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Abstract. We consider a contractible closure of the space of Legendrian knots in the stan-
dard contact 3-space. We show that in this context the space of finite-type complex-valued
invariants of Legendrian knots is isomorphic to that of framed knots in R3 with an extra order 1
generator (Maslov index) added.

The idea to study invariants of generic objects via their degenerations goes back to

Poincaré. It was very efficiently applied by Vassiliev in his work on knot invariants [10].

It turns out to be very fruitful in numerous other situations. For example, the study

of invariants of Legendrian knots from a similar point of view was started by Arnold

in [1, 2, 3] where order 1 invariants of plane fronts and immersed curves were extensively

investigated.

In [8] the complete theory of finite type invariants of plane fronts without dangerous

self-tangencies was constructed. The approach was analogous to that used in [6] for the

study of invariants of regular plane curves. As in [2, 3], it was based on consideration

of only immersed Legendrian curves. The latter causes certain inconvenience since the

space of parametrisations of such curves has non-trivial topology. Therefore, to show, for

example, that a certain codimension 1 stratum in the space of maps defines a co-cycle, one

needs to check that its intersection with infinite order generators of the fundamental group

vanishes. This task is sometimes rather tricky (see [3]). On the other hand, introduction

of a contractible closure avoids such problems. But this can lead to appearance of some

other finite-type invariants corresponding to the strata of the closure and to upgrading

some order 0 invariants to positive order.

In the present paper we consider the closure of the space of immersed Legendrian
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curves in the standard contact 3-space by allowing non-immersed curves tangent to the

contact distribution only at their regular points. This results in a theory of finite-type

invariants which treats the Maslov index as an invariant of order 1 instead of usual order 0

(cf. [2, 3]). Similar to the traditional Vassiliev theory, we develop the corresponding

diagrammatic theory for the Legendrian knot invariants of our setting. We show that the

graded space of complex-valued invariants is isomorphic to that of framed knots in R3

[6, 7] with the Maslov index added as an extra generator.

The paper is organized as follows.

In Section 1 we recall some basic definitions.

In Section 2 we introduce the invariants we are studying and their extensions to

Legendrian curves and fronts with mild singularities.

In Section 3 we construct the diagrammatic interpretation of finite-type invariants and

formulate our main results: Theorem 3.4 on the homotopy between the fronts with mild

singularities, which yields the reduction from the invariants to the diagrams, and Theo-

rem 3.9 on the isomorphism between the graded spaces of the invariants and functions

on the diagrams. The two theorems are proved in Sections 4 and 5 respectively.

1. Legendrian curves in the standard contact 3-space. The standard contact

3-space is the space J1(R,R) of 1-jets of functions on the line with its canonical contact

structure α = du − y dx, where x is a point on the line, u the value of a function and y

the value of the derivative. We fix the orientation −α∧dα = dx∧du∧dy of the jet space.

A Legendrian curve is a mapping f : S1 → J1(R,R) such that f∗(α) ≡ 0. A Legen-

drian knot is an embedded Legendrian curve. A Legendrian knot type is a Legendrian-

isotopy class of Legendrian knots. All curves we are considering are oriented , that is, an

orientation of S1 is chosen.

It is very convenient to reduce the dimension and treat Legendrian curves via their

projections to the (x, u)- and (x, y)-planes.

The projections of generic Legendrian curves (any Legendrian knot type has such a

generic representative) in the (x, y)-plane are curves which have only transversal double

points as singularities: any contact plane in J1(R,R) projects isomorphically to the

(x, y)-plane. The forgotten coordinate u can be restored by the integration of the 1-form

y dx along the curve and hence the curves in the (x, y)-plane bound zero area. We call

such curves zero-curves.

We fix the orientation dx∧dy of the (x, y)-plane. The number µ of full turns made by

the velocity vector of an immersed zero-curve while we trace the curve once (that is, its

Whitney winding number) is called the Maslov index of the corresponding Legendrian

knot. It is independent of the choice of a zero-curve representing the Legendrian knot.

