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1. Introduction. One approach to getting information about the dynamics of a
continuous mapping f :X → X is to describe a minimal dynamical representative φ for
the homotopy class to which f belongs. This representative should have two inherent
features. First, it should have the least amount of “dynamics” among all maps in the
homotopy class, and secondly, the dynamical information should be computable.

Neither of these conditions are absolutes. So in context one must decide as to what
“least dynamics” means and what type of information one would like to compute. For
example, asymptotic information such as the topological entropy of the map, or local
information such as the index of a fixed point. The book [KH] is a good reference for
dynamical terms and results mentioned in this paper. The book [Br] gives a thorough
treatment of the fixed point index and its relation to the topology of the space X.

Perhaps a good choice for the lest amount of dynamics is that φ have the least number
of periodic points possible for all periods. That is, the least number of fixed points among
all maps in the homotopy class, the least number of period two points, and so on. As
such a map may not exist, an alternative might be to relax the conditions imposed on
the map at the expense of uniqueness of representative and ease of computation.

A simple example that illustrates the idea of a minimal dynamical representative is
when X is (homeomorphic to) the unit sphere in 2-dimensional Euclidean space. Let R
denote the real line as the universal cover of X. Then the map φk: R → R defined by
φk(x) = kx projects to an expanding map on X which has the least dynamics among
maps of degree k. These minimal maps have the feature that any two fixed points have
the same index; −1 when k ≥ 2, +1 when k ≤ 0. More generally, linear maps defined
on the n-torus S1 × · · · × S1 act as minimal dynamical representatives. If all of the
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eigenvalues for the matrix associated to this map have modulus different from one, then
the fixed points are isolated and they all have the same index, I = ±1. In this setting
the number of fixed points of a map f is easily computed using the formula

NF (f) = |L(f)|,

where L(f) denotes the Lefschetz number of the mapping, and NF (f) the number of
fixed points of f . Generalizations of this idea can be found in the work of a number of
authors. See [M] for a survey of some of these results.

A more interesting and useful setting for the notion of a minimal representative occurs
in dimension two. When X is a compact surface, and h:X → X is a homeomorphism
there is a natural choice for a minimal dynamical representative as a result of the work
of Thurston [T], [CB]. Using an elaborate limiting construction he defined certain home-
omorphisms which are known by the name pseudo-Anosov. Although pseudo-Anosov
homeomorphisms were difficult to explicitly construct, a variety of their dynamical prop-
erties were established. See, for example, [FLP], [HP] or [Bo].

Among the numerous known results about pseudo-Anosov’s the following one serves
as motivation for the work of this paper. A consequence of the classical Euler–Poincaré
formula for singular foliations of surfaces (see [FLP; Exposé 5]) is that for each fixed
point x of of the pseudo-Anosov homeomorphism h,

2χ(X)− 1 ≤ index(x) ≤ 1 ,

where χ(X) denotes the Euler characteristic of X.
Now, not every surface homeomorphism is homotopic to a pseudo-Anosov. By using

Thurston’s classification theorem [T], Jiang and Guo [JG] define a class of representative
homeomorphisms that have the feature that any given surface homeomorphism is isotopic
to one of them. In addition, each member has exactly the number of fixed points predicted
by the Nielsen number, and the inequality stated above holds as well. See [Br] or [J] for
the definition and properties of the Nielsen number.

In [JG] the authors use the estimates on the indices of fixed points to establish the
inequality

|L(h)− χ(X)| ≤ N(h)− χ(X) ,

whereN(h) denotes the Nielsen number of h. The authors raise the question as to whether
or not this same inequality holds for all self-mappings of surfaces. For surfaces with non-
empty boundary, Wagner [W] gives evidence for an affirmative answer to this question
by showing that the inequality holds for a certain technical class of self-mappings.

When f :X → X is a continuous self-mapping of a compact surface which is not
homotopic to a homeomorphism there is no parallel notion to that of pseudo-Anosov. Nor
is it clear that there is a minimal representative which realizes the periodic point data for
all periods. Our approach in this paper is to consider two classes of maps that will play
the role of minimal representatives: fixed-point minimal maps and geometrically minimal
maps. The fixed-point minimal class is dynamically minimal in a very weak sense, while
the geometrically minimal maps are simple topologically but not based on any dynamical
information.
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The purpose of this paper is to generalize the inequalities stated above for homeomor-
phisms of surfaces to both of these classes of self-mappings of surfaces. These are stated
as Theorems 1.1–1.4 below. The definitions of fixed-point minimal and geometrically
minimal are postponed until the next section.

Let F be a compact connected surface with non-empty boundary. Its Euler charac-
teristic is denoted by χ(F ).

Theorem 1.1. If f : F → F is a geometrically minimal self-mapping, then for each
fixed point x of f ,

2χ(F )− 1 ≤ index(x) ≤ 1.

