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Abstract. In this paper, we present an analytic definition for the relative torsion for flat
C∗-algebra bundles over a compact manifold. The advantage of such a relative torsion is that
it is defined without any hypotheses on the flat C∗-algebra bundle. In the case where the flat
C∗-algebra bundle is of determinant class, we relate it easily to the L2 torsion as defined in
[7], [5].

1. Introduction. We are interested in the problem of defining analogues of the tor-
sion invariants found by Ray-Singer and Reidemeister-Franz for finite dimensional repre-
sentations of the fundamental group of a compact manifold in the case where one considers
infinite dimensional representations of the fundamental group. In the case where the fun-
damental group is represented in a finite von Neumann algebra and one has a cochain
complex of free modules over this algebra for which the determinant of the associated
Laplacian exists, a notion of von Neumann or L2 torsion has been defined [2], [7], [5],
[6], [1].
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This paper is concerned with a generalisation of these notions to allow complexes
which are free modules over the group C∗-algebra of the fundamental group. In order
to describe our results we establish some notation and definitions. Our starting point
is a non-simply connected Riemannian manifold M of dimension n with fundamental
group π = π1(M) with A being the group C∗-algebra of the group π, C∗[π] = A. Sup-
pose in addition that the manifold M has a fixed simplicial structure. Consider the de
Rham complex Ω∗(M ;A) = ⊕Ωi(M ;A) and its completion with respect to the Sobolev
norms HΩ∗,s(M ;A) = ⊕Hs−iΩi(M ;A) where s is chosen sufficiently large so that the
exterior derivative is bounded on this complex. Introduce the simplicial chain complex
C∗(M ;A) = ⊕Ci(M ;A) given by the simplicial structure on M and the de Rham homo-
morphism

θ : Ω∗(M ;A)→ C∗(M ;A)

which is an epimorphism. Our aim is to define what we call a C∗-torsion or A-torsion for
the cone complex

Cylk = H0Ωk(M,C∗[π])⊕ Ck−1(M,C∗[π])

of the de Rham map θ. The same methods work when we twist this cone complex by a flat
A-bundle E over M . The A-torsion does not depend for its definition on any assumption
about the large time asymptotics of the trace of the heat operator (that is, it does not
assume anything about the so-called determinant type of M) [1].

There are a number of technical issues that need to be resolved for this to be well
defined. We found it useful to introduce a subcomplex U∗(M, θ) = Ker(θ) which we
show (Section 3) is acyclic in the algebraic sense and that there exists an orthogonal
complement V ∗(M, θ) such that the restriction

θ|V ∗(M,θ) : V ∗(M, θ)→ C∗(M ;A)

is a chain homotopy equivalence. That is, the cone of this map, Cone(θ|V ∗(M,θ)), is also
an acyclic chain complex.

Our procedure is to then prove an analytic formula for the torsion for both acyclic
complexes

Cone(θ|V ∗(M,θ)) (1)

and

U∗(M, θ) = Ker(θ). (2)

in the case where the Sobolev index s = 0. The technical results necessary for the defi-
nition of the latter are contained in Sections 5 and 6. Next in Section 7 we combine the
torsion for (1) and (2) to define the A-torsion for the cone complex Cyl∗ of the de Rham
map.

For the torsion of the complex (1) the procedure is straightforward as the com-
plex Cone(θ|V ∗(M,θ)) is a free finitely generated Hilbert A-module. On the other hand,
U∗(M, θ), though infinitely generated, is nevertheless a projective module (that is, the
projection P0 onto Ker θ is given by a matrix over A.) It follows from this last fact that
an analytic C∗-torsion may be defined for this complex. The result is an analogue of the
formula for L2-analytic torsion [7], [5].
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Several technical results which are of independent interest are necessary to our anal-
ysis. For acyclicity of the cone complex we need a variation of a theorem of Dodziuk
[3] (in Section 4) in which we prove that the de Rham map induces an isomorphism on
the algebraic cohomology groups of the complexes HsΩp(M ;E0) and Cp(M ;E0). For the
A-torsion we need an extension of the analysis of [10] on the existence of complex powers
(and the small time asymptotics of the heat operator) of the Laplacian of the complex
Cyl∗.

Finally we turn to the question of how this A-torsion relates to the earlier work on
L2 torsion. In these papers an essential assumption is made regarding the large time
asymptotics of the trace of the heat operator on the de Rham complex which we refer
to as the decay property for M . The A-torsion does not depend for its definition on any
assumption on the decay of M as we will show that the Laplacian is invertible on both
of complexes (1) and (2). We know that the decay property for HsΩp(M ;E0) and the
chain complex Cp(M ;E0) are the same so that for the purposes of determining decay
it is sufficient to consider Im(1− P0) which we show is homotopic to the chain complex
Cp(M ;E0). When the latter complex has the decay property theA-torsion may be written
as the ratio of the L2-analytic and L2-Reidemeister-Franz torsions. Hence by the theorem
of [1] it is identically one. This of course raises the question of whether it is always one.
We do not attempt to answer this here. We note however that if the projection onto the
harmonic forms is given by a matrix over A then we may define, in the presence of decay,
an A-torsion for both the de Rham and simplicial complexes separately.

2. Further preliminaries. In view of the strategy outlined in the introduction the
construction of the A-torsion involves defining the torsion for an acyclic finitely generated
differential complex of graded Hilbert A-modules (1). There is a natural way to do this for
any acyclic finitely generated differential complex of graded Hilbert A-modules W ∗. Let
us consider the differential d0 and its adjoint operator d∗0 defined by the Hilbert structure
on the module W ∗. Put

∆0 = (d+ d∗)2.

Then the operator ∆0 preserves the gradation and is invertible. Because the module W ∗

is free and finitely generated the operator ∆0 can be represented as a matrix for some
free basis in W ∗ with entries in the algebra A. Thus given any trace tr on A one can
define the function

f(t) = tr exp(−t∆0). (3)

Because the operator ∆0 is bounded and invertible one has the inequality

exp(−tC1) < f(t) < exp(−tC2), (4)

for some positive constant C1, C2. Therefore one can apply the zeta function definition
of the determinant from which it is straightforward to define the torsion of the complex
by analogy with [2].

However for the construction of an analytic torsion for an infinitely generated acyclic
chain complex U∗(M ;A) there are difficulties. In this case we need to analyze the Lapla-
cian as an unbounded operator. Actually, for the complex HΩ∗,s(M ;A) with exterior
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differential ds the operator

∆s = (ds + d∗s)
2

is bounded, because

ds : U i = (U∗ ∩Hs−iΩi(M ;A))→ U i+1 = (U∗ ∩Hs−i−1Ωi+1(M ;A))

is bounded. Therefore if one wants to regard the Laplacian as unbounded then one should
consider the operator ds as an unbounded operator d of degree 1:

d̃ : H0Ωi(M ;A))→ H0Ωi+1(M ;A),

and its corresponding unbounded adjoint operator

δ = d̃∗ : H0Ωi+1(M ;A))→ H0Ωi(M ;A).

Then the Laplace operator

∆ = (d+ δ)2 : H0Ωi(M ;A))→ H0Ωi(M ;A))

is an unbounded operator. It is easy to show that ∆s = ∆(1+∆)−1. The main technicality
associated with the definition of the torsion of (2) is to define the zeta function of the
Laplacian and for this we need to determine the small time asymptotics of the trace of
the heat operator for that complex. Then, to relate the torsions for (1) and (2) to that
for the complex Cyl∗, we need the zeta function for the Laplacian of that complex as
well. We defer a discussion of these matters to Section 6.