The projections of Legendrian curves to the (x, u)-plane are called fronts. In generic

case they have only transversal double points and semicubical cusps as singularities. Such

a front has no vertical tangents: the y-coordinate of the knot in J1(R,R) is du/dx.

Cusps of a front one-to-one correspond to points of the zero-curve with vertical tan-

gents, dy/dx = ∞. Therefore the Maslov index of a Legendrian knot is (µ+−µ−)/2, where

µ+ and µ− are the numbers of positive and negative cusps (those oriented downwards
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and upwards respectively) of its front.

The main difference between our approach to the study of Legendrian knots and the

traditional one (cf. [2, 3]) is that we shall be very much basing on the consideration of

non-immersed Legendrian curves. The most general way for them to appear is as follows.

Consider a generic local homotopy of a zero-curve contracting a loop. We integrate

it to a homotopy of Legendrian curves and then project to a local homotopy of fronts

(Figure 1).

u

x 3/2 5/2 3/2

y

x
3/2

Figure 1. Contracting a loop on a zero-curve and the corresponding homotopy of fronts

The straightforward integration shows that at the bifurcation instant a front with

a rhamphoid cusp (that is, a cusp of order 5/2) appears. The Legendrian curve which

corresponds to it has a local parametrisation with the lowest terms t 7→ (t2, t3, t5).

Similar to semicubical cusps, a rhamphoid cusp can be either positive or negative (the

above definition should be just repeated). We split each of these types into two subtypes,

left and right , depending on which side a cusp points to.

Another generic singularity of Legendrian curves, which is observed in their generic

homotopies and will be crucial for our study, is a self-intersection (the curve is still im-

mersed but fails to be embedded) which is best of all seen as a generic (that is, quadratic)

self-tangency of the front.

2. Invariants of Legendrian knots as invariants of their fronts

2.1. The discriminant. We shall be working with Legendrian curves mainly in terms

of their fronts.

Consider the space Ω of all maps of the form p ◦ f , where f : S1 → J1(R,R) is an

oriented Legendrian curve and p : J1(R,R) → R2 the standard projection from the jets

to the (x, u)-plane. We call Ω the space of fronts.

Non-generic fronts form in Ω a hypersurface. It has six components which correspond

to the possible degenerations in generic one-parameter families of fronts: concordant and

discordant self-tangencies, triple points, cusp crossings, cusp births/deaths and rham-

phoid cusps (Figure 2).

A self-tangency is concordant if the orientations of the tangent branches coincide and

discordant if the orientations are opposite.
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Cusp crossing bifurcation

Discordant self-tangency bifurcation

Cusp birth/death

Concordant self-tangency bifurcation

Rhamphoid cusp bifurcation

Triple point bifurcation

4/3

5/2

Figure 2. Degenerations in generic one-parameter families of fronts

Let the closures of the sets of fronts with concordant and discordant self-tangencies

be KC and KD respectively and that of fronts with rhamphoid cusps be R. We consider

the discriminant hypersurface Σ = KC ∪ KD ∪ R ⊂ Ω.

Definition 2.1. An invariant of fronts without self-tangencies and rhamphoid cusps

is a function locally constant on Ω \ Σ.

In what follows by ‘invariants of fronts’ we mean the invariants of this definition.

The space of such invariants coincides with the space of invariants of Legendrian

knots in the 3-space: lifting the homotopies of Figure 2 to the jet space one can easily see

that only self-tangency and rhamphoid cusp bifurcations can change the corresponding

Legendrian knots. Therefore, we shall make no difference between invariants of Legendrian

knots and front invariants (of Definition 2.1).

We call a front which, in addition to the singularities of generic fronts, has a finite

number of self-tangencies and rhamphoid cusps a singular front. A point on the smooth

part of Σ represents a singular front which has either one self-tangency or one rhamphoid

cusp. A generic point on the k-tuple transversal self-intersection of Σ represents a singular

front with n self-tangencies and m rhamphoid cusps, n + m = k. In the latter case we

say that a front has complexity k.

