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1. Introduction. In the present article, as a continuation of [14], we give Arnol′d-
Mather type characterisation of Lagrange stability for a class of singular Lagrange va-
rieties, open Whitney umbrellas, via the transversality in isotropic jet spaces. Also the
determinacy of isotropic map-germs by jets under Lagrange equivalence is considered.
We give an example of Lagrange stable isotropic map-germ of corank one in itself and of
corank two after the Lagrange projection. Lastly we mention open questions.

Let X be an n-dimensional manifold, and (M,ω) a 2n-dimensional symplectic man-
ifold with a symplectic form ω (n ≥ 1). A C∞ mapping f : X → M is called isotropic
if f∗ω = 0. Then f is a Lagrange immersion off the singular locus Σ(f) = {x ∈ X |
f is not immersive at x}.

The main object we are studying is a special class of singularities of isotropic map-
pings, namely, the open Whitney umbrellas, which are first recognised by Arnol′d, Given-
tal′ and Zakalyukin [6, 7].

We are mainly interested in the case M = T ∗Y , the cotangent bundle over an
n-manifold Y , endowed with the symplectic form ω = dθY , the exterior differential of the
Liouville 1-form θY on T ∗Y . Consider the canonical Lagrange projection π : T ∗Y → Y .
Then singularities of Lagrange projections of Lagrange submanifolds are called Lagrange
singularities. The study of Lagrange singularities is reduced by Hörmander and Arnol′d
to the theory of deformations of functions by means of generating families of Morse type.
Based on this reduction, Lagrange singularities are studied extensively. See [1, 26, 4].

An open Whitney umbrella is obtained as a component of a singular Lagrange variety
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induced by a non-Morse generating family. For this direction, see [15, 27]. In this paper
we study singularities of Lagrange projections of open Whitney umbrellas, from the view
point of Thom-Mather’s theory of differentiable mapping.

After Thom’s work, Mather, in the series of papers [18], gives the theory on C∞-stable
mappings. Restricting ourselves to local C∞ theory, we recall the following results due
to Mather on C∞ map-germs f : (Rn, 0)→ (Rp, 0):

(A) Infinitesimal characterisation of stable map-germs.
(B) Determinacy: If f is stable then f is (p+ 1)-determined.
(C) Classification by R-algebras of stable map-germs. Construction of a stable germ

of given algebra type.
(D) Characterisation of stability by transversality.
(E) Determination of “nice range” where stable maps are generic.

Then we are naturally led to the question: Are there analogies to Thom-Mather’s
theory, for Lagrange stable projections of open Whitney umbrellas?

A germ of submersion π′ : (M,y0) → (Y, z0) is called a Lagrange projection if all
fibres of π′ are Lagrange submanifolds, in other word, if any pairs of components of π′

are Poisson commutative.
Consider a pair (f, π) (resp. (f ′, π′)) of map-germs f : (X,x0) → (M,y0) (resp.

f ′ : (X ′, x′0) → (M ′, y′0)) and a Lagrange projection π : (M,y0) → (Y, z0) (resp. π′ :
(M ′, y′0)→ (Y ′, z′0)). Then (f, π) and (f ′, π′) are called Lagrange equivalent if there exist
a diffeomorphism-germ σ : (X,x0)→ (X ′, x′0), a symplectomorphism-germ τ : (M,y0)→
(M ′, y′0) and a diffeomorphism-germ τ̄ : (Y, z0) → (Y ′, z′0) such that τ ◦ f = f ′ ◦ σ and
that τ̄ ◦ π = π′ ◦ τ .

In [14], we show the equivalence of the “homotopical” Lagrange stability and the
infinitesimal Lagrange stability. An isotropic map-germ f : (X,x0)→ (T ∗Y, y0) is homo-
topically Lagrange stable with respect to the standard Lagrange projection π : T ∗Y → Y ,
if any 1-parameter isotropic deformations ft of f are trivialised under Lagrange equiva-
lence, namely, if the pair (ft, π) and (f, π) are Lagrange equivalent by families (σt, τt, τ̄t).