3. Adjoint to the de Rham homomorphism. In this section we deal with the
technicalities required to prove the validity of the splitting of the complex Cyl∗ into the
complexes (1) and (2). Let the manifold M have a Riemannian metric which induces a
scalar product on the vector bundles Λp(M) = Λp(T ∗M), denoted by

(ω1, ω2), ω1, ω2 ∈ Λpx(M), x ∈M.

Put

Γ∞(Λp(M)) = Ωp(M) (5)

and let dµ be the corresponding measure on M generated by the Riemannian metric.
Consider the scalar product on the space Ωp(M) which is determined by

〈ω1, ω2〉 =
∫
M

(ω1, ω2)dµ. (6)

Let δ be the formal adjoint to d:

δ : Ωp(M)→ Ωp−1(M), (7)

〈δω1, ω2〉 = 〈ω1, dω2〉, ω1 ∈ Ωp(M), ω2 ∈ Ωp−1(M). (8)

3.1. The de Rham complex with values in a flat bundle. We extend the notation of
the preceding discussion to the case where we have a flat bundle over M with fibre V
being a Banach space which is an A-module (free or projective) over a C∗-algebra A. Let

ρ : π → AutA(V ) (9)
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be a representation by isometries giving rise to the A-module structure. Let E be the
bundle over M associated with the representation ρ. Put

Ωp(M ;E) = Γ∞(Λp(M)⊗ E). (10)

The transition functions for E are locally constant and equal to ρ(g) ∈ AutA(V ) for
some elements g depending on the choice of two charts from the atlas of charts. Then in
Λp(M)⊗ E there exists in each fibre a scalar product with values in A:

(ω1 ⊗ v1, ω2 ⊗ v2) = (ω1, ω2)(v1, v2). (11)

Because the transition functions are unitary (11) does not depend on the choice of a
chart:

(ρ(g)v1, ρ(g)v2) = (v1, v2) ∈ A, v1, v2 ∈ V. (12)

Then in Ωp(M,E) we may define a scalar product with values in A and there exists an
operator

d : Ωp(M ;E)→ Ωp+1(M ;E), (13)

d(ω ⊗ v) = dω ⊗ v, ω ∈ Ωp(M), v ∈ V (v ≡ Const). (14)

Let δ be defined by analogy with (7) and (9).

3.2. The simplicial complex. Let Cp(M ;E) be the simplicial cochain space with val-
ues in E. This means that each simplex σ lies in some chart Uα and since the restriction
E|Uα ≈ Uα×V then the value of the cochain x ∈ Cp(M ;E) can be determined as an ele-
ment x(σ)α ∈ V . If the simplex σ lies in the intersection of two charts Uαβ = Uα∩Uβ ⊃ σ,
then x has two values x(σ)α and x(σ)β which are connected by the relation

ϕαβ(x(σ)α) = x(σ)β , (15)

(ϕαβ being a constant transition function). The de Rham homomorphism

θ : Ωp(M ;E)→ Cp(M ;E) (16)

is defined as follows. If σ ⊂ Uα, ω ⊗ v ∈ Ωp(M ;E)|Uα , then

θ(ω ⊗ v) =
(∫

σ

ω
)
v ∈ E. (17)

The definition (3.2) does not depend on the choice of a chart. Then

θd = ∂θ, (18)

where ∂ : Cp(M ;E)→ C(p+1)(M ;E) is the coboundary homomorphism.

3.3. Existence of the adjoint to the de Rham map. The first fact is an immediate
consequence of the definition.

Lemma 1. The modules Cp(M ;E) are free A-modules.

Now let us define a scalar product

〈ω1, ω2〉s = 〈ω1, (1 + ∆)sω2〉 ∈ A, (19)

where ∆ = (d + δ)2. Denote by HsΩp(M ;E) the completion of Ωp with respect to the
norm (19).
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Lemma 2. If s� 1 then θ can be extended to an epimorphism

θ : HsΩp(M ;E)→ Cp(M ;E). (20)

Theorem 1. The homomorphism (20) has an adjoint in the sense of Hilbert C∗-
modules.

Proof. It is sufficient to check the property on restriction to one simplex σ, with
dimσ = p, σ ⊂ Uα, that is, for the map

θσ(ω) =
∫
σ

ω. (21)

Let ϕ be a smooth function such that ϕ|σ ≡ 1, Suppϕ ⊂ Uα. If ω ∈ Ωp(M ;E) then

θσ(ω) = θσ(ϕω). (22)

We are looking for an element ξ ∈ HsΩp(M ;E) such that

θσ(ω) = 〈ξ, ω〉s. (23)

Consider a neighborhood O(σ) such that O(σ) ⊂ O(σ) = Y , Suppϕ ⊂ O(σ). Let H =
H(Y ) ⊂ HsΩp(M ;E) be the subspace generated by the forms ω ∈ Ωp(M ;E) for which
one has Suppω ⊂ Y. Then H is a Hilbert A-module. We show now how the result follows
from the next three lemmas (whose proofs we defer to the end of the section).

Lemma 3. The subspace H ⊂ HsΩp(M ;E) is the image of a selfadjoint projector

P : HsΩp(M ;E)→ HsΩp(M ;E).

In this case one has
θσ(ω) = θσ(ϕω) = θσ(Pϕω). (24)

Lemma 4. The restriction θσ|H : H → A has an adjoint operator.

This means that
Iσ|H(h) = 〈ξH , h〉s, (25)

where ξH ∈ H, h ∈ H. Hence

θσ(ω) = θσ(Pϕω) = 〈ξH , Pϕω〉s = 〈P ∗ξH , ϕω〉s. (26)

Lemma 5. The operator ϕ̂ : HsΩp(M ;E)→ HsΩp(M ;E)

ϕ̂ : ω 7→ ϕω (27)

has an adjoint.

Then
θσ(ω) = 〈P ∗ξH , ϕω〉s = 〈P ∗ξH , ϕ̂(ω)〉s = 〈ϕ̂∗P ∗ξH , ω〉s, (28)

which is the desired conclusion. Therefore it remains to prove Lemmas 3–5.

Proof of Lemma 5. We have

〈ξ, ϕ̂ω〉s = 〈ξ, (1 + ∆)sϕ̂ω〉 = 〈ϕ̂(1 + ∆)sξ, ω〉
= 〈(1 + ∆)−sϕ̂(1 + ∆)sξ, (1 + ∆)sω〉
= 〈(1 + ∆)−sϕ̂(1 + ∆)sξ, ω〉s. (29)

The operator (1 + ∆)−sϕ̂(1 + ∆)s is bounded from HsΩp(M ;E) to itself.
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Proof of Lemma 3. Consider the bundle ξ = Λp(M ;E). Because M is compact,
there exists an A-bundle η such that ξ ⊕ η is trivial,

ζ = ξ ⊕ η = M × (A⊕ . . .⊕A) = M ×AN . (30)

This means that there exists a continuous family of A-projectors,

Qx : AN → AN , x ∈M

such that ImQx = ξ. All Qx are selfadjoint. Therefore the inclusion

ψ : Γ∞(ξ)→ Γ∞(ζ)

is an isometry. Therefore the inclusion ψ extendes to a continuous operator

ψ : HsΓ∞(ξ)→ HsΓ∞(ζ) (31)

and HsΓ∞(ξ) is the image of the projector Q generated by the family {Qx}.

Let H1 = H1(Y ) ⊂ HsΓ∞(ζ) be generated by sections with support in Y . We need
the following fact.

Lemma 6. There exists a selfadjoint projector P1, P1 = P ∗1 , H1 = ImP1.