Now we co-orient Σ: in the direction of increase of the number of double points of

a front for the component KC , and in the direction of decrease of the same number for

both KD and R.

5/2

5/2

Figure 3. Extension of invariants to singular fronts
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As it is usually done in any theory of Vassiliev-type invariants, we extend invariants of

fronts without self-tangencies and rhamphoid cusps to singular fronts via the recurrence

relations of Figure 3. Here the fronts participating in each equation differ only by the

shown fragments and the relations between the curves are in fact the relations between

the values of an invariant on them. A rhamphoid cusp is distinguished by 5/2 next to it.

All these conventions will be used all through the paper.

Definition 2.2. An invariant is said to be of order at most k if its extension to the

set of singular fronts of complexity k + 1 vanishes. An invariant is of finite type if it is of

order at most k for some k < ∞.

The way we define the extension implies that the Maslov index is an order 1 invariant:

according to Figure 3 its value on a front with one rhamphoid cusp is ±1.

2.2. Relations for extended invariants. A series of easy exercises on application of the

rules of Figure 3 prove

Proposition 2.3. Any extended invariant of fronts satisfies the relations of Figure 4.

In relation (d), each of the fragments is a deformation of a triple point of self-tangency

(Figure 5(d)): εi = 0 if the destroyed self-tangency was concordant and εi = 1 if it was

discordant.

(-1)
ε

(-1)
ε

(-1)
ε1 2 3

(d)

5/2

5/2
(b) (c)

5/25/2

(f)

5/25/2

(e)

+

(a)

Figure 4. (a) Cuspidal commutativity, (b) Cubical two-term relation,
(c) Cuspidal two-term relation, (d) Four-term relation,
(e) Three-term relation, (f) Rhamphoid commutativity

Relations (b) and (d) may be found in [8]. In fact the four-term relation is nothing

but the traditional 4T relation of Vassiliev theory.

The first five relations come from the codimension 2 strata of the discriminant Σ ⊂ Ω,

the last one from codimension 3. All of them are defined and shown in Figure 5: all

the fragments participating in relation (x) of Figure 4 are deformations of the curve

of Figure 5(x). For convenience, different branches are pictured in Figure 5 in different

styles.
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5/3

(a) (b) (d)

7/2

(e)

5/2

(f)(c)

Figure 5. (a) Rhamphoid inflection, (b) Cubical self-tangency,
(c) 3/2-cuspidal self-tangency, (d) Triple self-tangency point,

(e) 7/2-cusp, (f) Rhamphoid self-tangency

A more detailed explanation should be given to the nature of relation (a). It cor-

responds to the rotation of an ordinary cusp in the (x, y)-plane through the vertical

direction. A curve of degree 5/3 appears in the (x, u)-plane at the bifurcation instant

(Figure 6).

5/2

5/2
5/3

x

y

x

u

Figure 6. A rhamphoid inflection bifurcation

R e ma r k 2.4. Adding time as a third coordinate to the (x, u)-plane and collecting

all the fronts of the rhamphoid inflection bifurcation in a surface in the obtained 3-space,

one gets the discriminant of the reflection group H3.

3. Diagrams of fronts

3.1. Chord diagrams with distinguished points. Consider an anti-clockwise oriented

circle in the plane with a finite number of chords and distinguished points on it. All the

endpoints of the chords and distinguished points are assumed to be distinct. We also

assume that each of the distinguished points is equipped with a sign, either a plus or a

minus.

Definition 3.1. A marked chord diagram is an equivalence class of the above objects

up to orientation preserving diffeomorphisms of the circle. The complexity of a diagram

is the number of its chords plus the number of its distinguished points.

To every singular front we associate such a diagram in a very straightforward way.

Namely, we join by chords the pairs of points on the parametrising circle which are

mapped to the self-tangencies of the front and the distinguished points are the preimages

of the rhamphoid cusps. The sign of a distinguished point is the sign of the rhamphoid

cusp.
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Definition 3.2. Two marked chord diagrams are similar if:

• Their unmarked versions (obtained by omitting all distinguished points and their

markings from the diagram) coincide.

