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Abstract. Nielsen theory, originally developed as a homotopy-theoretic approach to fixed

point theory, has been translated and extended to various other problems, such as the study

of periodic points, coincidence points and roots. Recently, the techniques of Nielsen theory

have been applied to the study of intersections of maps. A Nielsen-type number, the Nielsen

intersection number NI(f, g), was introduced, and shown to have many of the properties anal-
ogous to those of the Nielsen fixed point number. In particular, it is a homotopy-invariant

lower bound for the number of intersections of a pair of maps. The question of whether or not

this lower bound is sharp can be thought of as the Wecken problem for intersection theory. In

this paper, the Wecken problem for intersections is considered, and some Wecken theorems are

proved.

1. Introduction. Nielsen fixed point theory, a homotopy-theoretic approach to fixed-

point theory, grew out of Nielsen’s work in the 1920’s on surface homeomorphisms. From

those origins, Nielsen fixed point theory has grown into a richly developed theory. More-

over, the methods of Nielsen theory have been translated from fixed point problems

into other domains, such as the study of periodic points, coincidence points, roots, &c.

That is, there are Nielsen coincidence numbers, Nielsen root numbers, &c., defined in

the similar fashion, and with similar properties, as the original Nielsen fixed point num-

ber. In [10], the Nielsen machinery was adapted into another new setting: intersections

of maps. In that paper, a wide variety of results for Nielsen intersection numbers were

presented. In this paper, we restrict ourselves to examining the definition of the Nielsen

intersection number and the Wecken property for intersection numbers. We will see that,

even in these basic issues, there are some interesting subtleties and unresolved ques-

tions.
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The data for the intersection problem consists of a triple of spaces X, Y, Z, and a pair

of maps f : X → Z and g : Y → Z. Given this data, the intersection set of f and g is

Int(f, g) = {(x, y) ∈ X × Y |f(x) = g(y)} .

In general, the intersection set can be quite complicated, and the problem of “describing

Int(f, g)” correspondingly intractible. In settings such as algebraic geometry, there are

highly developed theories which are tailored to that setting. For a Nielsen theory (i.e.

an algebraic-topological theory), two categories are appropriate: a topological category,

in which all of the spaces involved are compact, Hausdorff, path-connected and admit

universal covering spaces; and the subcategory of smooth manifolds. In either setting, the

intersection set is clearly compact.

Actually, it is not exactly “describing I(f, g)” for a single pair of maps f and g that

we are interested in. If either f or g is deformed by a homotopy, the intersection set will

change. In particular, we can create arbitrarily large intersection sets via homotopies of f

and g. To discount the contribution of such spurious intersection points, we will instead

describe the minimal intersection set. There are two alternatives to consider here: counting

points in the intersection set; or counting path components in the intersection set. That

is, we can define

MIp(f, g) = min {|I(f ′, g′)| |f ′ ≃ f, g′ ≃ g}

and

MIc(f, g) = min {|π0 (I(f ′, g′))| |f ′ ≃ f, g′ ≃ g} .

Deferring to §4 the discussion of the relative merits of the two definitions, we content

ourselves for now with the trivial observation that MIc(f, g) ≤MIp(f, g).

Our goal is to develop a Nielsen intersection number NI(f, g) that will provide a

lower bound for MIc(f, g). We briefly sketch the definition of NI(f, g) here, and give

a more complete presentation in §3. As with any “Nielsen-type number,” the first step

is to partition the intersection set Int(f, g) into equivalence classes. The equivalence

relation is chosen to make precise the intuitive idea that two intersection points should

be equivalent if one can be continuously deformed into the other. In particular, every

equivalence class is a union of path components, and hence isolated. Once the intersection

set has been partitioned, we need a criterion to decide which intersection classes are

essential, and which are inessential. Here again, two alternatives present themselves.

When an intersection index can be defined, we can declare an intersection class to be

algebraically essential if it has non-zero index, and define the algebraic Nielsen number

NIa(f, g) to be the number of algebraically essential intersection classes. But this is one

of the crucial differences between the fixed point problem on the one hand, and the

coincidence, root and intersection problems on the other. A fixed point index can be

defined in great generality; while the other problems only admit useful algebraic indices

in special circumstances. Roughly speaking, in all three problems, all of the spaces must

be compact orientable manifolds with restrictions on the dimensions 1. The definition of

1Dobreńko and Jezierski have developed a semi-index which can be applied to the coincidence

problem on non-orientable manifolds [5]; and Kucharski and  Lȩcki are extending this to the

(generalized) root problem on non-orientable manifolds.
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the intersection index for compact orientable manifolds with dim(X)+dim(Y ) = dim(Z)

is briefly reviewed in §2.

Since the intersection index is only defined in a limited, albeit important, setting,

we need a more general concept of an essential intersection class. The same difficulty is

encountered in the coincidence and root problems, and we use the techniques employed

by Brooks [1, 2] and Dobreńko and Kucharski [4] in those problems. That is, we declare

a class to be topologically inessential if some homotopy of f and g can remove the class,

and topologically essential otherwise. The number of topologically essential intersection

classes gives us the Nielsen intersection number NI(f, g). Now, the whole point of intro-

ducing the intersection index is that a class with non-zero index cannot be removed by

homotopy. That is, when the index is defined, algebraically essential classes are topolog-

cially essential, and NIa(f, g) ≤ NI(f, g). It is also clear that NI(f, g) ≤ MIc(f, g).

Thus we have four quantities of interest, related by the inequalities

NIa(f, g) ≤ NI(f, g) ≤MIc(f, g) ≤MIp(f, g).

It is natural to ask if these inequalities are ever equalities. Questions of this type can

be thought of as the Wecken problem for intersection theory. I tentatively suggest the

following terminology: maps f and g satisfy the weak Wecken property if the equality

NI(f, g) = MIc(f, g) holds; and the strong Wecken property if the equalities

NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g)

hold. Similarly, the triple of spaces X, Y, Z satisfy the strong or weak Wecken property

if the appropriate equalities hold for all f : X → Z ← Y : g.

The core of this paper, §§4 and 5, is devoted to the Wecken problem for intersection

numbers. The main result, analogous to [3, Theorem 2] for coincidences and [4, Theorem

3.4] for roots, is that the strong Wecken property holds for manifolds, with a few low

dimensional exceptions. Namely,

Theorem 1.1 ([10, Theorem 4.4]). If X, Y and Z are compact orientable manifolds

such that dim(Z) ≥ dim(X) + dim(Y ) and max{dim(X), dim(Y )} > 2, then the triple

(X, Y, Z) satisfies the strong Wecken property: for every f : X → Z and g : Y → Z,

NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g).