We defer the proof until the end of the proof of Lemma 3. Now we have

H = HsΓ∞(ξ) ∩H1. (32)

Indeed, if ω ∈ H, ω = limωn, ωn ∈ Γ∞, Suppωn ⊂ Y , then ωn ∈ H1 implies that ω ∈ H1.
Connversely, if ω ∈ HsΓ∞(ξ) ∩H1 then ω = limωn, Suppωn ⊂ Y , Qω = ω.

Next we consider ω′n = Qω′n ∈ Γi∞(ξ). Then Suppω′n ⊂ Suppωn ⊂ Y , that is, the
relation ω′n ∈ H implies

limω′n = Q limωn = Qω = ω ∈ H.

Moreover

P1Q = QP1. (33)

Indeed, let ω ∈ HsΓ∞(ζ). Then P1ω = limωn, Suppωn ⊂ Y and so P1ωn = ωn and
P1Qωn = Qωn. Therefore (QP1 − P1Q)ωn = 0 that is, (QP1 − P1Q)ω = 0, which means
that QP1 = P1QP1 and hence P1Q = QP1.

Let P2 = P1QP1 and calculate:

P2P2 = P1QP1P1QP1 = P1QP1QP1 = P1QQP1 = P1QP1 = P2 (34)

so that P2 is a projector. Next we show that ImP2 = H. If P2ω = ω then

ω = QP1ω = P1QP1ω = P1ω.

Hence ω = limωn, Suppωn ⊂ Y , which implies that SuppQωn ⊂ Y , that is, limQωn ∈ H.
But limQωn = Qω = ω ∈ H.

Conversely, let ω ∈ H, H ⊂ HsΓ∞(ξ). Then

Qω = ω, ω = limωn, Qωn = ωn, Suppωn ⊂ Y,

which implies that P1ωn = ωn and hence P2ωn = ωn ∈ ImP2. Therefore if ω1, ω2 ∈
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HsΓ∞(ξ) then

〈Pω1, ω2〉s = 〈PQω1, ω2〉s
showing that the restriction of P2 on HsΓ∞(ξ) coincides with P .

If ω ∈ HsΓ∞(ξ) then

Qω = ω, P2ω = limωn, Suppωn ⊂ Y.

Hence SuppQωn ⊂ Y , that is, limQωn = QP2ω = P2Qω = P2ω and so P2ω ∈ ImP . If
ω ∈ ImP then ω = limωn, Qω = ω, Qωn = ωn, Suppωn ⊂ Y . Hence ω ∈ ImP1, that is,
P1ω = P1 and so P2ω = ω.

Therefore

〈Pω1, ω2〉s = 〈P2ω1, ω2〉s = 〈ω1, P2ω2〉s = 〈ω1, Pω2〉s.

Now we return to the discussion of Lemma 6.

Proof of Lemma 6. It suffices to prove this, not for η, but for the 1-dimensional
bundle M×A. From Γ∞(M×A) ⊃ C∞(M)⊗A we have HsC∞(M)⊗A ⊂ HsΓ∞(M×A).
Now consider

H2 ⊂ HsC∞ (35)

generated by those f ∈ C∞(M) with Supp f ⊂ Y. Let

P3 : HsC∞(M)→ HsC∞(M)

be the selfadjoint operator onto H2. Then

P3 ⊗ 1 : HsC∞(M)⊗A → HsC∞(M)⊗A

is a bounded operator and has a unique selfadjoint extension

P4 : HsΓ∞(M ×A)→ HsΓ∞(M ×A)

and ImP4 is generated by functions f ∈ Γ∞(M ×A), Supp f ⊂ Y .

Proof of Lemma 4. Let H4 ⊂ HsΩp(M) be the completion of the subspace {ω |
Suppω ⊂ Y }. Then there exists a natural inclusion

H4 ⊗A → H ⊂ HsΩp(M).

The restriction θσ|H has the following form on the element ω ⊗ b ∈ H4 ⊗A:

θσ|H(ω ⊗ b) = θσ(ω)⊗ b.

This means that θσ|H = θσ ⊗ id : H4 ⊗A → C ⊗A = A. As θσ : H4 → C has an adjoint
operator, so θσ ⊗ id has an adjoint as well.

3.4. The subcomplex Ker θ. Let H0 = l2(π) and let A act on H0 via the left regular
representation. If we let E0 be the corresponding bundle then

C∗(M ;E0) = C∗(M ;E)A ⊗H0.

Hence

Ωp(M ;E0) ⊃ Ωp(M ;E)A ⊗H0
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and
HsΩp(M ;E0) ⊃ HsΩp(M ;E)A ⊗H0,

the last being a dense subspace. The de Rham map (20) can be extended to a homomor-
phism

θ0 = θ ⊗ id : HsΩp(M ;E0)→ Cp(M ;E0) (36)
which coincides with the homomorphism

∫
of lemma 3.2 of [3]. Since (20) has an adjoint,

Ker θ can be split with a selfadjoint projector

P : HsΩp(M ;E)→ HsΩp(M ;E)

so that
θ1 = θ|Im(1−P ) : Im(1− P )→ Cp(M ;E) (37)

is an isomorphism. Hence the map θ1 is a chain homotopy equivalence.
Consider the projector

P0 = P ⊗ 1 : P : HsΩp(M ;E0)→ HsΩp(M ;E0).

It is clear from the fact that (37) is a chain homotopy equivalence that the homomorphism

θ1 ⊗ 1 : Im(1− P0)→ Cp(M ;E0) (38)

is also a chain homotopy equivalence. We will show later that the Laplacian is invertible
on the range of P0.

4. The Dodziuk theorem. In [3] it was proved that the L2-cohomology of a non-
simply connected compact closed manifold for the simplicial and de Rham complexes
are isomorphic. There are two ways to define the L2-cohomology for these complexes.
The first, considered in [3], is to define each cohomology group as the quotient of the
kernel of the coboundary by the closure of the image of the coboundary. The second is
to consider the algebraic quotient group of the kernel by the image (without taking the
closure). In [3] the question is posed as to whether a similar theorem about the isomor-
phism of the simplicial and the de Rham L2-cohomology holds for the second version of
L2-cohomology.

Here we give a positive answer to this question not for L2-cohomology but for the
cohomology over the group C∗-algebra C∗[π] of the fundamental group π.

Let M be as usual a nonsimply connected closed compact manifold, π = π1(M), with
a fixed smooth simplicial structure and let

ρ : π → C∗[π]

be the regular representation. Denote by Ck(M,C∗[π]) = Ck the space of k-dimensional
cochains with values in the local system of coefficients generated by the representation
ρ. Let ∂ be the coboundary operator ∂ = ∂k : Ck → Ck+1. Let E be a locally flat
vector bundle with fibre A and transition functions generated by the representation ρ.
Let Ω∞k (M,C∗[π]) = Ω∞k be the space of k-dimensional smooth differential forms with
values in the fibres of the vector bundle E. One can think of the space Ω∞k as the space
of sections for the vector bundle

Λk = Λk(M,C∗[π]) = Λk(M)⊗ E, Ω∞k = Γ∞(Λk).
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Let d : Ω∞k → Ω∞k+1 be the exterior differential with adjoint δ and as usual let θ be the
(surjective) de Rham homomorphism θ : Ω∞k → Ck. Let ∆ = (d + δ)2 and recall the
Sobolev norm (19) on Ω∞k with completion HsΩk. Then for sufficiently large s, θ can be
extended to a bounded operator θ : HsΩk → Ck and hence one has the commutative
diagram

HsΩk
d−→ Hs−1Ωk+1yθ yθ

Ck
∂−→ Ck+1

(39)

The problem is to prove that θ induces an isomorphism of the homology groups in
the following morphism of complexes:

HsΩ0
d−→ Hs−1Ω1

d−→ . . .
d−→ Hs−nΩnyθ yθ yθ

C0 ∂−→ C1 ∂−→ . . .
∂−→ Cn

(40)

where the homology groups should be understood in the algebraic sense:

Hk(Ω) = Ker d/Im d, Hk(C) = Ker ∂/Im ∂.