• The cyclic orderings of marked distinguished points on the two diagrams are the

same.

3.2. Related fronts and enumeration of the strata. In knot theory two singular knots

with the same chord diagram can be transformed one into the other by a homotopy (we

call it generic) that stays almost all the time in the set of knots with this diagram and at a

finite number of instants introduces an extra double point on a knot which immediately

disappears. This provides enumeration of strata of singular knots which is crucial for

Vassiliev theory. The analog of such enumeration in our case is as follows.

Consider the set Σk of all fronts whose self-tangencies and rhamphoid cusps are subject

to marked chord diagrams of complexity k and which otherwise have only moderate

singularities: transversal double points, semicubical cusps, 3/2-cusp crossings, cusp births

(with a local normal form a parabola of degree 4/3), third branches passing through self-

tangencies (transversally to the two tangent branches), rhamphoid cusp crossings (which

are the obvious degenerations of the 3/2-cusp crossings).

We are going to study generic homotopies of elements of Σk which do not affect

similarity classes of diagrams of their self-tangencies and rhamphoid cusps. These will be

paths in Σk enlarged with most of codimension 1 strata of its closure. The strata we are

adding are:

Σk+1;

Σ′
k: one of the self-tangencies of fronts from Σk degenerates to either a cubical self-

tangency or a 3/2-cuspidal self-tangency;

Σ′′
k: one rhamphoid cusp and one self-tangency of fronts from Σk join in a rhamphoid

self-tangency;

Σ′′′
k : one rhamphoid cusp of fronts from Σk degenerates to a rhamphoid inflection.

What we are not adding are degenerations of pairs of self-tangencies to triple self-

tangencies.

We set Σ̄k = Σk ∪ Σk+1 ∪ Σ′
k ∪ Σ′′

k ∪ Σ′′′
k .

Definition 3.3. Two fronts in Σk are related if they can be joined by a generic

homotopy in Σ̄k.

Theorem 3.4. Two singular fronts are related if and only if their marked chord

diagrams are similar.

Of course, related fronts are easily seen to have similar diagrams. The converse will

be proved in Section 4.

3.3. Symbols of finite order invariants. Let Rk be the space of our front invariants of

order at most k. An invariant of order k is an element of Rk \ Rk−1.

Definition 3.5. The symbol of an order k invariant is its restriction to the fronts of

complexity k.
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Theorem 3.4 and relations (a), (b), (c), (f) of Figure 4 imply

Corollary 3.6. The value of the symbol of an order k invariant on a front of com-

plexity k depends only on the similarity class of the marked chord diagram of the front.

For example, relation (a) of Figure 4 kills the difference between left and right rham-

phoid cusps of the same sign.

Consider a symbol as a function on marked chord diagrams themselves rather than

on their similarity classes. Then Proposition 2.3 translates into

Corollary 3.7. The values of symbols of front invariants on marked chord diagrams

satisfy the relations of Figure 7.

+ +

+

+

Figure 7. The four-term, three-term and floating point relations for symbols

Conventions of Figure 7 are similar to those used earlier for evaluating invariants on

fronts: the relations on diagrams are actually relations on the values of a symbol on them,

fragments of the diagrams based on the solid arcs are explicitly shown while those based

on the dotted arcs are all omitted, diagrams participating in the same equation differ

only by the fragments based on the solid arcs.

Example 3.8. The symbol of the Maslov index vanishes on the 1-chord diagram. It

is +1 on the diagram with one positive distinguished point and −1 on that with one

negative point.

Let M be the space of all linear combinations of finitely many marked chord diagrams

modulo the relations of Figure 7 (considered this time as relations between diagrams).

It contains the commutative and cocommutative algebra A of ordinary chord diagrams

modulo the four-term relation [9]. The multiplication in A is the connected summation

of diagrams. From this one can easily check that the relations of Figure 7 guarantee that

M itself is a commutative and cocommutative algebra with the connected summation

of diagrams as a well-defined multiplication. Over char 6= 2, algebra M is isomorphic to

the extension A[g] of A by an element

+:=:=g

Again the multiplication is as above. Element g is dual to µ/2.