Theorem 1.2. If f : F → F is a fixed-point minimal self-mapping, then for each fixed
point x of f ,

2χ(F )− 1 ≤ index(x) ≤ 1.

The inequality of Jiang and Guo stated earlier can be viewed as the Lefschetz number
providing a lower bound for the Nielsen number of a surface homeomorphism. Since the
Nielsen number is a lower bound for the number of fixed points, a weaker form is that
the inequality gives a lower bound for the number of fixed points. For a self-mapping
f : F → F let NF (f) denote the cardinality of the set of fixed points of f . In [K3] this
weak version of the Jiang–Guo inequality is established. Namely,

Theorem 1.3. Let F be a surface with non-empty boundary. Then for any self-
mapping f : F → F ,

|L(f)− χ(F )| ≤ NF (f)− χ(F ).

Note that Theorem 1.3 is really a theorem about minimal maps. If the inequality
holds for minimal maps, then clearly it holds for all maps. In this paper we prove the
weaker analog for geometrically minimal maps.

Theorem 1.4. Let F be a surface with nonempty boundary and let f : F → F be a
geometrically minimal self-mapping. Then

|L(f)− χ(F )| ≤ NF (f)− χ(F ).

The proofs of Theorems 1.2 and 1.3 are quite technical and will appear in [K3]. In
Section 3 of this paper we give the proofs of the results for geometrically minimal maps.
These proofs are much simpler and turn out to contain the motivating ideas behind
the results for fixed-point minimal maps. In fact, the relationship between the class of
geometrically minimal maps and the class of fixed-point minimal maps has been studied
by the author. Some of this work appears in [K2]. The method of proof relies quite heavily
on the fact that the surface has non-empty boundary. The corresponding results for closed
surfaces is unknown at this time.

2. Minimal maps on surfaces. Let F be a compact connected surface with non-
empty boundary. It is well known that such surfaces have a handle decomposition with
no 2-handles. We view F as being equipped with a handle structure consisting of a single
disk D, the 0-handle, together with k 1-handles attached to D, where k = 1−χ(F ). Let
A denote the union of the 2k attaching arcs for the 1-handles.
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Definition. A map f :F → F is said to be geometrically minimal if there exists a
handle structure (as described above) such that each component of f−1(A) is either an
essential simple closed curve or a proper arc in F , and has minimal geometric intersec-
tion with A. Furthermore, we assume that no fixed points occur on A, and that each
component of F \ (f−1(A) ∪A) contains at most one fixed point.

Remarks. Here minimal intersection means up to isotopy, with boundary going to
boundary. Note that in the special case that F is a disk, A = ∅ and minimality just
means that f has one fixed point. Also, the last condition in the definition may appear
to be restrictive. It is not however, as the other conditions imply that each component
of F \ (f−1(A) ∪A) is a disk. As a result, a map defined on the frontier of a component
extends to the interior with at most one fixed point.

We state the following without proof. The result is not used in this paper.

Proposition 2.1. Each homotopy class of self-maps of F contains a geometrically
minimal map.

Definition. A map f :F → F is said to be fixed-point minimal if NF (f) is the
least number of fixed points possible among all maps homotopic to f . Equivalently, f is
fixed-point minimal when it has exactly MF [f ] fixed points.

Here are two examples related to the results in this paper. The first illustrates that
the lower bounds given in Theorems 1.1 and 1.2 are sharp. For self-mappings of surfaces
MF [f ] is generally not easy to compute. The paper [K1] was devoted to this computation
in the very special case of the pants surface. Example 2 gives a situation where Theorem
1.2 can be used to compute MF [f ].

Example 1. Let F be a surface with non-empty boundary. Let W denote a wedge
of n circles ω1, . . . , ωn embedded in F and based at a point p. We assume that n and
W are chosen so that the inclusion i : W → F is a homotopy equivalence. Define a
map f : W → W by ωi 7→ ωiωi for each i, and such that Fix(f) = p. Extend to a map
f : F →W . Define g : F → F by g(x) = i(f(x)). Clearly, p is the only fixed point of g so
g is fixed-point minimal. Since L(g) = 2χ(F )− 1, it follows that index(p) = 2χ(F )− 1.

Remark. The map can also be defined so that it is geometrically minimal as well. In
fact, after choosing a handle structure one can arrange that g−1(A) ∩A = ∅.

Example 2. Let F and W be as in Example 1. Let f : F → F be a map and express
the induced map on the fundamental group in the form ωi 7→ Wi where for each i, Wi

is a reduced word. Suppose that ωi does not appear in Wi, and let mi be the number of
appearences of ω−1

i in Wi. Then MF [f ] = L(f) = 1 +
∑
mi. The reason is simply that

f is homotopic to a map (with image in W ) having exactly 1 +
∑
mi fixed points, each

with index +1. Thus, any map with fewer fixed points would have one with index strictly
greater than one.