In particular, there exists f ′ ≃ f and g′ ≃ g such that f ′ and g′ have exactly NI(f, g)

points of intersection, each of which is algebraically essential.

We will also see in §5 that the strong Wecken property also holds in some low dimen-

sional situations.

To the reader familiar with [3, 4], the author’s intellectual debt to Brooks and Do-

breńko and Kucharski is clear. Much of this work is simply an application of their meth-

ods in a new setting. Beyond the obvious stylistic similarities, the three problems—the

coincidence problem considered by Brooks, the “generalized” problem or root problem

considered by Dobreńko and Kucharski and the intersection problem considered by the

author—exhibit a deeper structural relation. While formally distinct, any of the three

problems can in a precise and formal fashion be transformed into either of the other
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problems. This suggests that the three Nielsen theories should be closely related. In a

separate work [11], the author will explore these relationships.

2. The intersection index. Suppose that X , Y and Z are compact, orientable

manifolds of dimensions p, q and n = p+ q respectively. Fix orientations for X , Y and Z.

A set J ⊂ Int(f, g) is isolated set of intersections if there exists a neighborhood U ⊂ X×Y

of J such that Int(f, g) ∩ U = J . In this setting, there are two equivalent ways to define

the intersection index (cf. [7]).

On the one hand, we can, by an arbitrarily small perturbation of f and g, assume that

the maps are smooth and transverse at every point of intersection. For every (x, y) ∈ J ,

take a basis {v1, . . . , vp} for TxX and a basis {w1, . . . , wq} for TyY . Then

{Dfx(v1), . . . , Dfx(vp), Dgy(w1), . . . , Dgy(wq)}

forms a basis for Tf(x)Z. If this basis has the same orientation as that fixed for Z, we define

Ind(f, g; (x, y)) = 1; if it has the opposite orientation, we define Ind(f, g; (x, y)) = −1.

We then define

Ind(f, g; J) =
∑

(x,y)∈J

Ind(f, g; (x, y)).

Clearly, Ind(f, g; J) = (−1)pqInd(g, f ; J).Of course, to show that this is well defined, it

must be shown that the quantity Ind(f, g; J) is independent of the transverse approxi-

mations of f and g chosen.

On the other hand, Ind(f, g; J) can be defined homologically. To do so, choose neigh-

borhoods J ⊂ U ⊂ V in X × Y such that Ū ⊂ V ◦ and V ∩ Int(f, g) = J . Then consider

the composition

Hn(X × Y )→ Hn(X × Y, X × Y \ U)
∼=
← Hn(V, V \ U)

(f×g)∗
−→ Hn(Z × Z, Z × Z \∆(Z)).

Since X × Y and Z are compact orientable n-manifolds,

Hn(X × Y ) ∼= Hn(Z × Z, Z × Z \∆(Z)) ∼= Z,

so the image of the generator of Hn(X × Y ) under this composition gives an integer

quantity Ind(f, g; J). Of course, here the index must be shown to be independent of the

neighborhoods U and V chosen.

Omitting a number of proofs (including the proof that the two definitions coincide),

we have an integer index with the following properties:

1. Given F : X × [0, 1] → Z and G : Y → Z, consider the “fat homotopies” F :

X× [0, 1]→ Z× [0, 1] and G : Y × [0, 1]→ Z× [0, 1], defined by F(x, t) = (F (x, t), t),

G(y, t) = (G(y, t), t). If J ⊂ Int(F, G) is an isolated set of intersections, then so is

every Jt0 = J ∩ {t = t0}, and Ind(Ft, Gt; Jt) is independent of t.

2. If J = ∅, then Ind(f, g; J) = 0.

3. If J1, . . . , Jn are disjoint isolated intersection sets, then

Ind(f, g;

n
⋃

k=1

Jk) =

n
∑

k=1

Ind(f, g; Jk).
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4. Suppose X = X1 ×X2, Y = Y1 × Y2, and Z = Z1 × Z2, with dim(Xi) + dim(Yi) =

dim(Zi). Given fi : Xi → Zi and gi : Yi → Zi and isolated isolated intersection sets

Ji ⊂ Int(fi, gi), define f = f1 × f2, g = g1 × g2 and J = J1 × J2. Then

Ind(f, g; J) = Ind(f1, g1; J1)Ind(f2, g2; J2).

5. If (x, y) is an isolated intersection of f and g with Ind(f, g; (x, y)) = 0 and U ×V is

a neighborhood of (x, y) in X × Y , then there are homotopies F and G such that

F0 = f , and G0 = g; Int(F1, G1) = ∅; and Ft = F0 and Gt = G0 on X \ U and

Y \V respectively. Moreover, these homotopies can be chosen arbitrarily close to f

and g.

The index of the total intersection set LI(f, g) = Ind(f, g; Int(f, g)) (#(f, g) in [7]) is

the (Lefschetz) intersection number of f and g. It should be thought of as an analogue

to the Lefschetz number for fixed points or coincidences. From the properties above, it is

clear that

Theorem 2.1. LI(f, g) is a homotopy invariant, and if LI(f, g) 6= 0, then for every

f ′ ≃ f , g′ ≃ g, Int(f ′, g′) is non-empty.

However, LI(f, g) also suffers from the same limitations as the Lefschetz number:

when non-zero, it does not estimate the number of intersections; and when zero, it does

not guarantee that f and g are intersection-free.

Example 2.2. Consider the example from [7, Figure 5-3] shown in Figure 1. Let

X = Y = S1, Z = T 2#T 2, and consider the submanifolds M and N to be the images of

embeddings f, g : S1 → T 2#T 2. There are two intersections of opposite orientation, so

LI(f, g) = 0. That is, LI(f, g) = 0 does not imply that f and g are intersection-free. More-

over, it appears that no deformation of f or g will remove the intersections, so LI(f, g) = 0

does not even imply that f and g can be deformed to be intersection-free. This picture is,

in some sense, a motivating example: neither intersection point can be removed individ-

ually by a deformation of f or g; and the two intersection points cannot be “cancelled”

because we cannot deform the image of f into the image of g. The essense of the definition

of the Nielsen intersection number lies in making these ideas precise and general.

Fig. 1. Essential intersections in the double torus

If the manifolds are not all orientable, we can define a mod 2 index. That is, if we

perturb f and g to be transverse, we count mod 2 the number of intersections. If we
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consider the homological approach, we use Z2 coefficients. In either case, we obtain a

Z2-valued index which satisfies the same set of properties.