Thus M can be treated over char 6= 2 as the space spanned by chord diagrams

with distinguished (but unmarked) points considered modulo the four-term relation and
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unmarked floating point relation:

Let the complexity k part of M ≃ A[g] be A[g]k and A[g]∗k its dual space. Corollary 3.7

implies that the symbol space Rk/Rk−1 is a subspace of A[g]∗k.

Theorem 3.9. For complex-valued invariants Rk/Rk−1 = A[g]∗k.

The proof of the equality involves a modification of the universal Vassiliev-Kontsevich

invariant [9] and is given in Section 5.

4. Normal forms of fronts: Proof of Theorem 3.4. We prove that all singular

fronts with similar marked chord diagrams are related by bringing them to a common

normal form. An example of what we are aiming at is given in Figure 8. Its main features

are

• self-tangencies and rhamphoid cusps are gathered in different sections of the front

separated by points A (base point) and B;

• all self-tangencies are ordered (see Subsection 4.2) in a line and the connections

between them are as simple as possible;

• all rhamphoid cusps form a sort of a staircase with the simplest connections between

the steps.

We explain how to achieve each of the features in the corresponding subsections below.

+

+

+

A

5/2

5/2

5/2

5/2

5/2

5/2

AB

Figure 8. A front with a given marked chord diagram with a base point A
in the normal form

4.1. Separating self-tangencies and rhamphoid cusps

Lemma 4.1. Any singular front is related to a singular front with the diagram in

which distinguished points are not separated by endpoints of the chords.

P r o o f. Let us show that we can arrange free transportation of the rhamphoid cusps

along a front through its self-tangencies and ordinary cusps in the direction (just to make

it definite) of its orientation.

The major constraint in homotopies is as follows. Any point of a front can be moved

vertically. But it may resist moving horizontally as our fronts do not have vertical tangents
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and local extrema of the horizontal coordinate x on them can be achieved only at cusps,

ordinary and rhamphoid.

We release a 5/2-cusp introducing a swallowtail next to it and arranging the floating

cusp-pair of one rhamphoid cusp and one semicubical as in Figure 9.

5/2 5/2 5/2 5/2

floating cusp-pair

Figure 9. Achieving a floating cusp-pair

Moving such a pair through a self-tangency is obvious and causes no problems at all.

To pull the pair through an ordinary cusp, we must first ensure that its leading

cusp (defined by the direction of the move, that is, by the orientation of the front, see

Figure 10(a)) is semicubical. If it is not so, the swap can be done by the rhamphoid

inflection bifurcation.

5/2
5/2

5/2

leading cusp

(b)
(a)

Figure 10. (a) The leading cusp in a floating cusp-pair, (b) Passing a floating cusp-pair
through a semicubical cusp

Up to a rhamphoid cusp bifurcation we can assume that the sign of the cusp we would

like to pass through coincides with that of the leading cusp in the pair. Now the passing

itself can be done as shown in Figure 10(b).

Choosing a generic base point A on a singular front, we collect all the rhamphoid

cusps behind it (with respect to the orientation). Choosing now another generic point,

B, just before the first 5/2-cusp, we end up with two intervals: one, AB, containing all

self-tangencies and the other, BA, containing all rhamphoid cusps (cf. Figure 8).

4.2. Simplification of the self-tangency part. Up to introduction of swallowtails we

can assume that the front at both points A and B is oriented from the right to the left.

To allow free horizontal moving in what follows we add a zig-zag (Figure 11) on either

side of A and B.

5/2

Figure 11. Zig-zag birth

Introducing swallowtails again and sliding self-tangencies along them, we ensure all

the self-tangencies being concordant and, moreover, with all their local branches oriented

from the right to the left.
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We order the branches of each self-tangency by the order of the visits to it starting

from point A. The homotopy of Figure 12 allows us to assume that the branch of the

second-time visit to each self-tangency is always below the branch of the first-time visit.