Infinitesimal Lagrange stability is defined naturally in [14]. See also Section 3.
In this paper we define the Lagrange stability as follows: Roughly speaking, an

isotropic map-germ f : (X,x0) → (T ∗Y, y0) is Lagrange stable if, by any sufficiently
small isotropic perturbations, the Lagrange equivalence class of fx0 is not removed.
To formulate accurately, denote by C∞I (X,M) the space of C∞-isotropic mappings
from X to M , endowed with the Whitney C∞ topology. Then an isotropic map-germ
f : (X,x0)→ (T ∗Y, y0) is Lagrange stable if, for any isotropic representative f : U → T ∗Y

of f , there exists a neighbourhood W in C∞I (X,M) such that, for any f ′ ∈W , the original
pair of germs (f, π) is Lagrange equivalent to (f ′x′0 , π) for some x′0 ∈ U (cf. [4], page 325).

To characterise the Lagrange stability by means of transversality, we recall the iso-
tropic jet spaces [13]. Denote by Jr

I (X,M) the set of r-jets of isotropic map-germs f :
(X,x0)→ (M,y0) of corank at most one:

Jr
I (X,M) = {jrf(x0) | f : (X,x0)→ (M,y0) isotropic, corankx0

f ≤ 1}.

Then Jr
I (X,M) is a submanifold of the ordinary jet space Jr(X,M) ([13]). Moreover,



LAGRANGE STABILITY 125

for z = jrf(x0) ∈ Jr
I (X,M), r-jets of map-germs which are Lagrange equivalent to

f : (X,x0)→ (M,y0) form a submanifold of Jr
I (X,M).

If f : X → M is an isotropic mapping of corank at most one, then the image of the
r-jet section jrf : X → Jr(X,M) is contained in Jr

I (X,M). Then we regard jrf as a
mapping to Jr

I (X,M).
For a manifold-germ (X,x0), we denote by EX,x0 the R-algebra consisting of C∞

function-germs (X,x0) → R, and by mX,x0 the unique maximal ideal of EX,x0 . If the
base point x0 is clear in the context, we abbreviate EX,x0 and mX,x0 to EX and mX

respectively.
Now set

r0 = inf{r ∈ N | f∗ET∗Y ∩mr+2
X ⊂ f∗mn+3

T∗Y }.
Then, by Artin-Rees type theorem, r0 is a finite positive integer, determined by n and k,
the type of the open Whitney umbrella. Actually r0 depends only on the right-left equiv-
alent class of f .

The purpose of this paper is to show the following result, which is an analogue to the
points (A) and (D):

Theorem 1.1. Let dimX = dimY = n and f : (X,x0) → (T ∗Y, f(x0)) an open
Whitney umbrella. Then the following conditions are equivalent to each other for r ≥ r0:

(s) f is Lagrange stable.
(hs) f is homotopically Lagrange stable.
(is) f is infinitesimally Lagrange stable.
(a) f∗ET∗Y is generated by 1, p1 ◦ f, . . . , pn ◦ f as EY -module via (π ◦ f)∗.

(a′) f∗ET∗Y /(π ◦ f)∗mY f
∗ET∗Y is generated by 1, p1 ◦ f, . . . , pn ◦ f over R.

(a′′r ) f∗ET∗Y /{(π◦f)∗mY f
∗ET∗Y +f∗ET∗Y ∩mr+2

X } is generated by 1, p1◦f, . . . , pn◦f
over R.

(tr) The jet extension jrf : (X,x0) → Jr
I (X,T ∗Y ) is transversal to the Lagrange

equivalence class of jrf(x0).

For the notation, see [14] and Sections 2, 3.

In the case f is a Lagrange immersion, the condition (a′) is equivalent to the one that
a generating family of f is R+-versal [4]. In this case we see r0 = n+ 1.

Corollary 1.2 (Arnol′d, Tsukada). A Lagrange immersion-germ is Lagrange stable
if and only if its generating family is R+-versal.

This is clearly formulated in [4], while the explicit proof is omitted, as far as the author
knows, T. Tsukada has given an explicit proof in his unpublished work [23]. In the proof
by Tsukada, the perturbations of Lagrange immersions and those of their generating
families are studied explicitly, to show the equivalence of Lagrange stability and stability
of the generating families as unfoldings of functions. In our proof, Lagrange stability is
directly described, in the natural way, by the transversality in the space of isotropic jets.
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To establish the description, we need the determinacy result for isotropic map-germs.
On the ordinary theory of determinacy of map-germs, refer to the excellent survey [24].
Here we treat its isotropic counterpart.

