots of unity;

(G) MPer f ⊂ TA is infinite and TA \MPer f is finite.

Here A is the matrix of the induced homology homomorphism f∗ : H1(T r)→ H1(T r),
and TA = {n ∈ N | det(I −An) 6= 0}.

Moreover, there are finite sets P (r), Q(r) of integers, depending only on the dimension
r, such that MPer f ⊂ P (r) in Type F and TA \MPer f ⊂ Q(r) in Type G.

The trichotomy was discussed in [ABLSS], the existence of uniform bounds P (r) and
Q(r) for each dimension r was shown in [JL].

One would like to see similar results for other spaces.
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