In fact, it is worth noting that we can, in principle, employ the homological definition

of the intersection index in complete generality. The composition

Hn(X × Y )→ Hn(X × Y, X × Y \ U)
∼=
← Hn(V, V \ U)

(f×g)∗
−→ Hn(Z × Z, Z × Z \∆(Z))

is still defined, and we can consider

Int(f, g; J) ∈ Hom(Hn(X × Y ), Hn(Z × Z; Z × Z \∆(Z)))

to be the composition homomorphism. The first four properties enumerated remain valid,

but the last one (removability of an isolated intersection with trivial index) does not.

However, it is still true that the first two properties together imply that if I(f, g; J) 6= 0,

then J cannot be deformed by a homotopy to the empty set.

Of course, the obvious problem with this is that, if either Hn (Z × Z; Z × Z \∆(Z)))

or Hn(X×Y ) is trivial, then all intersection classes automatically have index 0. This is the

shortcoming that prevents us from basing the theory in its full form on the intersection

index. But, on the other hand, the index is useful (and computable) for more spaces than

just manifolds.

3. Nielsen intersection numbers. As with any Nielsen-type number, the basic

steps in the definition of the Nielsen intersection number are to partition the intersection

set into intersection classes, define a notion of an essential class, and count the number

of essential classes. The data required consists of compact, path connected spaces X, Y

and Z, and continuous functions f : X → Z and g : Y → Z. We define an equivalence

relation on Int(f, g) by (x0, y0) ∼N (x1, y1) if there exist paths α in X from x0 to x1

and β in Y from y0 to y1 in Y such that fα ≃ gβ rel{0,1}. Alternatively, we can think

of this as requiring a path ω in X × Y from (x0, y0) to (x1, y1) such that (f × g)ω is

homotopic rel{0,1} to a path in the diagonal ∆(Z) in Z ×Z. Equivalence classes will be

called intersection classes and the set of intersection classes will be denoted I(f, g).

Proposition 3.1. I(f, g) is finite, and each intersection class J is a union of com-

ponents of Int(f, g).

There is also a covering space approach to this partitioning of I(f, g) into intersection

classes. If X̃, Ỹ and Z̃ are the universal covers of X, Y and Z, and (x, y) ∈ Int(f, g),

choose x̃ ∈ p−1
X (x) and ỹ ∈ p−1

Y (y). Then there exists a covering transformation γ ∈ D(Z)

such that f̃(x̃) = γg̃(ỹ). Replacing g̃ by γg̃, we can assume that f̃(x̃) = g̃(ỹ).

Proposition 3.2. For every γ ∈ D(Z), (pX×pY )(Int(f̃ , γg̃)) is an intersection class.

Further, (pX × pY )(Int(f̃ , γg̃)) = (pX × pY )(Int(f̃ , γ′g̃)) if and only if there exist α ∈

D(X), β ∈ D(Y ) such that (f#α)γ = γ′(g#β). Otherwise, (pX × pY )(Int(f̃ , γg̃)) and

(pX × pY )(Int(f̃ , γ′g̃)) are disjoint.

To complete the definition of the Nielsen intersection number, we need a definition

of an essential intersection class. When an intersection index is defined, we say that

an intersection class J is algebraically essential if Ind(f, g; J) 6= 0. Since intersection

indices are not defined in general, we need a more general notion of an essential class.
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Following Brooks [1], we can define in full generality a concept of a topologically essential

interesection class, which explicitly captures the meaning of “essential” as “unable to be

removed by a homotopy.”

To do so, we return to the fat homotopies introduced in the previous section. There,

they were used (in the setting of orientable manifolds of the appropriate dimensions)

to describe the homotopy invariance of the intersection index. It followed then that in-

tersection classes with non-zero intersection index cannot be removed by a homotopy.

We now use the fat homotopy construction to describe directly an essential intersec-

tion class. Consider homotopies F : X × [0, 1] → Z and G : Y × [0, 1] → Z. Define

F : X × [0, 1] → Z × [0, 1] and G : Y × [0, 1] → Z × [0, 1] by F(x, t) = (F (x, t), t) and

G(y, t) = (G(y, t), t). Then Int(F, G) =
⋃

t∈[0,1] Int(Ft, Gt). Further, the partitioning of

Int(F, G) into intersection classes preserves this decomposition:

Lemma 3.3. Supppose J is an intersection class in I(F, G) Then, for every t ∈ [0, 1],

Jt = J ∩X × Y × {t} is an intersection class for Ft and Gt.

We say that J0 and J1 are (F, G)-related, or more informally, that J0 can be deformed

to J1. This defines an equivalence relation on
⋃

f ′∈[f ],g′∈[g] I(f
′, g′) by declaring J0 ∈

I(f ′, g′) and J1 ∈ I(f ′′, g′′) to be related if there exist homotopies F, G such that J0

and J1 are (F, G)-related. Now, given J ∈ I(f, g), we declare J to be inessential if it

can be deformed to the empty set. J is essential if, for every F : X × [0, 1] → Z and

G : Y × [0, 1]→ Z with F0 = f , G0 = g, the set Int(F1, G1) is non-empty.

The Nielsen intersection number NI(f, g) is the number of essential intersection

classes in I(f, g). Clearly, from its construction, NI(f, g) ≤ |I(f, g)|. Moreover, for every

f ′ ≃ f , g′ ≃ g, NI(f, g) = NI(f ′, g′). That is,

Theorem 3.4. NI(f, g) is a homotopy invariant, and NI(f, g) ≤MIc(f, g).

Example 3.5. Returning to the double-torus example of Example 2.2, it is clear

that the two intersection points lie in different intersection classes. To see this, take the

reprsentation

〈α1, β1, α2, β2|α1β1α
−1
1 β−1

1 = α2β2α
−1
1 β−1

2 〉

of π1(S). Then π1(M) = 〈α1β1α
−1
1 β−1

1 〉 and π1(N) = 〈β1β
−1
2 〉. Then, if we take any

choice of paths α and β in S1 between the intersection points, then

[fα ∗ (gβ)−1] = (α1β1α
−1
1 β−1

1 )m ∗ β1(β1β
−1
2 )n

for some choice of m and n. No choice of m and n ever renders the trivial element (no

choice of m and n will allow all of the α1 terms to cancel), so this loop is essential and

the two intersection points are in different intersection classes. Since both classes consist

of a single intersection point with index ±1, both classes are essential, and

NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g) = 2.