2
1

Figure 12. Arranging self-tangencies

We insert zig-zags around each point of self-tangency (Figure 13) to let it move freely

along the plane.

Figure 13. Releasing a self-tangency

Now we move points A and B to one u-level, B to the left of A. We move all the

self-tangencies to the same level, placing them from A to B in the order of the visits to

their first-time branches if one starts from A (cf. Figure 8).

To finish the normalisation of the self-tangency section of the front we have to simplify

the connections between A, B and self-tangency points. The procedure is based on

Lemma 4.2. Let SE be an interval of a generic front with regular starting and fin-

ishing points S and E, E to the left of S. Let the orientations at S and E be both

right-to-left. There exists a homotopy of the interval which keeps its endpoints fixed, in-

volves only generic bifurcations of Figure 2 and makes SE smooth.

P r o o f. Put all the interval from S to E into a box and scale the box down pulling

out its connections with S and E (Figure 14(a)).

N

M
(b)(a)

E S SE

Figure 14. (a) Minimising the region, (b) The closest neighbouring cusps

Let us show that we can reduce any positive number of cusps in the box. We say that

two cusps c1 and c2 of SE are neighbouring if there are no other cusps between c1 and c2

on the front. Take the pair of neighbouring cusps with the minimal horizontal distance.

Consider the strip of the plane bounded by the two vertical lines passing through these

cusps. Let M and N be the points at which the fragment containing the cusps leaves

the strip (Figure 14(b)). The interval MN contains no other cusps. Moving the points

vertically we bring MN to the standard zig-zag or swallowtail shape and kill it by the

standard homotopy.
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Corollary 4.3. Keeping all the conditions of Lemma 4.2, except for putting the

starting point S to the left of the finishing E, one can reduce the front interval to the

form of Figure 15.

2cc1

ES

Figure 15. The simplest interval with the starting point to the left of the finishing

P r o o f. Up to rhamphoid cusp bifurcations we can assume that the first cusp c1

after S is positive and the last cusp c2 before E is negative. Moving the points vertically

we make the intervals Sc1 and c2E monotonic. Now using the ‘vertically reflected’ version

of Lemma 4.2 we smooth the interval between regular points just after c1 and just before c2

to obtain Figure 15.

Application of Lemma 4.2 and Corollary 4.3 finishes the normalisation of the self-

tangency section of our front.

4.3. Simplification of the part with rhamphoid cusps. Now we normalise the interval

from B to A. Up to creation of a floating cusp-pair (Figure 9) and applying a rhamphoid

inflection bifurcation to it, we can assume that the first 5/2-cusp r1 after B points to

the left. Similarly we ensure that the second rhamphoid cusp, r2, points to the right, the

third, r3, to the left and so on in the alternating order.

We move the rhamphoid cusps along the plane so that r1 is lower and to the left

of B, r2 is lower and to right of r1 and so on in the descending and alternating order.

Introducing a zig-zag just before A (if needed) we align vertically B with all the reven

and separately align all the rodd (see Figure 8).

Applying Lemma 4.2 we smooth the intervals Br1, r1r2, r2r3, . . . . We can also arrange

their intersections to be as minimal as possible so that only two half-branches of each

negative rhamphoid cusp have exactly one point of transversal intersection (Figure 8).

Finally, if the number m of 5/2-cusps is even, we apply Corollary 4.3 to simplify the

interval rmA. If m is odd, we take the last ordinary cusp clast before A (the cusp can be

made negative) and smooth the interval rmclast applying Lemma 4.2.

This finishes the normalisation (see Figure 8). The final normal form is easily seen to be

uniquely defined by the similarity class of the diagram of self-tangencies and rhamphoid

cusps of a singular front once the base point A is chosen on the parametrising circle.

Here the uniqueness is that up to vertical moves of the smooth branches connecting the

singularities.

5. Modified Kontsevich integral

5.1. The universal invariant. Similar to [5, 6, 7] we define a version of the Kontsevich

integral [9, 4] for Legendrian knots in J1(R,R).

Represent the jet space with its standard coordinates x, y, u as a product C×R with

the complex coordinate z = x + iu and real coordinate y.