An isotropic map-germ f : (X,x0)→ (T ∗Y, y0) is called Lagrange r-determined if, for
any Lagrange projection π′ : (T ∗Y, y0)→ Y with jrπ′(y0) = jrπ(y0), two pairs (f, π′) and
(f, π) are Lagrange equivalent. An isotropic map-germ f : (X,x0) → (T ∗Y, y0) is called
strictly Lagrange r-determined if, for any isotropic map-germ f : (X,x0) → (T ∗Y, y0)
with jrf ′(x0) = jrf(x0), (f ′, π) and (f, π) are Lagrange equivalent.

We easily see that, if f is strictly Lagrange r-determined, then f is Lagrange
r-determined. In the case f is a Lagrange immersion, these two notions coincide.

For the point (B), we show the following result, which seems to be a special case of a
theorem due to Givental′ ([7], Corollary 1, “sufficient jet theorem”):

Theorem 1.3. Let dimX = dimY = n. If an open Whitney umbrella f : (X,x0)→
(T ∗Y, y0) is infinitesimally Lagrange stable, then f is Lagrange (n + 1)-determined and
f is strictly Lagrange r0-determined.

Since no explicit proof is given in [7], we give a proof to assure ourselves.
For analogies to the points (C) and (E), see Section 6.

In the next section we recall the objects, open Whitney umbrellas. Theorem 1.3 is
proved in Section 3, with recalling the notion of infinitesimal Lagrange stability. In Sec-
tion 4, we describe the transversality in the isotropic jet space, as the infinitesimal La-
grange stability up to finite order. Theorem 1.1 is proved in Section 5.

For an isotropic map-germ f : (X,x0) → (T ∗Y, y0), the corank of π ◦ f : (X,x0) →
(Y, π(y0)) at x0 is called L-corank of f . The classification of Lagrange stable open Whitney
umbrellas with L-corank ≤ 1 is given explicitly [27, 12]. In Section 6, we give an example
f : (R5, 0) → (T ∗R5, 0) of Lagrange stable open Whitney umbrella with L-corank 2.
Such example seems to have never been given in any literature so far.

The author would like to thank I. A. Bogaevski, S. Izumiya, S. Janeczko and V. M. Za-
kalyukin for valuable comments and helpful encouragement.

2. Open Whitney umbrellas. We recall the definition given in [14].
The local model of an open Whitney umbrella f = fn,k : (Rn, 0) → (T ∗Rn, 0) of

type k (0 ≤ k ≤
[

n
2

]
) is concretely given by q1 ◦ f = x1, . . . , qn−1 ◦ f = xn−1,

qn ◦ f =
xk+1

n

(k + 1)!
+ x1

xk−1
n

(k − 1)!
+ . . .+ xk−1xn (=: u),

pn ◦ f = xk
xk

n

k!
+ . . .+ x2k−1xn (=: v),

and

pi =
∫ xn

0

∂(v, u)
∂(xi, xn)

dxn, 1 ≤ i ≤ n− 1,

where
∂(v, u)
∂(xi, xn)

is the Jacobian.
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Remark that fn,k is isotropic, that is, f∗n,kω = 0, where ω =
∑n

i=1 dpi ∧ dqi is the
standard symplectic form on T ∗Rn. Moreover, fn,k is a Lagrange immersion if and only

if k = 0. If k 6= 0, then the singular locus of fn,k is given by
{ ∂u
∂xn

=
∂v

∂xn
= 0

}
and,

therefore, has codimension two.
In general a C∞ map-germ f : (X,x0)→ (M,y0) is called an open Whitney umbrella

of type k if f is symplectically equivalent to fn,k, namely, if there exist a diffeomorphism-
germ σ : (X,x0) → (Rn, 0) and a symplectomorphism-germ τ : (M,y0) → (T ∗Rn, 0)
such that τ ◦ f = fn,k ◦ σ.

Thus Lagrange immersions are naturally generalised to open Whitney umbrellas:
In [14], we introduce the notion of symplectic stability and characterise open Whitney
umbrellas as symplectically stable isotropic map-germs of corank at most one.