We will see in Theorem 5.1 that this is an example of a more general phenomenon.

Example 3.6. Note that NI(f, g) is not a homotopy-type invariant. For example,

take X = Y = Z = S1 and f = g = id. Since the intersection set ∆(S1) ⊂ S1 × S1 is

connected, there is only one intersection class. And, since any two maps f ′, g′ homotopic
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to the identity must map onto Z, there is for every z ∈ Z an x ∈ X and y ∈ Y such that

f ′(x) = g′(y) = z. In particular, Int(f ′, g′) 6= ∅, so the intersection class can never be

removed by a homotopy. Thus there is one essential class, and NI(id, id) = 1. But, if we

replace Z by S1 × [0, 1], and define f(x) = (x, 0), g(y) = (y, 1), then Int(f, g) = ∅, and

NI(f, g) = 0.

4. The Wecken problem. Before we give the proof of Theorem 1.1, we need to

consider more carefully some of the issues raised in the Introduction. Four quantities,

NIa(f, g), NI(f, g), MIc(f, g) and MIp(f, g) have been introduced. Are all four really

necessary or appropriate? Other than the inequalities already noted, what can we say

about the relationships between these quantities?

4.1. Comparing MIc and MIp. We begin with the two “minimal” quantities

MIp(f, g) and MIc(f, g). As the direct analogue of the quantity MF (f) (the minimum

number of fixed points in a homotopy class) considered in fixed point theory, MIp(f, g)

is certainly the more familiar object. While counting the number of intersection points

is a natural thing to do, it does have a disadvantage. For instance, suppose X , Y and Z

are compact manifolds. The minimum MIp(f, g) will clearly be obtained when f and g

intersect transversely. If dim(X) + dim(Y ) < dim(Z), this means they do not intersect

at all, and MI(f, g) = 0. If dim(X) + dim(Y ) = dim(Z), then the intersection set is

discrete, and hence finite. But if dim(X) + dim(Y ) > dim(Z), the intersection set will

have positive dimension. To simply define MIp(f, g) = ∞ in cases like this is to forgo

useful information. By counting path components, the quantity MIc(f, g) avoids this

shortcoming. If X , Y and Z are compact manifolds, this quantity will be finite without

any conditions on dim(Z)− dim(X)− dim(Y ). For this reason, it was MIc(f, g), rather

than MIp(f, g), that was considered in [10].2 The use of MIc(f, g) is not completely clear

cut either. To see why, consider the following example.

Example 4.1. Let X = Y = S1, and let Z consist of two copies D+, D− of the 2-disk

D2, with the identification (1, 0, +) ∼ (1, 0,−) and (−1, 0, +) ∼ (−1, 0,−). Then Z ≃ S1,

and any essential closed curve in Z must pass through the two points (1, 0) and (−1, 0).

Let f, g : S1 → Z be representatives of the generator of π1(Z). Then f and g must

intersect in at least two points, and there are clearly choices of f and g which intersect

only at those two points. Thus MIp(f, g) = 2. But if we choose f = g to be an embedding,

then Int(f, g) = ∆(S1) in S1 × S1, and MIc(f, g) = 1. Now, the functions (f, g) with

MIp(f, g) points of intersection cannot be the same as the functions (f ′, g′) ≃ (f, g) with

MIc(f, g) components to the intersection set. Deforming (f, g) to (f ′, g′) does reduce the

number of path components of Int(f, g) from one to two, but it does so at the price of

creating an arc of intersections.

The two local separating points in Z make this example somewhat artificial, but the

point it illustrates is a valid one: decreasing the number of components of Int(f, g) can

increase the number of intersection points. If we are considering problems in which X , Y

and Z compact manifolds with dim(X)+dim(Y ) = dim(Z), then Int(f, g) will generically

2It is denoted there as MI(f, g).
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be discrete, and it is really rather artificial to deform a finite set of intersections to an arc.

That is, in this setting, MIp(f, g) really is the appropriate quantity to consider. Therefore,

since each quantity has its appropriate role, we resist the temptation to declare one of

the two as the minimum intersection number, and instead work with both.

The need to decide which quantity is the “right” one is diminished somewhat by The-

orem 1.1, which asserts that MIc(f, g) and MIp(f, g) coincide for compact orientable

manifolds (of high enough dimension) with dim(X) + dim(Y ) = dim(Z). Theorems 5.1

and 5.3 will also show that MIc = MIp for some maps into surfaces. However, it is

still open whether this is true for low dimensional manifolds, or for non-orientable mani-

folds. The following low-dimensional, non-orientable “example” suggests that we can have

MIc(f, g) < MIp(f, g) in such situations.

Example 4.2. Let X = Y = S1, and let M be a Möbius band. M has universal cover

M̃ = R× [−1, 1], with covering transformations (x, y) · n = (x + n, (−1)ny). We describe

two maps f, g : S1 → M by defining functions F, G : [0, 1] → M̃ and extending them

periodically. Let F (t) = (3t, 0), and let

G(t) =

{

(5t, 10t− 1) 0 ≤ t ≤ 1
5

(5t, 1) 1
5 ≤ t ≤ 1

It is easy to see that Int(f, g) consists of three transverse intersection points. But, if

we deform G to G′ with G′(t) = (5t, 0), then Int(F, G) ⊂ S1 × S1 is the curve {3θ1 =

5θ2}, which is connected. Combining these two, we see that NIa(f, g) = NI(f, g) =

MIc(f, g) = 1. Further, MIp(f, g) is either 1 or 3. I conjecture that MIp(f, g) = 3, but

at this writing, I have not been able to prove it. If so, this would provide an example,

with manifolds with boundary, of MIc(f, g) < MIp(f, g).

4.2. Comparing NI and MIc. To establish that a pair of functions f : X → Z ← Y : g

satisfies the weak Wecken property NI(f, g) = MIc(f, g), we must show that we can find

an f ′ ≃ f and a g′ ≃ g such that

• each essential class has been deformed to a path-connected set, and

• each inessential class has been removed.

Now, the information we are given almost guarantees that we can do this. First, the

intuitive meaning of the Nielsen equivalence relation is that two intersection points lie

in the same class if and only if they can be deformed into a single path component.

Second, the definition of a topologically inessential class is one that can be removed via

a homotopy. But, the definition does not guarantee that there is a single homotopy that

removes all of the inessential classes simultaneously. Similarly, it is intuitively plausible

that an essential class can be deformed into a single component, but this property does

not follow instantly from the definition of an intersection class. It requires a proof, and

that proof may well require hypotheses. That is, the equality NI(f, g) = MIc(f, g) may

not be true in complete generality. On the other hand, at this point, I have no counter-

examples—not even contrived ones.