It will be sufficient to restrict to smooth version sections. Consider the diagram

Ω∞0
d−→ Ω∞1

d−→ . . .
d−→ Ω∞nyθ yθ yθ

C0 ∂−→ C1 ∂−→ . . .
∂−→ Cn

(41)

We now prove that in (41) the homomorphism θ induces an isomorphism in homol-
ogy. Denote by Cp,q the space of p-dimensional cochains with values in q-dimensional
differential forms Ω∞q :

Cp,q = Cp(Ω∞q ).

Then one has a bicomplex:

C0,0 d−→ C0,1 d−→ . . . C0,ny∂ y∂ y∂
C1,0 d−→ C1,1 d−→ . . . C1,ny∂ y∂ y∂

...
...

...y∂ y∂ y∂
Cn,0

d−→ Cn,1
d−→ . . . Cn,n

(42)

The horizontal complexes in the diagram (42) are exact except the first kernel which is
Ck = Ck(M,ρ), a chain complex of constant functions with values in the locally flat
bundle E. The vertical complexes in the diagram (42) are exact except the first kernel
which is Ωk = Ωk(X, ρ). Therefore the diagram (42) may be extended to an exact diagram
in both directions:
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0 0 0y y y
Ω∞0

d−→ Ω∞1
d−→ . . .

d−→ Ω∞n → 0yε yε yε
0 → C0 ε′−→ C0,0 d−→ C0,1 d−→ . . .

d−→ C0,n → 0y∂ y∂ y∂ y∂
0 → C1 ε′−→ C1,0 d−→ C1,1 d−→ . . .

d−→ C1,n → 0y∂ y∂ y∂ y∂
...

...
...

...y∂ y∂ y∂ y∂
0 → Cn

ε′−→ Cn,0
d−→ Cn,1

d−→ . . .
d−→ Cn,n → 0y y y y

0 0 0 0

(43)

The exactness of horizontal rows follows from the fact that each intersection of charts is a
contractible subspace (as an open star of a simplex). The exactness of the vertical column
follows from the fact that the sheaf of germs of differential forms is fine. Therefore the
result follows from the common algebraic fact that homology groups of the upper row
are isomorphic to the homology groups of the left column.

5. The trace of the heat operator

5.1. Preliminaries. We are now ready to discuss some of the problems associated with
the definition of the A-torsion. Recall the space Ωk(M,C∗[π]) of smooth differential forms
with values in the fibres of the locally flat bundle E(M,C∗[π]) generated by the regular
representation of the group π in C∗[π]. This means that Ωk(M,C∗[π]) may be represented
as the space of smooth sections of the bundle Λk(M,C∗[π]) = Λk(M)⊗E(M,C∗[π]. The
space Ωk(M,C∗[π]) is a module over the algebra C∗[π]. Using the Riemannian metric
one can introduce a pre-Hilbert structure on Ωk(M,C∗[π]) with values in C∗[π] in the
sense of Pashke ([8]). The differential d commutes with the C∗[π]-module action as does
its formal adjoint operator d∗ and the corresponding Laplacian ∆ = dd∗ + d∗d. Recall
that the Sobolev completion HsΩk(M,C∗[π]) is defined using the formulas

(ω1, ω2)s = ((1 + ∆)sω1, ω2) ∈ C∗[π], ‖ω‖2s = ‖(ω1, ω2)s‖,
so that each space HsΩk(M,C∗[π]) is isomorphic to the special Hilbert C∗[π]-module
denoted l2(C∗[π]) defined as the space of all sequences {xk}∞k=1 such that

∑∞
k=1 xkx

∗
k

converges in the algebra C∗[π]. Then the operator d is bounded from Hs+1Ωk(M,C∗[π])
to HsΩk(M,C∗[π]) and this gives a natural extension on d to an unbounded operator
d : HsΩk(M,C∗[π])→ HsΩk+1(M,C∗[π]) on the Hilbert C∗[π]-module HsΩk(M,C∗[π]).
Here the subspace

HsΩk(M,C∗[π])
is the domain of definition of the extension of d. In a similar way one can define an
extension of the Laplace operator

∆ : Hs+2Ωk(M,C∗[π])→ HsΩk(M,C∗[π]).
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One may then consider the operator exp(−t∆) as a bounded operator from the Hilbert
C∗-module H0Ωk(M,C∗[π]) to itself.

This operator may therefore be represented as a matrix over C∗[π]). Our aim is to
show that this matrix has a trace as follows. Given the canonical trace function on the
C∗-algebra we define the trace of the operator exp(−t∆) by composition of the sum
of the diagonal elements of the matrix and the trace function. To see that this works,
consider the bounded operator A = ∆(1 + ∆)−1. This is a pseudodifferential operator of
order 0. Then exp(−t∆) = f(A) for f(λ) = exp(−tλ1−λ ). Next we observe that f(A) is a
smoothing operator, that is, a pseudodifferential operator of order −∞. In this case f(A)
is a bounded operator

f(A) : Hs+NΩk(M,C∗[π])→ HsΩk(M,C∗[π])

for any sufficiently large N .

Lemma 7. The operator f(A) is represented by an infinite matrix (for any orthonor-
mal basis) with convergent trace.

Proof. One can define an adjoint operator by using the Hilbert module structure of
Hs+1Ωk(M,A) and HsΩk+1(M,A). Thus define d# by the formula

(dω1, ω2)s = (ω1, d
#ω2)s+1.

It is easy to check that

d# = d∗(1 + ∆)−1.

Then one can express exp(−t∆) in terms of the bounded Laplace operator of the de
Rham–Sobolev complex ∆R–S = dd# + d#d :

A = exp(−t∆) = f(∆R–S).

Then the operator A is a pseudodifferential operator of order −N for sufficiently large N
because

A = f(∆R–S) = (1−∆R–S)Nht(∆R–S),

where ht(λ) = (1−λ)−Nft(λ). Now we have that the trace of A = (1−∆R–S)Nht(∆R–S),
exists and that

tr(1−∆R–S)Nht(∆R–S) < C‖ht(∆R–S)‖,
where the constant C does not depend on h.

5.2. Construction of the trace for the cone of the de Rham homomorphism. The next
step is to extend the previous construction to the cone of the de Rham homomorphism

θ : HsΩk(M,C∗[π])→ Ck(M,C∗[π]).

Recall the definition of the cone. Given the commutative diagram
→ HsΩk(M,C∗[π]) → HsΩk+1(M,C∗[π]) →

↓ ↓
→ Ck(M,C∗[π]) → Ck+1(M,C∗[π]) →

Then the cone Cylk,s is defined as

Cylk,s = HsΩk(M,C∗[π])⊕ Ck−1(M,C∗[π])
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with boundary homomorphism dc as

dc =
(
d 0
θ −d0

)
.

The homomorphism dc differs from d by a finite dimensional operator. Hence the cor-
responding Laplace operator dcd#

c + d#
c dc has the same properties as ∆R–S including

finite trace for the corresponding heat operator. On the other hand using the fact that θ
induces an isomorphism of cohomology groups in the algebraic sense one concludes that
the cone is an acyclic complex. This means that the Laplace operator ∆c is invertible,
that is, Spec(∆c) ⊂ [ε, 1].