In [14], Proposition 4.1, it is proved that if f : (X,x0)→ (T ∗Y, y0) is an open Whitney
umbrella, then the ramification module

Rf = {e ∈ EX | de ∈ 〈d(p1 ◦ f), . . . , d(pn ◦ f), d(q1 ◦ f), . . . , d(qn ◦ f)〉EX
},

is equal to the image f∗ET∗Y of the pull-back f∗ : ET∗Y → EX . Moreover, we see the
following (cf. [11]), which is needed later:

Lemma 2.1. Let f = fn,k : (Rn, 0) → (T ∗Rn, 0) be the local model of the open
Whitney umbrella of type k, and denote by m(Rf ) the unique maximal ideal of Rf . Then
x1, . . . , xn−1, u, v, pi ◦ f (1 ≤ i ≤ 2k − 1) form a basis of the “Zariski cotangent space”
m(Rf )/m(Rf )2 ∼= f∗mT∗Y /f

∗m2
T∗Y over R.

We call an isotropic map-germ f : (X,x0)→ (T ∗Y, y0) symplectically r-determined if
any isotropic map-germ f ′ with jrf ′(x0) = jrf(x0) is symplectically equivalent to f .

Clearly a Lagrange immersion is symplectically 1-determined. Similarly we have

Lemma 2.2. Let f : (X,x0) → (M,y0) be an open Whitney umbrella of type k,
0 ≤ k ≤

[
n
2

]
. Then f is symplectically (k+1)-determined. In particular, an open Whitney

umbrella is symplectically n-determined.

P r o o f. By [10], the condition that f is an open Whitney umbrella of type k is
described by the transversality of k-jet extension of (some components of) f . Therefore
the condition depends only on its (k+ 1)-jet at the base point. This implies the result.

3. Determinacy. The following is a fundamental fact we need (cf. [7]):

Lemma 3.1. Let r ≥ 0, and π′ : (T ∗Rn, 0) → (Rn, 0) be a Lagrange projection with
jrπ′(0) = jrπ(0), for the standard projection π : T ∗Rn → Rn. Then there exists a
symplectic diffeomorphism τ : (T ∗Rn, 0)→ (T ∗Rn, 0) such that π′ = π ◦ τ and jrτ(0) =
jr id(0).

P r o o f. The result for the case r = 0 is just the Darboux theorem for Lagrange
projections ([4], Theorem 18.4). The proof for arbitrary r follows from that for r = 0.

Therefore we see
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Lemma 3.2. Let r ≥ 1 and f : (X,x0) → (T ∗Y, y0) be an isotropic map-germ. Then
the following statements are equivalent to each other:

(1) For any symplectic diffeomorphism τ : (T ∗Y, y0) → (T ∗Y, y0) with jrτ(y0) =
jr id(y0), τ ◦ f is Lagrange equivalent to f with respect to π.

(2) For any Lagrange projection π′ : (T ∗Y, y0) → Y with jrπ′(y0) = jrπ(y0), (f, π′)
is Lagrange equivalent to (f, π).

We recall that the infinitesimal Lagrange stability of f is written as

V If = tf(VX) + wf(V LT∗Y ).

We denote by V If the set of infinitesimal isotropic deformations of f . Remark that
the symplectic structure on T ∗Y induces the isomorphism, therefore a diffeomorphism
T (T ∗Y ) ∼= T ∗(T ∗Y ). Besides, T ∗(T ∗Y ) has the natural symplectic structure ω = dθT∗Y ,
where θT∗Y is the Liouville 1-form on T ∗(T ∗Y ). Therefore we have naturally a symplectic
structure ω̃ = dθ̃T∗Y on T (T ∗Y ), via the above isomorphism. An infinitesimal deforma-
tion v : (X,x0) → T (T ∗Y ) of f is called isotropic, if the pull-back 2-form v∗ω̃ = 0.
VX means the set of germs of vector fields ξ : (X,x0) → TX along the identity. More-
over, we denote by V LT∗Y the set of infinitesimal Lagrange diffeomorphisms, namely, the
set of germs of Hamiltonian vector fields η : (T ∗Y, y0)→ T (T ∗Y ) with affine Hamiltonian
of type a0(q) + a1(q)p1 + . . .+ an(q)pn. Then we set tf(ξ) = f∗ξ and wf(η) = η ◦ f , for
ξ ∈ VX , η ∈ V LT∗Y .