Of course, Theorem 1.1 shows that the equality is true for manifolds of sufficiently

high dimension. We will also see in Theorems 5.1 and 5.3 that the result is valid in some



244 C. McCORD

cases when the range space Z is a surface. But in all of these theorems, it is the strong

Wecken property that is established, and the proofs do not really provide any insight into

how the weak Wecken property might be proven in greater generality.

4.3. Comparing NIa and NI. The last comparison, that between the two Nielsen

numbers NI(f, g) and NIa(f, g), turns out to be the most important in the strong Wecken

property and the proof of Theorem 1.1. As discussed in §2, we can define an intersection

index, and hence NIa, in great generality. But it is only in restricted cases such as closed

manifolds that the index is a consistently useful quantity. Since the semi-index for non-

orientable manifolds has not yet been carried over to the intersection problem, we will

confine our attention to compact orientable manifolds with dim(X) + dim(Y ) = dim(Z).

In this setting, we can consider topologically essential classes (i.e. those that cannot

be removed by a homotopy), or algebraically essential classes (i.e. those with non-zero

index). Since a topologically inessential class has the index of the empty set, it is alge-

braically inessential. But is the converse true? That is, if J is an intersection class with

Ind(f, g; J) = 0, can J be deformed to the empty set? Again, the analogous results in

the fixed point, coincidence and root problems suggest that this should be true if the

dimensions of the manifolds are high enough, but may be false in low dimensional cases.

The first half of this analogy, at least, is valid. Algebraically inessential classes are

topologically inessential if max{dim(X), dim(Y )} > 2. There are similar restrictions in

the coincidence and root problems, and they all arise for the same reason. All of these

results rest ultimately upon the Whitney trick [12], and must respect the restrictions

present there:

Lemma 4.3 (Whitney Lemma). Consider embeddings f : Dp →M and g : Dq →M ,

where M is a compact orientable manifold of dimension p + q and p, q > 2. Sup-

pose Int(f, g) consists of exactly two points (x1, y1), (x2, y2) with Ind(f, g; (x1, y1)) =

−Ind(f, g; (x2, y2)). If there are paths α from x1 to x2 and β from y1 to y2 such that fα

is smoothly homotopic to gβ, then there exists a smooth homotopy F : Dp × [0, 1] → M

such that F0 = f and Int(F1, g) = ∅.

Using this, we can show that

Lemma 4.4 ([10, Lemma 4.2]). Suppose X, Y , Z are compact orientable manifolds

with dim(X) + dim(Y ) = dim(Z) and max{dim(X), dim(Y )} > 2. If J ∈ I(f, g) has

Ind(f, g; J) = 0, then there exist homotopies F : X × [0, 1] → Z and G : Y × [0, 1] → Z

such that J is F, G-related to the empty set.

Proof. Since f and g intersect transversely, the only way J can have index 0 is for

J to consist of 2m points, half of which have index +1, the other half having index −1.

To remove J , it suffices to show that we can cancel a pair of points (x, y), (x′, y′). If

we assume without loss that dim(X) ≤ dim(Y ), we must consider separately the two

cases dim(X) < dim(Y ) and dim(X) = dim(Y ). In the former, dim(Z) > 2 dim(X),

and an arbitrarily small perturbation will make f an embedding [7, Theorem 2.2.13]. In

the latter, dim(Z) = 2 dim(X), and an arbitrarily small perturbation will make f an

immersion [7, Theorem 2.2.12 & Ex. 3.2.1] with clean double points. That is, there is a

finite set Sf ⊂ X such that
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1. f is injective on X \ Sf .

2. For each x ∈ Sf there is a neighborhood U such that f |U is injective.

3. If f(xi) = f(xj), then f(Ui) ∩ f(Uj) = f(xi), and f |Ui
and f |Uj

are transverse at

that point.

Since dim(Z) = 2 dim(Y ) as well, a similar deformation of g can be made, and a similar

set Sg defined.

Case I: dim(X) < dim(Y ). To apply the Whitney lemma, both of the maps involved

must be embeddings. Since embeddings are not dense in C0(Y, Z), we must “manufacture”

an embedding. To do so, consider f × id : X × Y → Z × Y , and ĝ : Y → Z × Y defined

by ĝ(y) = (g(y), y). These are both embeddings of manifolds with dimension at least

3. If δ : Y → Y × Y is the diagonal embedding, then id × δ : X × Y → X × Y × Y

maps Int(f, g) homeomorphically to Int(f × id, ĝ). There are paths α × β from (x, y) to

(x′, y′) in X × Y and β from y to y′ in Y such that fα × β ≃ gβ × β in Z × Y . To

apply the Whitney lemma, we must verify that Ind(f × id, ĝ; (x, y, y)) = Ind(f, g; (x, y))

and Ind(f × id, ĝ; (x′, y′, y′)) = Ind(f, g; (x′, y′)). See [10] for the details of this routine

verification.

The Whitney lemma then implies that there exists a Ĝ : Y × [0, 1]→ Z×Y such that

Ĝ0 = ĝ and im(Ĝ1) ∩ (f × id) = ∅. Let G be the projection ρ1 ◦ Ĝ : Y × [0, 1]→ Z of Ĝ

onto Z. It is a simple calculation to see that f × id and Ĝ1 are intersection-free if and

only if f and G1 are. This, then, is the required homotopy. Moreover, since the Whitney

lemma is really a local result, Ĝ and G can be constructed so that g is deformed only in

a neighborhood of β. In particular, no new intersection points are formed. Applying this

process iteratively removes all of the intersection points in J .

Case II: dim(X) = dim(Y ). If dim(Z) = 2 dim(X) = 2 dim(Y ), then arbitrarily small

perturbations make f and g immersions with clean double points and with transverse

intersections. Moreover, since f and g each have only a finite number of self-intersections,

we may assume that Int(f, g) is disjoint from X × Sg and Sf × Y ; and that if α and β

are paths connecting points in J , then the homotopy H : fα ≃ gβ is likewise disjoint

from f(Sf ) and g(Sg). Now, take a neighborhood V of α([0, 1]) which avoids Sf , and

whose only intersections with J are x1 and x2. The Whitney lemma implies that there

is a homotopy F : X × [0, 1]→ Z such that F0 = f , Ft = f outside of V for every t, and

F1(V ) ∩ g(Y ) = ∅. Applying this process successively to pairs of points in J eventually

eliminates all intersections in J .