We say that a Legendrian knot is Morse if y is a Morse function on it (that is, all

inflections of the front are non-degenerate).
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A Legendrian knot in the jet space is canonically framed by the negative u-direction

(recall that the canonical Legendrian framing is that transversal to the contact structure).

Consider a non-singular oriented Morse Legendrian knot L and its small shift Lε in

the direction of the framing:

(z, y) 7→ (z, y) + ε(−i, 0).

For all sufficiently small ε > 0, Lε is a knot which does not intersect L. It inherits the

orientation of L.

The shift along the framing gives a one-to-one correspondence between points on L

and Lε. For a point (z′, y) ∈ Lε this defines its ancestor (z′′, y) ∈ L on the same y-level.

Let ymin and ymax be absolute extrema of function y on L. Take k different non-critical

values of y: ymin < y1 < y2 < . . . < yk < ymax. On each level y = yj we choose either

one ordered pair of points (zj, z
′
j) = (zj , z

′
j)(yj) ∈ L × Lε or we distinguish one point

z•j = z•j (yj) on L.

Let P be a set of pairs and single points obtained by such a choice. It defines the

marked chord diagram of complexity k as follows.

In each pair we substitute z′j ∈ Lε by its ancestor z′′j ∈ L. Knot L is the image of an

immersion of a standard anti-clockwise oriented circle on the plane. If zj 6= z′′j we join

the preimages of zj and z′′j by a chord on the source circle. If zj = z′′j we draw a small

chord between two arbitrary points on the circle which are very close to the preimage

of zj. Also we distinguish the preimages of the m distinguished points z•j .

We denote by D(P ) the equivalence class of the obtained chord diagram with dis-

tinguished points in the complexity k part A[g]k of the diagram algebra A[g] of Subsec-

tion 3.3.

Definition 5.1.

Zk(L,Lε)

=
1

(2πi)k

∫

ymin<y1<y2<...<yk<ymax

∑

P={(zj ,z′
j
)(yj),z•

j
(yj)}

(−1)#P↓

( k∧

j=1

ωj

)
D(P ) ∈ A[g]k,

where P runs through all possible configurations of pairs and distinguished points on the

levels yj of L∪Lε, #P↓ is the number of points in the configuration P at which function

y is decreasing along L ∪ Lε and

ωj =

{
dzj−dz′

j

zj−z′
j

if there is a chord on the level yj ,

i dθj if there is a distinguished point on the level yj ,

where θj is the angle from the positive y-direction to the velocity vector of the Legendrian

knot at the point (z•j , yj).

The angle in a contact plane is taken with respect to its standard orientation dα.

Definition 5.2.

Zk(L) = lim
ε→0

Zk(L,Lε), Z(L) =
∑

k≥0

Zk(L) ∈ A[g] =
∏

k≥0

A[g]k.
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Similar to [6] (cf. [9]) we have

Theorem 5.3.

(i) The limit that defines Zk(L) is finite.

(ii) Zk(L) is invariant under homotopy in the class of Morse Legendrian knots in

the jet space.

(iii) Zk(L) is an invariant of order at most k.

P r o o f. All the claims are implied by the corresponding claims from [6, 7] (based

on [9]) after the following observation.

Set as above

Z(L,Lε) =
∑

k≥0

Zk(L,Lε) ∈ A[g].

Consider a choice of the set P of n pairs and m distinguished points on the Legendrian

link L ∪ Lε. We fix the n levels which contain pairs on the link. We vary the other

m levels between ymin and ymax taking all possible allowed choices of m distinguished

points on them. Due to the floating point relation in A[g], no matter where we place

the distinguished points the diagrams will all give the same element of A[g]. In A[g] this

element is the product of an n-chord diagram and an m-point diagram.

Thus

Z(L,Lε) = Z(L,Lε)
C ×Z(L,Lε)

D

where the factors are the sums of the integrals similar to the sum defining Z(L,Lε) with

the sets P consisting purely of pairs and distinguished points respectively.