There is one more fact we need in order to obtain the zeta function. Since the torsion
is defined for the complex Cyl∗ ≡ Cyl∗,0 we need to work now with the Laplacian ∆c

of Cyl∗ as an unbounded operator. This means that we need to understand whether the
asymptotic behaviour of the trace of the heat operator for t near zero is the same as in
the classical case:

tr(exp−t∆c) =
n∑

m=0

tm−N/2Cm + o(tn−N/2) (44)

We deal with this in the next section.

6. Complex powers of framed elliptic operators

6.1. Formulation of the problem. In [10] the construction of complex powers for el-
liptic (invertible) operators on a smooth manifold M was achieved. Here we shall extend
this construction to a more general situation in two directions. For the first, we shall
consider elliptic pseudodifferential operators with coefficients in an arbitrary C∗-algebra
A. For the second, we shall consider what we call framed pseudodifferential operators,
which are (2× 2) matrices

D =
(
D11 D12

D21 D22

)
, (45)

where D11 is an elliptic pseudodifferential operator

D11 : Γ∞(M, ξ)→ Γ∞(M, ξ), (46)

and D is a homomorphism

D : Γ∞(M, ξ)⊕ V → Γ∞(M, ξ)⊕ V, (47)

where V is a finitely generated projective Hilbert A-module. Here we assume that other
entries of the matrix D have the following form:

The map
D12 : V → Γ∞(M, ξ) (48)

should be a linear A-homomorphism, while the map

D21 : Γ∞(M, ξ)→ V (49)

should be a functional with smooth kernel. This means that the operator D21 can be
written in the following form:

D21(u)(x) =
∫
M

f(x)(u(x))dx, (50)
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where

f(x) : ξ → V (51)

is a smooth homomorphism from the vector bundle ξ to the module V . In addition
we assume that D11 is an elliptic pseudodifferential operator with the properties of the
operator A of Section 6 of Seeley [10], p. 298.

6.2. Construction of a parametrix. For definiteness we will assume that the operator
D is selfadjoint and positive. The last means that the operator D is invertible as an
unbounded operator

D : H0Γ∞(M, ξ)⊕ V → H0Γ∞(M, ξ)⊕ V, (52)

while the first means that

D∗11 = D11, D∗22 = D22, D∗12 = D21. (53)

In particular this means that

D12(m)(x) = f∗(m)(x), x ∈M. (54)

We shall assume that homomorphism (54) belongs to the Sobolev space HN , where N is
sufficiently large. We denote by ‖D‖l,l′ the operator norm whenever

D : H lΓ∞(M, ξ)⊕ V → H l′Γ∞(M, ξ)⊕ V.

Consider the parametrix B11(λ) for the operator D11. It is a pseudodifferential oper-
ator whose symbol σ(B11(λ)) in an arbitrary local chart satisfies the condition:

σ(B11(λ))σ(D11 − λ) = I. (55)

The local symbol of B11(λ) can be written as in ([10], (1)). Put

B(λ) =
(
B11(λ) 0

0 0

)
. (56)

Following Theorem 1 from ([10]) we have:

Theorem 2. For any l,K >> 0, 0 ≤ ε ≤ 1 one has

‖B(λ)(D − λ)− I‖l,l+K ≤ C|λ|−1+ε. (57)

The constant C may depend on l,K >> 0, 0 ≤ ε ≤ 1, but not on λ for Reλ < 0.

Proof. One has

B(λ)(D − λ)− I =
(
B11(λ) 0

0 0

)(
D11 − λ D12

D21 D22 − λ

)
−
(
I 0
0 I

)
=

(
B11(λ)(D11 − λ)− I B11(λ)D12

0 −I

)
. (58)

The term B11(λ)(D11 − λ)− I of (58) can be estimated by Theorem 1 of [10], while the
term B11(λ)D12 can be estimated from the inequality (see [10], p. 298)

‖B11(λ)‖l,l+p ≤ Cp|λ|−1+p/m (59)

and the fact that

‖D12(m)‖N <∞. (60)
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The next result is the analogue of Corollary 1 of [10], p. 298 and is proved in a similar
fashion from the preceding theorem.

Corollary.The operator (D − λ)−1 satisfies the estimate

‖(D − λ)−1‖0,0 ≤ C ′|λ|−1

provided |λ| is sufficiently large and in a region of the complex plane distant O(|λ|) from
the spectrum of D.

6.3. Complex powers and the zeta function. With these preliminary estimates estab-
lished we can now define complex powers of D following the method of [10]. For simplicity
we restrict to the case of greatest interest for us, namely where D is a framed second
order elliptic differential operator with coefficients in A. Specifically we have that D is
positive selfadjoint with no spectrum in some small interval [0, λ0). We also assume that
A is the group C∗-algebra of the fundamental group of M equipped with its canonical
trace.

Now choose γ to be a contour in the complex plane consisting of γ1 ∪ γ2 ∪ γ3 where
γ1 := {z = ρeiπ;∞ ≤ ρ ≤ ε}, γ2 := {z = εeiα;π ≥ α ≥ −π} and γ3 := {z = ρei(−π); ε ≤
ρ ≤ ∞} where ε < λ0 so that Γ avoids the spectrum of D. Then by the corollary to
Theorem 2 of Subsection 6.2 we may set

D−s =
1

2πi

∫
γ

λ−s(λ−D)−1dλ (61)

for Re s positive. For general s we define D−s = D−kD−s+k where k is an integer chosen
so that s − k has positive real part. We will use the method of [10] to determine the
properties of the trace of D−s (that is, of the zeta function of D). We claim that the
estimates of Subsection 6.2 show that the analyticity properties in s of trD−s are exactly
those of tr G(s) where G(s) = 1

2πi

∫
γ
λ−sB(λ)dλ.

Lemma 8. (i) For s in the region Re s > n/2, trG(s) is analytic.
(ii) The difference trD−s − trG(s) is analytic in the region Re s > −1.
(iii) The zeta function

ζD(s) = tr(D−s)

is well defined and analytic for Re s > n/2.

Proof. (i) We use the methods of [10]. Thus it suffices to work in a local chart and
to consider the top symbol of B(λ) denoted b−2(x, ξ, λ) where we have local coordinates
x ∈ Rn, with ξ ∈ Rn being the Fourier transform variable. Hence as in [10] we need only
check the analytic behaviour in s of

∫
M
ks(x, x) where

ks(x, x) =
1

2πi
1

(2π)n

∫
dξ

∫
γ

dλλ−sb−2(x, ξ, λ).

Using the fact that the homogeneity in (ξ, λ) of b−2 is the same as in the classical case
we see that

∫
M
ks(x, x) is well defined for Re s > n/2 from which we obtain the first part

of the lemma.
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(ii) Consider the difference

trD−s − trG(s) =
∫
γ

λ−s tr((λ−D)−1 −B(λ))dλ.

We denote by ‖.‖tr the trace norm so that

| tr((λ−D)−1 −B(λ))| ≤ ‖(B(λ)(λ−D)− I)(λ−D)−1‖tr

≤ ‖(B(λ)(λ−D)− I)‖tr‖(λ−D)−1‖.
Using (58) for C = B(λ)(λ−D)− I we see that, in a local chart, the operator (C∗C)1/2

is pseudodifferential with the trace norm estimable in terms of an appropriate Sobolev
norm ‖D‖l,l+K . This norm by Theorem 2 satisfies the estimate:

‖B(λ)(D − λ)− I‖l,l+K ≤ C|λ|−1+ε.