Thus we know that

Theorem 4.5. If X, Y and Z are compact orientable manifolds with dim(Z) ≥

dim(X) + dim(Y ) and max{dim(X), dim(Y )} > 2, then for any f : X → Z and

g : Y → Z, an intersection class J is topologically essential if and only if it is alge-

braically essential. That is, NIa(f, g) = NI(f, g).

5. Some Wecken theorems. We are now ready to present some results: first we

give the proof of Theorem 1.1 for “high-dimensional” manifolds; then we present some

results for surfaces. With one possible exception, these are instances of the strong Wecken
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property. The one possible exception arises if Z = M , the Möbius band. Theorem 5.1 will

show that the weak Wecken property holds for the triple (S1, S1, M), while Example 4.2

suggests that the strong form may not.

5.1. Proof of Theorem 1. The case dim(Z) > dim(X) + dim(Y ) is trivial: in this

case, transversality allows us to perturb f and g to be intersection free. The case we

are really interested in is dim(Z) = dim(X) + dim(Y ). As with Lemma 4.4, we assume

dim(Y ) ≥ dim(X). We follow the canonical construction to obtain f ′ ≃ f , g′ ≃ g such

that |Int(f ′, g′)| = N(f, g):

1. If an intersection class J has index 0, deform f and g to remove J .

2. If an intersection class has non-zero index and contains more than one point, deform

f and g to consolidate the class into a single point.

Lemma 4.4 takes care of the first step. For the second step, suppose J is an intersection

class with Ind(f, g; J) = ν 6= 0. We may apply the same process to cancel all intersections

in J with indices of opposite sign, so we may assume that J consists of |ν| intersection

points, all having the same index. We may also assume that either f is an embedding

(if dim(X) < dim(Y )) or both f and g are immersions with clean double points (if

dim(X) = dim(Y )). Choose a point (x0, y0) ∈ J , and euclidean neighborhoods V of y0

and W of g(y0) such that V ∩π2(Int(f, g)) = y0; V ∩Sg = ∅ and W ∩ (f(Sf )∪g(Sg)) = ∅

(if Sf is non-empty); and f(V ) ⊂ W . Now, f(X) ∩W is a submanifold of W , so we are

in the same setting as [4, §3.3]. The argument used there may be employed to produce

points y1, . . . , y|ν|, ȳ ∈ V and g′ ≃ g such that

1. g′ = g outside of V .

2. π2(Int(f, g′)) ∩ V = {y0, y1, . . . , y|ν|, ȳ}.

3. All intersection points in V lie in a single intersection class, which is related to J .

4. Ind(f, g′; (x0, y0)) = Ind(f, g; (x0, y0)), Ind(f ′, g; (x̄, ȳ)) = ν and, for i = 1, . . . , |ν|,

Ind(f ′, g; (xi, yi)) = −Ind(f, g; (x0, y0)).

Thus J is deformed to an intersection class with 2|ν| + 1 intersection points. Of these,

|ν| have index +1, |ν| have index −1 and one has index ν. Applying the arguments used

in Lemma 4.4 again, we can cancel the 2|ν| points with index ±1, and continue J to the

single point (x̄, ȳ) with index ν.

It is worth noting in this result that, in all cases, we realized the lower bound NI(f, g)

by first deforming one map to an immersion with at most finitely many self-intersections,

then deforming the other to eliminate all extra intersection points. We can interpret this

as saying that the Nielsen intersection number is “almost” one-sided. That is, if we allow

one arbitrarily small perturbation of one of the maps, we can eliminate all inessential

classes by then holding that map fixed, and performing all deformations on the other

map.

5.2. Superficial results. If we are considering closed orientable manifolds, we are left

with three unresolved low-dimensional cases: dim(X) = dim(Y ) = 1; dim(X) = 1,

dim(Y ) = 2; and dim(X) = dim(Y ) = 2. Since the only compact 1-manifold is the

circle, the case dim(X) = dim(Y ) = 1 is simply the case of two circles intersecting in
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a compact surface. But even in this simplest of cases, the situation is not completely

clear. Example 4.2 suggests that the equality MIc(f, g) = MIp(f, g) may not always

hold. However, it is worth noting that, in that example, the surface was non-orientable,

and the maps f, g : S1 → S could not be deformed to embeddings. We will see that,

when S is orientable and the maps are embeddings, we have equality. And there are

two non-orientable examples, the Klein bottle and the projective plane, to show that

orientability is not a necessary condition for equality.

Theorem 5.1. Suppose S is a closed surface, possibly with boundary, with non-negat-

ive Euler characteristic. Then, with one possible exception,

|LI(f, g)| ≤ NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g)

for any f, g : S1 → S. The one possible exception is that the equality MIc(f, g) =

MIp(f, g) may not hold if the surface is the Möbius band M and f#(1), g#(1) ∈ π1(M)

are both odd, and neither is a generator.

Proof. There are seven surfaces to be considered: the sphere S2; the disk D2; the

projective plane RP2; the torus T 2; the cylinder S1×I; the Klein bottle K and the Möbius

band M . If S = S2 or D2, then S is simply connected, and every map f : S1 → S is

inessential. Thus we can homotope f and g to non-intersecting constant maps. Similarly,

Example 3.6 can be generalized to any pair of maps f, g : S1 → S1× I. That is, f can be

deformed into S1 × {0} and g can be deformed into S1 × {1}, so Int(f, g) = ∅. For these

three surfaces,

|LI(f, g)| = NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g) = 0

for all pairs of maps.

For S = RP2, T 2, K, we prove the Wecken theorem by choosing canonical representa-

tives f0 and g0 for the homotopy classes [f ] and [g], and showing that these representatives

have exactly NI(f, g) intersections. Suppose pS : S̃ → S is the universal cover of S, and

f̃0, g̃0 : R→ S̃ are lifts of f0 and g0. We will show that, for every covering transformation

γ ∈ D(S), pSInt(f̃0, γg̃0) is either empty, or consists of a single transverse intersection of

f0 and g0. This suffices, since a single transverse intersection must be essential.

If S = RP2, there is only one non-trivial homotopy class of maps. If either f or g is

inessential, we can deform it to a constant map which does not intersect the image of

the other map. The case when both are essential was presented as an example in [10]:

Represent RP
2 as a quotient space of the 2-disk D2, with the antipodal identification

on the boundary, and represent f0 and g0 by two distinct lines through the origin. Then

I(f0, g0) consists of a single transverse intersection, so

NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g) = 1.