Let C be a component of F \ (f−1(A) ∪ A) and let ∂C denote its frontier. Let s(C)
denote the number of components of ∂C ∩ f−1(A), and let p(C) denote the number of
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points of A∩∂F in C. Set q(C) = s(C) + p(C)
2 . With this notation we have the following

combinatorial analog to the Euler–Poincaré formula.

Proposition 2.2.
∑

C (2− q(C)) = 2χ(F ).

Proof. Embed a graph G in the 0-handle D so that each component C contains
exactly one vertex, and two vertices are joined by an edge whenever the corresponding
components have frontier in common. Note that G, which is dual to the collection of
curves f−1(A) ∩D, is connected and acyclic. Let e be the number of edges of G. Then
there are e+ 1 vertices in G. By definition,

∑
C s(C) = 2e, where the sum is taken over

all regions in D. Since f is geometrically minimal,
∑

C p(C) is just the cardinality of
A ∩ ∂F , which is equal to 4k or 4(1− χ(F )). Thus, summing again in D,∑

X

(2− q(C)) = 2(e+ 1)−
(

2e+
1
2

(4(1− χ(F )))
)

= 2χ(F ).

Finally, for geometrically minimal maps, we have that q(C) = 2 for each C not
contained in D, which completes the proof.

3. Proofs of Theorems 1.1 and 1.4. As in Section 2, C will denote a component
of F \ (f−1(A)∪A). The index of C is the topological fixed point index of f on the open
disk C (see [Br] or [J]).

Proposition 3.1. Let C be a component of F \ (f−1(A) ∪ A) such that f(C) and C
are contained in the same handle. Then 1− s(C) ≤ index(C) ≤ 1.

Remark. The hypothesis that f(C) and C belong to the same handle is minor. If
not, then index(C) = 0. On the other hand, when C is an entire handle s(C) = 0 and
the left hand inequality fails.

Proof. Let E denote the handle containing C and let ζ be a subarc of E ∩ ∂F
that misses C. (If no such ζ exists, minimality implies that X = E and the result
follows.) Define a homeomorphism h : E → [0, 1]× [0, 1] such that h(ζ) = ({1} × [0, 1])∪
([0, 1]× {0, 1}). Fix an orientation on E, and give ∂C the induced orientation. The hom-
eomorphism h induces an orientation on [0, 1]× [0, 1] ⊂ R2 and hence, on the unit sphere
S1 in R2. Define the unit vector field φ : ∂C → S1 on ∂C by

φ(x) =
h(x)− h(f(x))
|h(x)− h(f(x))|

.

Since ∂C is a simple closed curve the degree of φ is well defined and is equal to index(C).
The regular value (0, 1)∈S1 will be used to compute the degree of φ. This is computed

by considering the action of φ on a neighborhood of each point in φ−1((0, 1)). First observe
that φ−1((0,±1)) consists of all of the endpoints of the components of ∂C ∩ f−1(A). Let
θ denote the unique component that separates ζ from C in E. For a component β other
than θ, φ−1((0, 1)) contains either none, one or both of its endpoints. If both occur, then
locally φ reverses orientation at one and preserves orientation at the other. Thus, there
is no contribution to the degree. The feature of geometrically minimal used here is that
if exactly one endpoint belongs to φ−1((0, 1)), then β separates C from f(β) in E and
thus, φ is locally orientation reversing at this point. This contributes −1 to the degree.
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For the component θ the local action of φ is the opposite, resulting in a contribution of
either 0 or 1 to the degree. The result now follows.

Proof of Theorem 1.1. Choose a handle structure that satisfies the definition of geomet-
rically minimal. Let x be a fixed point of f and let C be the component of F \(f−1(A)∪A)
that contains x. From the definition, index(x) = index(C). The result now follows from
Proposition 3.1 as s(C) ≤ 2χ(F ) always.

Proof of Theorem 1.4. Proving the inequality in Theorem 1.4 is equivalent to showing
that L(f) ≤ NF (f) and L(f) +NF (f) ≥ 2χ(F ).

Let C denote the set consisting of those components of F \ (f−1(A) ∪A) which have
a non-zero index. By Proposition 3.1, for each C ∈ C, index(C) ≤ 1. Sum over C to get∑

C
index(C) ≤

∑
C

1.

The left hand side of this inequality contains all of the fixed point index for f while the
right hand side counts the number of fixed points. Thus,

L(f) ≤ NF (f).

For each C ∈ C, Proposition 3.1 also implies that

index(C) + 1 ≥ 2− q(C).

Sum over C to get
L(f) +NF (f) ≥

∑
(2− q(C)) .

Now, for each region not in C it follows that 0 ≥ (2− q(C)). Sum over all these regions
and combine with the inequality above to get the same inequality, but now the right hand
sum is over all components of F \ (f−1(A) ∪ A). By Proposition 2.2, this is just 2χ(F )
and so we have established

L(f) +NF (f) ≥ 2χ(F ).
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