Combining this last fact with the Corollary to Theorem 2 completes the proof.
(iii) This follows from (i) and (ii).

We will also be interested in the heat semigroup which may be studied as follows.
Introduce the path γ0 which is the composition of two half lines

γ± = {x± i(x+ 1)| − 1 ≤ x <∞}.

Then we may define, using Corollary 1 of Subsection 6.2,

e−tD =
1

2πi

∫
γ0

(e−λt(λ−D)−1)dt. (62)

Now tre−tD < ∞ for t > 0 (see Subsection 5.2). We are interested in the asymptotic
expansion of tr(e−tD) for small t. This is determined by the asymptotics of trF (t) where

F (t) =
∫

Γ

e−tλB(λ)dλ.

The leading term in the asymptotic expansion of trF (t) for small t is calculated by
considering the symbol expansion of B(λ) in a local chart in M . The relevant asymptotics
is given by the top symbol of B(λ) denoted b−2(x, ξ, λ) above. Corresponding to this top
symbol we define a pseudodifferential operator which is given, in this local chart, by an
A-valued kernel kt(x, y) with x, y ∈ Rn so that the asymptotics we need follows from the
t-dependence of

∫
M
kt(x, x)dx where

kt(x, x) =
1

2πi
1

(2π)n

∫
dξ

∫
γ0

exp(−λt)b−2(x, ξ, λ).

Now using the definition (55) we have that

b−2(x, ξ, λ/t) = tb−2(x, t1/2ξ)

and so we deduce that kt(x, x) is given by

t−n/2
1

2πi
1

(2π)n

∫
dξ

∫
γ0

dλ exp(−λ)b−2(x, ξ, λ)

just as in the classical case. It follows then that the small time asymptotics of tr e−tD is
the same as in the classical case.
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There are two (equivalent) expressions for the zeta function of D, one in terms of the
trace of e−tD, and the other in terms of the trace of D−s. To see that these are equivalent
we observe that for Re s > n/2

1
Γ(s)

tr
∫ ∞

0

∫
γ0

(e−λt(λ−D)−1)dλts−1dt = tr
∫
γ0

((λ−D)−1)λ−sdλ.

We may replace γ0 by γ in this last integral. So we have

ζD(s) = tr
[

1
Γ(s)

∫ ∞
0

ts−1e−tDdt

]
.

Finally we may show that this zeta function has no pole at s = 0. To prove this we
again follow [10] (Theorem 4, p. 302). By Lemma 8 we know that it suffices to prove
that trG(s) analytically continues to Res > −1. However by the definition of B(λ) we
may appeal to the proof in [10] for this result. This means that we can introduce the
definition: Det(D) = exp(−ζ ′(0)).

6.4. A property of determinants. In this subsection we prove an abstract result re-
garding the determinants of Laplacians which are framed pseudodifferential operators.

So let C(∗) be a complex of the kind considered in this section with coboundary
d and Laplacian ∆ = dd∗ + d∗d which is invertible. Suppose that Ck = Ck1 ⊕ Ck2 is a
decomposition into submodules each of which is projective with C(∗)

1 being a subcomplex.
Then d may be represented as a matrix

(
d1
0

a
d2

)
with respect to this decomposition. We

suppose that C(∗)
j is acyclic for j = 1, 2 and that ∆j denotes the Laplacian for these

complexes.

Lemma 9. Assume that these complexes are such that the determinants of the respec-
tive Laplacians exist as in the previous subsections. Then

Det(∆) = Det(∆1) Det(∆2).

Proof. Let du =
(
d1
0

ua
d2

)
where u is a nonnegative real parameter. Let ∆u = d∗udu +

dud
∗
u be the corresponding Laplacian. Then Cp = Ker du ⊕ Ker d∗u by acyclicity and so

∆−su = (d∗udu)−s ⊕ (dud∗u)−s. Hence with D = d∗udu, D
′ = dud

∗
u, and Res > n/2,

ζ∆u
(s) = ζD(s) + ζD′(s).

Now each of these terms can be handled in the same way. Thus

ζD(s) = tr
1

Γ(s)

∫ ∞
0

ts−1tr(e−tD)dt.

Hence
d

du
ζD(s) = − 1

Γ(s)

∫ ∞
0

ts tr
(
d

du
(D)e−tD

)
dt.

Then
d

du
ζD(s) = − 1

Γ(s)

∫ ∞
0

tr
[
d

du
D

∫
γ0

(e−λt(λ−D)−1dλ

]
tsdt

= −s
∫
γ0

tr
[
d

du
(D)(λ−D)−1

]
λ−s−1dλ.
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Replacing γ0 by γ in this last formula we find:

d

du
ζ ′(s) = −s

∫
γ

lnλλ−s−1 tr
[
d

du
(D)(λ−D)−1

]
dλ−

∫
γ

tr
[
d

du
(D)(λ−D)−1

]
λ−s−1dλ

So
d

du
ζ ′(0) = −

∫
γ

tr
[
d

du
(D)(λ−D)−1

]
λ−1dλ = − tr

[
d

du
(D)D−1

]
Now

d

du
(D)D−1 =

(
d

du
(d∗u)du + d∗u

d

du
(du)

)
(d∗udu)−1

and using the acyclicity we know that du is an invertible operator onto its range so that
d

du
(D)D−1 =

d

du
(d∗u)(d∗u)−1 +

d

du
(du)(du)−1

and the trace of the right hand side of this last equation is zero.

6.5. Invertibility of the Laplacian on Ker θ. Consider the commutative diagram which
connects the de Rham complex with the simplicial cochain complex

Λp−1
dp−1−→ Λp

dp−→ Λp+1yθp−1

yθp yθp+1

Cp−1 ∂p−1−→ Cp
∂p−→ Cp+1

, (63)

where

θ(ω)(σ) =
∫
σ

(1 + ∆)−Nω (64)

for a sufficiently large positive number N . The diagram (64) can be completed with the
insertion of the complex defined using the Sobolev norms

Λp−1
dp−1−→ Λp

dp−→ Λp+1y y y
HsΛp−1

dp−1−→ HsΛp
dp−→ HsΛp+1yθp−1

yθp yθp+1

Cp−1 ∂p−1−→ Cp
∂p−→ Cp+1

(65)

for nonnegative s ≥ 0 whence the operators d are unbounded with domain of definition
H∞Λp = Λp. Since θ is surjective and has an adjoint, each vertical homomorphism θp
can be described in terms of a splitting of the diagram (65) in the following way. Put

Kersp = Ker(HsΛp
θp−→Cp). (66)

This submodule is closed in HsΛp and has an orthogonal complement, C̃ps , so

HsΛp = Kersp⊕Cps (67)

with respect to the Hilbert space structure in HsΛp.

Lemma 10. The inclusion

Ker∞p ⊂ Kersp (68)

is onto a dense subspace.
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Proof. One has a splitting

Λp = Ker∞p ⊕Cp∞ (69)

at least locally. Therefore we may write the inclusion mapping as

A =
(
A1 A2

0 A4

)
: Ker∞p ⊕Cp∞ → Kersp⊕Cps , (70)

where A4 is an isomorphism, A2 is a continuous mapping from a finitely generated module
to Kersp and the image of A is dense. Then if x ∈ Kersp there exists a sequence (yn, zn) ∈
Ker∞p ⊕Cp∞ such that limA(yn, zn) = x. Hence limA4(zn) = 0 and lim zn = 0. Hence
limA2(zn) = 0 from which we deduce limA1(yn) = x.

Recall that the differential d restricted to Kersp,

Kersp−1
d−→Kersp (71)

is an unbounded operator.