For the torus and the Klein bottle, it will be more convenient to work on the uni-

versal covers. Both surfaces T 2 and K have the plane as their universal cover. In either

case, the maps f0, g0 : S1 → S can be chosen so that their lifts f̃0, g̃0 : R → R
2 are

straight lines through the origin. For both surfaces, the covering transformations D(S)

are affine transformations, so γg̃0 is likewise a straight line. There are then three possi-

bilities for Int(f̃0, γg̃0): the two lines do not intersect; they intersect in a single transverse
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point; or they coincide. If any im(γg̃0) coincides with im(f̃0), then im(g̃0) must coincide

with im(f̃0). By translating g̃0 by an irrational amount in the direction perpendicular to

im(f̃0), we obtain a new g0 such that every Int(f̃0, γg̃0) is either empty, or consists of one

transverse intersection point.

Finally, we consider the Möbius band. Example 4.2 was left unresolved because we can

(at this point) neither prove nor disprove the equality MIc(f, g) = MIp(f, g) for all maps

into the Möbius band. However, the approach used for the torus and Klein bottle can

be applied to prove NIa(f, g) = NI(f, g) = MIc(f, g) for all maps f, g : S1 → M . The

Möbius band has universal cover R× [−1, 1]. If either f or g wraps S1 around M an even

number of times (WLOG, suppose f does), then f0 can be chosen so that im(f) = ∂M .

g0 can be chosen so that im(g) is the “center circle” of M (i.e. g̃ maps to R×{0}). Clearly,

Int(f0, g0) = ∅ in this case. On the other hand, suppose both f and g wrap around M an

odd number of times. If f#(1) = 2n + 1 and g#(1) = 2m + 1, we define representatives

f0 and g0 by defining the lifts f̃0, g̃0. As before, it suffices to define f̃0|[0,1], g̃0|[0,1] and

extend periodically. These are defined as follows:

f̃0(t) = ((2n + 1)t, 0) ,

g̃0(t) =

{

((2m + 1)t, 2(2m + 1)t− 1) , 0 ≤ t ≤ 1
2m+1 ,

((2m + 1)t, 1) , 1
2m+1 ≤ t ≤ 1.

Then Int(f̃0, g̃0) =
{(

2k+1
2(2n+1) ,

1
2(2m+1)

)

|0 ≤ k ≤ 2n
}

, so the Nielsen class pInt(f̃0, g̃0)

consists of 2n + 1 transverse intersection points. The mod 2 intersection number is non-

zero, so the class is essential. But, if g̃0 is deformed to g̃′0(t) = ((2m + 1)t, 0), then

Int(f̃0, g̃
′
0)
∼= R is connected, and pM Int(f̃0, g̃

′
0) is a connected essential intersection class.

We range over all intersection classes as we range over pM Int(n·f̃0, g̃
′
0) for n ∈ D(M) ∼=

Z. But, since the center line is left invariant by all covering transformations, every n · f̃0

is simply an integer translation of f̃0, and every pM Int(f̃0, g̃
′
0) is likewise a connected

essential intersection class. Thus NIa(f0, g0) = NI(f0, g0) = MIc(f0, g0).

For the surfaces with positive Euler characteristic, we see that NI(f, g) is never greater

than one. But for the surfaces with Euler characteristic zero, we can see arbitrarily large

values for NI(f, g). To see this, we begin with the torus. The homotopy classes of the

maps f, g : S1 → T 2 are determined by the homomorphisms f∗, g∗ : H1(S
1) → H1(T

2).

Let A = [f1∗ g1∗] be the 2× 2 integer matrix whose columns are the homomorphisms f∗
and g∗.

Theorem 5.2. For any f, g : S1 → T 2, if A = [f1∗ g1∗], then

|LI(f, g)| = NI(f, g) = |det(A)| .

Proof. If det(A) = 0, then f0 and g0 map into the same one-dimensional subspace of

T 2. Translating g0 an irrational amount in the perpendicular direction removes all inter-

sections, so LI(f, g) = NI(f, g) = 0. If det(A) 6= 0, then f0 and g0 intersect transversally,

and the argument above shows that every intersection class consists of a single transverse

intersection. Moreover, since any intersection class has the form pInt(f̃0, γg̃0), with the

covering transformation γ ∈ D(T 2) a translation, all intersection points have the same

index. This establishes that |LI(f, g)| = NI(f, g) = |Int(f0, g0)|. It remains only to show
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that |Int(f0, g0)| = |det(A)|. Since f0 and g0 are homomorphisms, Int(f0, g0) = ker(Φ),

where Φ : S1 × S1 → T 2 is defined by Φ(θ1, θ2) = f0(θ1) − g0(θ2). The calculation that

|ker(Φ)| = |det(A)| is a routine one.

In the special case of f and g both embedddings, this result is found in [6]; and it is

in turn a special case of a formula in [11] for tori of all dimensions.

Next, we consider the Klein bottle K. Of course, K is doubly covered by the torus.

Given f, g : S1 → K, there are covers p1, p2 : S1 → S1 and lifts f̃ , g̃ : S1 → T 2 such that

the diagram commutes:

S1 f̃
−→ T 2 g̃

←− S1

↓ p1 ↓ p ↓ p2

S1 f
−→ K

g
←− S1

Let γ : T 2 → T 2 be the covering transformation over K, and let di be the ordering of the

cover pi. It was shown in [10] that

NI(f, g) ≥
1

d1d2
(NI(f̃ , g̃) + NI(f̃ , γg̃)).

This inequality need not be sharp, but it suffices for our purposes: since NI(f̃ , g̃) can be

arbitrarily large, and d1, d2 ≤ 2, it follows that NI(f, g) can be arbitrarily large.

For the Möbius band, we saw that NI(f, g) is non-zero only if f and g wrap around

the band an odd number of times. The proof of Theorem 5.1 showed that, if we represent

f and g by homomorphisms from S1 to the “center circle” S1, then every intersection

class is connected and essential. So it suffices to compute the number of components of

Int(f, g) = ker(Φ), where Φ here denotes the map S1 × S1 → S1 given by Φ(θ1, θ2) =

f(θ1)−g(θ2). If f is multiplication by p, and g is multiplication by q, then it is a standard

calculation that ker(f − g) has gcd(p, q) components.