We see that limε→0 Z(L,Lε)
C is nothing but the Kontsevich invariant Z(L)f from [6]

for the Morse framed knot L in R3 with its canonical Legendrian framing. All the claims

of Theorem 5.3 are valid for all the fixed complexity components of it.

The second factor, Z(L,Lε)
D does not depend on ε at all and can be easily calculated

explicitly:

Z(L,Lε)
D = exp(µg),

where µ is the Maslov index of L and g ∈ A[g] is the one-point diagram. This follows

from the fact that

1

2πi

∫

ymin<y1<ymax

∑

P={z•
1
}

(−1)#P↓ i dθ(y1) = µ.

Corollary 5.4. Z(L) = Z(L)f × exp(µg).

As usual, the expression Z(L) is not invariant under deformations which change the

number of critical points of the function y on L and we have to adjust it to get a universal

invariant.

As in [6], consider the non-Legendrian curve U in the plane {Im z = 0} ⊂ C×R with

the framing (−i, 0) (Figure 16).

The series Z(U)f ∈ A ⊂ A[g] is invertible since it starts with 1 ∈ A[g]0.
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zRe

y

x=

U

Figure 16. The curve U

Definition 5.5. The universal Vassiliev-Kontsevich invariant of a Morse Legen-

drian knot L in J1(R,R) is

Z̃(L) = Z(L) ×
(
Z(U)f

)1− c
2 ∈ A[g],

where c is the number of critical points of the function y on L.

According to the last corollary

Z̃(L) = Z(L)f × exp(µg) ×
(
Z(U)f

)1− c
2 = Z̃(L)f × exp(µg),

where Z̃(L)f is the value of the universal invariant of framed knots in R3 on the knot L

with its canonical Legendrian framing [6].

Theorem 5.6 (cf. [6, 9]). The series Z̃(L) is an invariant of a Legendrian knot type.

Clearly, the complexity k component Z̃k(L) ∈ A[g]k of Z̃(L) is an invariant of order

at most k.

5.2. Proof of Theorem 3.9. Let L ⊂ J1(R,R) be a generic Legendrian knot and F

its front. According to our earlier discussion, we identify invariants of Legendrian knots

with invariants of fronts without self-tangencies and rhamphoid cusps. Therefore, we set

the universal invariant Z̃(F) of F to be the universal invariant Z̃(L) of L.

To prove the theorem, it is sufficient to show that any n-chord diagram D ∈ A[g] with

m distinguished points is the lowest order term in a linear combination of the universal

invariants of some generic fronts.

Let us order the distinguished points of D: p1, . . . , pm. Let Ds1...sm
, sj = 0, 1, be a

marked chord diagram obtained from D by assigning the signs (−)sj to the points pj . Ac-

cording to the definition of the generator g (Subsection 3.3) D =
∑

s(−1)s1+...+smDs1...sm
,

with the summation taken over all the 2m sequences s = (s1, . . . , sm).

Now take 2m singular fronts Fs1...sm
with the marked chord diagrams Ds1...sm

. We

assume that these fronts coincide everywhere except small neighbourhoods of their rham-

phoid cusps at which the difference is that standard one between the 5/2-cusps of the

proper signs. Then (cf. [9, 6] and Example 3.8)
∑

s

(−1)s1+...+smZ̃(Fs1...sm
) = 2n+mD + higher order terms .

R e ma r k 5.7. Similar to the approach of this paper one can study invariants of

Legendrian knots in the standard solid torus ST ∗R2 (isomorphic to J1(S1,R)). In that

case the graded space of finite type C-valued invariants turns out to be isomorphic to the

dual of a linear space spanned by chord diagrams with distinguished points which differs
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from M ≃ A[g] by an additional marking: the base circle must be assigned an arbitrary

integer w (the Whitney winding number of a front), and each side of each chord must be

assinged an integer (the Whitney numbers of the intervals into which the self-tangency

cuts the front) so that the sum of the two numbers on each chord equals w. The relations

are equipped with the appropriate markings as well. Cf. [5, 8].
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