Theorem 3. Consider the Hilbert structure on Kersp induced by the Hilbert structure
of HsΛp and the restriction ds of d to Kersp, the corresponding adjoint operator δs and
the Laplace operator

∆s = dsδs + δsds, (72)

∆s : Kersp → Kersp . (73)

Then the operator ∆s is an invertible unbounded operator.

Proof. Consider the diagram

Λp−1
dp−1−→ Λp

dp−→ Λp+1y y y
HsΛp−1

ds,s−1
p−1−→ Hs−1Λp

ds−1,s−2
p−→ Hs−2Λp+1yθp−1

yθp yθp+1

Cp−1 ∂p−1−→ Cp
∂p−→ Cp+1

, (74)

s− 2 ≥ 0. In (74) in the middle row the homomorphisms d are bounded.

Lemma 11. The vertical homomorphisms in (74) induce an isomorphism of homology
groups.

Proof. Because the operators d form an elliptic complex there are operators

Bp : Hs−1Λp → HsΛp−1 (75)

such that

ds,s−1
p−1 Bp : +Bp+1d

s−1,s−2
p = 1 + S : Hs−1Λp → Hs−1Λp, (76)

where S is a smoothing operator. The inclusion Λp → Cp in the diagram (74) induces
an isomorphism of cohomology groups, hence θ∗p is surjective. Let us prove that θ∗p is
injective. Let x ∈ Hs−1Λp be closed, ds−1,s−2

p x = 0. Then using (76) one has

ds,s−1
p−1 Bpx = x+ S(x), y = S(x) ∈ Λp. (77)
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Assume that θp(x) gives the trivial cohomology class. Then for y we have y = dp−1(z),
that is, ds,s−1

p−1 (z) = y. Hence

ds,s−1
p−1 (Bpx− z) = x. (78)

Corollary 1. The complex

Kersp−1

ds,s−1
p−1−→ Kers−1

p

ds−1,s−2
p−→ Kers−2

p+2 (79)

is acyclic.

The proof needs some additional facts. Consider the operator ∆0 from (73) for s = 0.
Introduce new Hilbert space structures on the Hilbert modules Kersp by setting:

〈ω1, ω2〉s = ((1 + ∆0)sω1, ω2)0. (80)

Lemma 12. The new Hilbert structure (80) has a norm equivalent to the old norm on
Kersp.

Proof. The old norm on Kersp is written as

(ω1, ω2)s = ((1 + ∆)sω1, ω2)0. (81)

The operator
∆ = dδ + δd (82)

can be written using the matrix presentation of d defined by the splitting (67) for s = 0:

d =
(
d0 a

0 b

)
. (83)

Hence

∆ =
(
d0d
∗
0 + d∗0d0 + aa∗ ∗

∗ ∗

)
, (84)

where the stars denote finite dimensional bounded operators. Therefore

(1 + ∆)s =
(

(1 + d0d
∗
0 + d∗0d0)s + F ∗
∗ ∗

)
, (85)

where F denotes a selfadjoint nonnegative differential operator of order less than 2s. The
old Sobolev s-norm is given on Kersp by

(ω, ω)s = ((1+∆)sω, ω)0 = (((1+d0d
∗
0 +d∗0d0)s+F )ω, ω)0 = (((1+∆)s+F )ω, ω)0 (86)

which evidently is equivalent to the norm (80).

We return now to complete the proof of the corollary. The definition (72) of ∆0 implies
immediately that d and δ0 commute with ∆0. Consider then the acyclic complex (79)
with bounded differentials and new Hilbert space structure

Ker〈s〉p−1

ds,s−1
p−1−→ Ker〈s−1〉

p

ds−1,s−2
p−→ Ker〈s−2〉

p+2 . (87)

Hodge theory says that if δ̂p is the adjoint of ds−1,s−2
p in (87) then the bounded operator

δ̂pd
s−1,s−2
p + ds,s−1

p−1 δ̂p−1 : Ker〈s−1〉
p → Ker〈s−1〉

p (88)

is an isomorphism.
On the other hand one has

δ̂pd
s−1,s−2
p + ds,s−1

p−1 δ̂p−1 = ∆0(1 + ∆0)−1 = (1 + ∆0)−1∆0. (89)
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Now (89) means that ∆0 is an invertible unbounded operator. For arbitrary s ≥ 0 the
arguments are similar.

7. The A-torsion and L2-torsion. With all of the technical preliminaries accounted
for in the previous section we come to the main point of the paper. We let A have its
canonical trace tr. We assume that the Sobolev index s = 0. Recall that we have the two
complexes:

Cone(θ|V ∗(M,θ)) (90)
and

U∗(M, θ) = Ker(θ). (91)
Each of these is acyclic and the coboundary for

Cyl∗ = Cone(θ|V ∗(M,θ))⊕ U∗(M, θ),

has the matrix form

dc =
(
d 0
∗ d0

)
.

As the Laplacians of d0 and d are invertible on their respective complexes we may apply
Lemma 9 to conclude that on j-cochains

Det(δcdc) = Det(δ0d0) Det(δd). (92)

Now define the A-torsion for the cone complex of the de Rham homomorphism with
coboundary d by the formula:

T (Cone) = exp
[

1
2

∑
j

(−1)j(ζDj )
′(0)
]

where Dj is the operator δd restricted to j-cochains. Similarly the A-torsion T (Ker) of
the complex Ker(θ) is given by the same formula with Dj replaced by (δ0d0). Finally, the
A-torsion of the full complex Cyl∗ is the product:

T (M,A, tr) = T (Cone)T (Ker) = exp
[

1
2

∑
j

(−1)j(ζDc
j
)′(0)

]
where Dc

j = δcjd
c
j .

Notice that this definition avoids the need to discuss the asymptotic behaviour of the
trace of the heat operator for large time (the so-called decay problem) but at a price.
This will become evident in the next section when we relate this definition to that of the
L2-torsion. For this we need some preliminary discussion which is contained in the next
subsection.

7.1. Asymptotics at zero of the spectral density function. Consider the complex
C∗(M,C∗[π]). If we equip C∗[π] with the trace arising from the regular representation
then this complex may be completed in its natural Hilbert space structure so that it
becomes a free Hilbert U-module C∗(M,U) where U is the von Neumann algebra gen-
erated by π in the regular representation. The trace now extends to the commutant
of this U-action. Define the spectral resolution ∂∗j ∂j =

∫∞
0
λdEλ and using the fact

that the spectral projections lie in the commutant of the U-action, the spectral density
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Fj(λ) = tr(Ejλ) − tr(Ej0). Finally we have the Fuglede-Kadison determinant Det∂j =
Det(∂∗j ∂j)

1/2 where

Det(∂∗j ∂j) = exp
[ ∫ ∞

0

lnλdFj(λ)
]
.

We say that the complex C∗(M,C∗[π]) is of regular determinant type whenever Det∂j
is nonvanishing for all j. This occurs precisely when the integral in the exponent in the
definition of the determinant converges. A sufficient condition for this is that the manifold
has decay, that is, there is a βj > 0 with Fj(λ) ≤ Cλβj for some C > 0 and all j.