This, with one possible gap, shows that the intersection theory for surfaces with non-

negative Euler characteristic is well behaved. This is hardly surprising. We would expect

any Nielsen theory for such surfaces to be quite simple, and it is somewhat surprising

to find that there are any questions that cannot be answered in a routine fashion. For

surfaces with negative Euler characteristic, on the other hand, we will not be surprised

to encounter difficulties. If we again look to fixed point theory for analogies to help guide

our thinking, we might conjecture that the Wecken property holds for embeddings of S1,

but not for arbitrary maps. At this writing, I have no examples of pairs of maps from S1

to a surface of negative Euler characteristic for which any of the equalities

NIa(f, g) = NI(f, g) = MIc(f, g) = MIp(f, g)

can be proven to be false.

However, the other half of the conjecture can be confirmed. When considering em-

beddings of S1 into a surface of negative Euler characteristic, we have the very powerful

techniques of Nielsen-Thurston theory to draw on [6]. There, one of the quantities of in-

terest is i(α, β), the minimum number of intersections in an isotopy class of embeddings

α and β. Two embeddings are homotopic if and only if they are isotopic, so

i(α, β) = min {|Int(α′, β′)| | α′ ≃ α, β′ ≃ β, α′ and β′ embeddings} .
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Clearly, if the homotopy classes [α] and [β] contain embeddings, NIp(α, β) ≤ i(α, β).

From this observation, and the established properties of i(α, β), we deduce the following:

Theorem 5.3. If S is a closed orientable surface with χ(S) < 1, and α, β : S1 → S

are embeddings, then

|LI(α, β)| ≤ NIa(α, β) = NI(α, β) = MIc(α, β) = MIp(α, β) = i(α, β)

Proof. First note that if α ≃ β, then we can take a tubular neighborhood T around

im(α), and deform β first into im(α), and then into T \ im(α). Then Int(α, β) = ∅. If

α 6≃ β, it suffices to show that all lifts α̃ and β̃ have the property that Int(α̃, β̃) is either

empty or consists of a single transverse intersection. But [6, Exposé 3, Proposition 10]

implies that every pair of distinct isotopy classes of simple closed curves in S contains a

pair of embeddings (α, β) with this property.

6. Concluding remarks. This investigation of the Wecken problem for intersection

theory is only a beginning. There remain many open questions. In the most richly struc-

tured setting of closed orientable manifolds, we still have the low-dimensional gap. The

surface case is not yet completely understood, and there is almost nothing know about

the cases dim(X) = 1, dim(Y ) = 2 and dim(X) = dim(Y ) = 2.

Here, the failure of the Whitney trick is likely to have significant consequences. In

the case dim(X) = dim(Y ) = 2 in particular, it is very likely that there are examples

for which the strong Wecken property fails. But this points to another gap in the theory:

there are not yet any non-trivial examples of pairs of maps for which the strong Wecken

property fails. The one example presented, Example 4.1, had local separting points, which

really trivializes the problem of computing MIp(f, g). It is the difficulty of computing

MIp(f, g) that stands as an obstacle to producing more meaningful counter-examples. Of

course, it is this same difficulty that provides Nielsen theory’s raison d’être: if quantities

such as MIp(f, g) were easy to compute, there would be no need for Nielsen theory.

Throughout this paper, analogies to the Nielsen theories for fixed points, coincidences

and roots have been drawn. We conclude with one more: the distinctions between MIc

and MIp, and between NIa and NI, are equally valid in these other problems. The

Nielsen fixed point number is analoguous to NIa, while the coincidence and root indices

are analoguous to NI. In all of these problems, the “minimum quantity” considered is

always of the form MIp, and the Wecken theorems proved are always the strong form

of the Wecken theorem. Jiang’s non-Wecken example [9], for example is an example in

which the strong Wecken property fails. But the weak Wecken property does hold there.

That is, if Na(f) denotes the number of algebraically essential fixed point classes (i.e.

the Nielsen fixed point number), Nt(f) denotes the number of topologically essential

fixed point classes (i.e. those that cannot be removed by a homotopy), and MFc(f) and

MFp(f) have the obvious meanings, then what Jiang gave in [9] was an example in which

Na(f) = 0, Nt(f) = MFc(f) = 1 and MFp(f) = 2.

There is an obvious motivational value to drawing analogies like this between the

various problems. But the connection between these various Nielsen theories is stronger

than that. In [4], Dobreńko and Kucharski point out that coincidence theory can be
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formulated as a special case of root theory. In fact, if we consider the three problems of

coincidences, intersections and roots, it is possible to formally translate any one of the

three problems into either of the others. It is then reasonable to ask how the various

Nielsen theory quantities transform. This question will be considered in detail in [11].

These transformations have an interesting connection with the study of Wecken prop-

erties. Very briefly, if we start with the intersection problem f : X → Z ← Y : g with

X , Y and Z closed orientable manifolds, then we can produce a coincidence problem

F, G : X × Y → Z with F (x, y) = f(x) and G(x, y) = g(y). This can in turn be trans-

formed into the root problem f × g : X × Y → Z × Z ⊃ ∆(Z). These transformations

have the properties:

MIp(f, g) ≥ MCp(F, G) = MRp(f × g; ∆(Z))

MIc(f, g) ≥ MCc(F, G) = MRc(f × g; ∆(Z))

NI(f, g) ≥ N(F, G) = N(f × g; ∆(Z))

NIa(f, g) = Na(F, G) = Na(f × g : ∆(Z))

(where MCp and MRp have the obvious meanings: the minimum number of coincidence

or roots in the homotopy class). The obvious question, and the central issue in [11], is

whether these transformations (and the transformation from roots to intersections) is

“Nielsen-number preserving.” That is, is NI(f, g) = N(F, G) for all f and g?

Now, in all three theories, there is a strong Wecken theorem for closed orientable

manifolds. From the inequalities above, it is clear that, if the strong Wecken theorem

holds for a problem and for the transform of the problem, then the transformation must

be Nielsen-number preserving. However, all three theorems rely on the Whitney trick, and

so must exclude some low-dimensional cases. And, because they invoke the Whitney trick

in slightly different ways, these low-dimensional exclusions are not perfectly preserved by

the transformations. So, for example, if dim(X) = 1 or 2 and dim(Y ) = 2, then X , Y and

Z may not satisfy the strong Wecken property for intersections. But their transform into

roots, f × g : X × Y → Z × Z ⊃ ∆(Z), does satisfy the hypotheses of [4, Theorem 3.4],

and so does satisfy the strong Wecken property. The consequence of this is that, in this

setting, a pair of maps f and g do satisfy the strong Wecken property for intersections if

and only if their transformation into the root problem is Nielsen-number preserving.
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