If v ∈ V If , then d(v∗θ̃T∗Y ) = v∗ω̃ = 0. Then there exists a function-germ e ∈ EX =
{(X,x0)→ R} such that de = v∗θ̃T∗Y . We call e a generating function of v. Then

Rf = {e ∈ EX | e is a generating function for some v ∈ V Lf}

is a sub-R-algebra of EX containing f∗ET∗Y .
Notice that V If has an ET∗Y -module structure and V LT∗Y has an EY -module struc-

ture [14]. In particular, for h ∈ ET∗Y and v ∈ V If , the ET∗Y -multiplication is defined
by

h ∗ v = h ◦ f · v − e ·Xh ◦ f,
where · is the pointwise multiplication, e is the generating function of v with e(x0) = 0,
and Xh is the germ of Hamiltonian vector field with Hamiltonian h so that iXh

ω = −dh.
Set M = T ∗Y . Since f is an open Whitney umbrella, we see Rf = f∗EM . Remark

that Rf is an EM -module via f∗ and an EY -module via (π◦f)∗. Then mMRf = m(Rf ) =
f∗(mM ).

Lemma 3.3. Let f : (X,x0) → (T ∗Y, y0) be an infinitesimally Lagrange stable open
Whitney umbrella. Then we have

(1) mn+1
M Rf ⊂ mY Rf .

(2) If π′ : (T ∗Y, y0)→ Y is a Lagrange projection with jnπ′(y0) = jnπ(y0), then f is
infinitesimally Lagrange stable also with respect to π′.

(3) mn+2
T∗Y V If ⊂ tf(mXVX) + wf(mY V LT∗Y ).

P r o o f. (1) Suppose f is infinitesimally Lagrange stable, that is, V If = tf(VX) +
wf(V LT∗Y ). Set Qf = f∗ET∗Y /mY f

∗ET∗Y = Rf/mY Rf . Then Qf is generated by
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1, p1◦f, . . . , pn◦f over R by the equivalence of (is) and (a) ([14], Theorem 1.2). Therefore
dimRQf ≤ n+ 1. Then considering the sequence of EM -modules,

Qf ⊃ mMQf ⊃ m2
MQf ⊃ . . . ⊃ mn+1

M Qf ,

we see that mn+1
M Qf = 0 and that mn+1

M Rf ⊂ mY Rf , using Nakayama’s lemma.
(2) Take a symplectic diffeomorphism τ as in Lemma 3.1 such that π′ = π ◦ τ . Set

g = τ ◦ f . Then Rg = Rf , qi ◦ g − qi ◦ f ∈ mn+1
M Rf and pj ◦ g − pj ◦ f ∈ mn+1

M Rf . Then
by (1), mY Rg = mY Rf , with respect to π. Thus the condition (a) is satisfied also for g.
Thus g is Lagrange stable with respect to π, and therefore f is Lagrange stable with
respect to π′.

(3) Take v ∈ mn+2
M V If . Then v has a generating function e ∈ mn+3

M Rf . By (1), we
see mn+3

M Rf ⊂ mY m(Rf )2. Therefore we have

e =
( s∑

i=1

ai(q)bi(p, q)
)
◦ f,

for some ai ∈ mY and affine functions bi ∈ mT∗Y with respect to π-fibres satisfying
bi ◦ f ∈ m(Rf )2, 1 ≤ i ≤ n. Set h =

∑s
i=1 aibi and consider the Hamiltonian vector

field Xh with the Hamiltonian h on T ∗Y . Then Xh ∈ mY V LT∗Y , and v − wf(Xh) has
the generating function 0. Therefore, by [14] Lemma 4.3, there exists ξ ∈ VX such that
v − wf(Xh) = tf(ξ). We show that ξ(0) = 0.

If f is an immersion, then the equality is clear. Assume f is an open Whitney umbrella
of type k ≥ 1 and assume ξ(0) 6= 0. Then, with respect to the symplectic coordinates of

normal forms for open Whitney umbrellas (Section 2), the coefficient of
∂

∂qn
◦ f of both

sides of v − wf(Xh) = tf(ξ) should be of order one. On the other hand, we see that, by

Lemma 2.1,
∂bi
∂pn

(0) 6= 0 with respect to the coordinates of normal forms. Therefore the

coefficient of
∂

∂qn
◦ f should be of order ≥ 2. This leads to a contradiction, and we see

that ξ(0) = 0. Thus v = tf(ξ) + wf(Xh) with ξ ∈ mXVX , Xh ∈ mY V LT∗Y , and this
proves (3).

Let s be a positive integer. Consider the space Sps(n) of germs of symplectic diffeo-
morphisms (T ∗Rn, 0)→ (T ∗Rn, 0) with identity s-jets. We need the following result on
“connectivity” of Sps(n).