7.2. A homotopy equivalence. In this subsection we construct a homotopy equivalence
between the identity and the zero map for the chain complex of Hilbert modules:

Ker0
p−1

dp−1−→Ker0
p

dp−→Ker0
p+1 . (93)

In (93) the operators dp should be considered as closed unbounded operators whose
domains are Ker1

p. Then the corresponding bounded chain complex (79) can be described
in terms of (93) using the natural isomorphism of chain complexes

Kersp−1

ds,s−1
p−1−→ Kers−1

p

ds−1,s−2
p−→ Kers−2

p+1yjp−1

yjp yjp+1

Ker0
p−1

d̃p−1−→ Ker0
p

d̃p−→ Ker0
p+1

(94)

where the vertical isomorphisms are jp−1 = (1 + ∆0)s/2, jp = (1 + ∆0)(s−1)/2, jp+1 =
(1 + ∆0)(s−2)/2, . . . . The operators in the bottom row are

d̃p = (1 + ∆0)−1/2dp. (95)

The upper row is acyclic. This means that there are bounded operators

T̃p : Kers−1
p → Kersp−1 (96)

such that
d̃s,s−1
p−1 T̃p + T̃p+1d̃

s−1,s−2
p = 1 : Kers−1

p → Kers−1
p . (97)

Put
Tp = (1 + ∆0)(−p+s)/2T̃p(1 + ∆0)(p−s)/2 : Ker0

p → Ker0
p−1 . (98)

If the T̃p are pseudodifferential operators of order −1, then the Tp are pseudodifferential
operators of order −1. Hence the range of Tp belongs to the domain of dp−1.

Thus we construct T̃p as a pseudodifferential operator (or at least operators which
preserve order on the Sobolev scale of spaces of large order). Then the complex (79) is
acyclic. Hence there is a splitting of each space Kers−1

p into the direct sum

Kers−1
p = Vp ⊕Wp, (99)

such that the operator ds,s−1
p can be represented as a matrix

ds,s−1
p =

(
0 d

0 0

)
: Vp ⊕Wp → Vp+1 ⊕Wp+1. (100)

The splitting (100) can be defined with projectors which are pseudodifferential operators
since the projector can be constructed as a holomorphic function on the spectrum of
the operator (ds,s−1

p )∗ds,s−1
p . The last has its spectrum with zero as isolated point as
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a consequence of acyclicity. On the other hand one has almost a chain homotopy. This
means that there are pseudodifferential operators D such that

ds,s−1
p−1 Dp +Dp+1d

s−1,s−2
p = 1 + S : Kers−1

p → Kers−1
p , (101)

where S is a smoothing operator. If

D =
(
D1 D2

D3 D4

)
, S =

(
S1 S2

S3 S4

)
, (102)

then put U3 = −d−1S1, U4 = −d−1S2, U1 = U2 = 0 and put T = D + U .

7.3. The A-torsion in the presence of decay. The discussion of the previous subsec-
tion established that the orthogonal complement V ∗(M, θ) of U∗(M, θ) = Ker(θ) is chain
homotopic to the full de Rham complex Ω∗(M,A) so that by results of Gromov and Shu-
bin [4] the decay of these two complexes is the same. Equally the decay of the complexes
Cone(θ|V ∗(M,θ)) and

Cylk = H0Ωk(M,C∗[π])⊕ Ck−1(M,C∗[π])

is the same. Our aim is to establish the relationship between the C∗-torsion for Cylk and
the von Neumann torsion when M has the decay property. To do this we first note that
as V ∗(M, θ) and C∗(M,C∗[π]) are isomorphic modules their completions V̄ ∗(M, θ) and
C∗(M,U) are isomorphic as U-modules. It follows from results of [4] that if one has decay
so too does the other. Henceforth we assume that C∗(M,U) has decay.

To go further we first observe that relative to the decomposition

Cylk = Cone(θ|V ∗(M,θ) ⊕Ker(θ),

the coboundary dc for Cyl∗ has the matrix form

dc =
(
d 0
∗ d0

)
.

As the Laplacians of d0 and d are invertible on their respective complexes we may apply
Lemma 9 to conclude that on j-cochains

Det(δcdc) = Det(δ0d0) Det(δd). (103)

Next we note that Cone(θ|V ∗(M,θ)) is a free C∗[π] module to which we may apply the
methods of [2]. Thus we have, on j-cochains,

d =
(
dV 0
θ −∂

)
,

and also decompositions

V ∗(M, θ) = (Ker dV )⊥ ⊕HV ⊕ Im dV

and

C∗(M,C∗[π]) = (Ker ∂)⊥ ⊕HC ⊕ Im ∂

where HV and HC denote the kernels of the respective Laplacians. Relative to these
decompositions d has the matrix form
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0 0 0 0 0 0
0 0 0 0 0 0
dV 0 0 0 0 0
θ11 0 0 0 0 0
θ21 θ22 0 0 0 0
θ31 θ32 θ33 −∂ 0 0

 .

From this one deduces that the range of δ decomposes as

(Ker d1)⊥ ⊕HV ⊕WV

where WV = δ Im dV while the range of d decomposes as

d(Ker d1)⊥ ⊕HC ⊕ Im dV .

Relative to these decompositions d is lower triangular:

d =

 d1 0 0
∗ θ22 0
∗ ∗ d2


where d1 = d|(Ker dV )⊥ and d2 = d|WV . Using properties of the Fuglede-Kadison determi-
nant [2] we deduce that

Det(d) = Det(d1) Det(d2) Det(θ22). (104)

Now consider the complex HV ⊥ ⊕HC⊥ with decomposition

(Ker dV )⊥ ⊕ Im dV ⊕ (Ker ∂)⊥ ⊕ Im ∂

and coboundary

d′ =


0 0 0 0
dV 0 0 0
θ11 0 0 0
0 θ33 −∂ 0

 .

Now Det(d′) = Det(d1) Det(d2) and we wish to relate this to Det(dV ) Det(∂). While it is
not necessarily true that Ker δ is the direct sum of Ker δV and Ker ∂∗ it is nevertheless
isometric to this direct sum by partial isometries Uj on j-cochains. Then Det(U∗j+1d

′
jUj) =

Det d′j and it is not hard to see that Det(U∗j+1d
′
jUj) is of the form(

dV 0
∗ −∂

)
relative to the direct sum Ker δV ⊕Ker ∂∗. Hence we have

Det(d′) = Det(dV ) Det(∂). (105)

Now let Dj = δcjdcj where dcj is the coboundary for Cylj . Combining (103), (104),
(105) we conclude that the A-torsion

T (M,A, tr) = exp
[

1
2

∑
j

(−1)j(ζDj )
′(0)
]

is the quotient

T (M,A, tr) = T (2)(M)/TRF (C)
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of the torsions for the de Rham and simplicial complexes. Here, with θ̃j = θj |HV and dM

the coboundary on the de Rham complex,

T (2)(M) = exp
[

1
2

∑
j

(−1)j(ζδM
j
dM
j

)′(0) + θ̃∗j θ̃j

]
is the L2-analytic torsion while

TRF (C) =
n∏
j=0

Det(∂∗j ∂j)
(−1)j/2.

is the L2-RF torsion of the simplicial complex.

Concluding remarks. The Laplacian for C∗(M,C∗[π]) is a matrix over the algebraic
group algebra. In the case of a free abelian fundamental group the projection onto the
kernel of the Laplacian may be shown to be a matrix over the algebraic group algebra (an
ingredient in the proof is the fact that the kernel is a free module). The same is therefore
true for the isomorphic A-module V ∗(M, θ). Thus for the full de Rham complex the
projection onto the kernel of the Laplacian is a matrix over A. In this case therefore we
may discuss the property of decay in the C∗-algebra context.

If this is true more generally then it opens the way to studying the A-torsion for the
de Rham complex twisted by any traceable representation of the fundamental group for
which decay holds. Some solvable discrete groups have many such representations. Then
we may ask if these A-torsion invariants contain significant information about the pair
M,π.
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