Proposition 3.4. Let s ≥ 1. Then, for any pair τ0, τ1 ∈ Sps(n), there exists a
smooth family τt, 0 ≤ t ≤ 1, connecting τ0 and τ1.

P r o o f. Consider the graphs Γ0,Γ1 of τ0, τ1 respectively in T ∗Rn×T ∗Rn, which are
Lagrange submanifolds with respect to the symplectic form π∗1ω− π∗2ω. Take a Lagrange
projection Π : T ∗Rn × T ∗Rn → Rn × Rn such that Γ0, and therefore Γ1, is mapped
diffeomorphically. Then we can take generating functions e0, e1 of Γ0,Γ1 with respect
to Π such that js+1e0(0, 0) = js+1e1(0, 0). Set et = (1 − t)e0 + te1. Then the family of
Lagrange submanifolds Γt generated by et corresponds to a family τt ∈ Sps(n) connecting
τ0 and τ1.
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We denote by Is
f the set of isotropic map-germs f ′ : (X,x0)→ (M,y0) with jsf ′(x0) =

jsf(x0). To show the strict Lagrange determinacy we need the following:

Proposition 3.5. Let s ≥ k + 1. Let f : (X,x0) → (M,y0) be an open Whitney
umbrella of type k, 0 ≤ k ≤

[
n
2

]
, dimX = n = 1

2 dimM . Then, for any pair f0, f1 ∈ Is
f ,

there exists a 1-parameter smooth family ft ∈ Is
f , 0 ≤ t ≤ 1, connecting f0 and f1.

P r o o f. We can assume that f = fn,k : (Rn, 0) → (T ∗Rn, 0). Then there exist
a family of diffeomorphisms σt : (Rn, 0) → (Rn, 0) and τ̄t : (Rn, 0) → (Rn, 0) such
that jsσt(0) = js id(0), jsτ̄t(0) = js id(0) and that τ̄1 ◦ π ◦ f0 ◦ σ−1

1 = π ◦ f1. We then
set τt = τ̄−1∗

t : (T ∗Rn, 0)→ (T ∗Rn, 0). Then τt is a family of symplectomorphisms with
jsτt(0) = js id(0) and π◦τt = τ̄t (cf. Lemma 3.1). Consider the family f ′t = τt◦f◦σ−1

t ∈ Is
f .

Then π ◦ f ′1 = π ◦ f1. Take the generating functions e′ and e of f ′1 and f1 respectively
so that f ′1

∗
θ = de′ and f∗1 θ = de with e′(0) = e(0) = 0. Then js+1e′(0) = js+1e(0).

Now set et = (1− t)e′ + te. Then there exists a family f ′′t ∈ Is
f such that f ′′t

∗
θ = et and

π ◦ f ′′t = π ◦ f ′1(= π ◦ f1). Then f ′′0 = f ′1 and f ′′1 = f1. This proves the proposition.

P r o o f o f T h e o r e m 1.3. Assume that

f : (X,x0) = (Rn, 0)→ (T ∗Y, y0) = (T ∗Rn, 0)

is infinitesimally Lagrange stable and take τ ∈ Spn+1(n). Then it suffices to show that,
for the standard Lagrange projection π : (T ∗Rn, 0) → (Rn, 0), (τ ◦ f, π) and (f, π) are
Lagrange equivalent. Set g = τ ◦f . Then, by Proposition 3.4, there exists a smooth family
τt ∈ Spn+1(n) such that τ0 = id and τ1 = τ . Consider the family ft = τt ◦ f of isotropic
map-germs. By Lemma 3.3 (2), we see that each ft is infinitesimally Lagrange stable.
Then, by Lemma 3.3 (3),

mn+2
T∗Y V Ift

⊂ tft(mXVX) + wft(mY V LT∗Y ).

Moreover this equality holds for vector fields smoothly depending on t (see [14],
Lemma 5.4). Therefore, for each t0 ∈ [0, 1], the family ft is trivialised under Lagrange
equivalence (σt, τ

′
t) fixing base points; namely we have ft0 = τ ′t ◦ ft ◦ σt, τt is a Lagrange

diffeomorphism, τ ′t(0) = 0, and σt(0) = 0. Thus f = f0 and g = τ ◦ f = f1 are Lagrange
equivalent with respect to π.

Now we recall that r0 is determined as the least positive integer satisfying Rf ∩
mr0+2

X ⊂ f∗mn+3
T∗Y . For any f ′ ∈ Ir0

f , by Proposition 3.5, we connect f ′ and f by a
smooth family ft ∈ Ir0

f . Remark that r0 ≥ n + 1. Then, for the family ft of isotropic
map-germs with jr0ft(0) = jr0f(0), we see, similarly as above,

V Ift
∩mr0+1

X Vf ⊂ tft(mXVX) + wft(mY V LT∗Y ).

Thus ft is trivialised under Lagrange equivalence fixing base points.

4. Isotropic jets. Let f : (X,x0)→ (M,y0) be an isotropic map-germ of corank at
most one. We set

V Is
f = {v ∈ V If | jsv(x0) = 0} = V If ∩ms+1

X Vf (s = 0, 1, 2, . . .).
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Let z ∈ Jr
I (n, 2n). Define πr : V I0

f → TzJ
r(n, 2n) as follows: For each v ∈ V I0

f , take

an isotropic deformation ft of f with v =
dft

dt

∣∣∣
t=0

, and set πr(v) =
d(jrft(0))

dt

∣∣∣
t=0

. Then

the image of the linear map πr coincides with TzJ
r
I (n, 2n).

Let z ∈ Jr
I (n, 2n) and z = jrf(0) for a f : (Rn, 0) → (T ∗Rn, 0). Hereafter we

set X = (Rn, 0), Y = (Rn, 0) and M = (T ∗Y, 0). Then under the identification
TzJ

r(n, 2n) ∼= mXVf/m
r+1
X Vf we have

TzJ
r
I (n, 2n) ∼= V I0

f/V I
r
f .

If we denote by Srz (resp, Lrz) the orbit of z under the symplectic equivalence (resp.
Lagrange equivalence), we have

TzSrz ∼= V I0
f/{(tf(mXVX) + wf(mMV HM )) ∩ V r

f },
TzLrz ∼= V I0

f/{(tf(mXVX) + wf(mY V LM )) ∩ V r
f }.

Set z = jrf(x0). For (w, v) ∈ Tx0X ⊕ V If , take a curve xt in X with the velocity

vector w at t = 0 and take an isotropic deformation ft of f with v =
dft

dt

∣∣∣
t=0

(cf. [14],

Lemma 3.4), and define a linear map

Πr : Tx0X ⊕ V If → TzJ
r(X,M),

by

Πr(w, v) =
jrdft(xt)

dt

∣∣∣
t=0

.

Then Πr(Tx0X ⊕ V If ) = TzJ
r
I (X,M) and Ker Πr = {0} ⊕ V Ir

f . Moreover we have, for
the Lagrange equivalence class

[z] = {jrf ′(x′0) | x′0 ∈ X, f ′ is Lagrange equivalent to f}
in Jr

I (X,M),
Tz[z] = Πr

(
Tx0X ⊕ (tf(mXVX) + wf(V LM ))

)
.

For the jet extension jrf : (X,x0)→ Jr
I (n,M), we have

(jrf)∗
( ∂

∂xi

)
= Πr

( ∂

∂xi
, f∗

( ∂

∂xi

))
.

Now the condition that jrf is transverse to [z] = [jrf(x0)] at x0 is equivalent to

(jrf)∗(Tx0X) + Tz[z] = TzJ
r
I (X,M),

and to the one that

(Πr)−1
(
(jrf)∗(Tx0X)

)
+ Tx0X ⊕

(
tf(mXVX) + wf(V LM )

)
+ {0} ⊕ V Ir

f

coincides with Tx0X ⊕ V If . This condition is equivalent to

V If =
〈
f∗

( ∂

∂x1

)
, . . . , f∗

( ∂

∂xn

)〉
R

+ tf(mXVX) + wf(V LM ) + V Ir
f ,

thus
V If = tf(VX) + wf(V LM ) + V Ir

f .

We recall that

C∞I (X,M)1 := {f ∈ C∞(X,M) | f is isotropic and of corank ≤ 1}
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is a Baire space ([13]). Furthermore we have

Theorem 4.1 ([13]). Let Q be a submanifold of Jr
I (X,M). Then the set

T = {f ∈ C∞I (X,M)1 | jrf : X → Jr
I (X,M) is transverse to Q}

is residual and therefore dense in C∞I (X,M)1.

5. Transversality and Lagrange stability

P r o o f o f T h e o r e m 1.1. The equivalence of (hs), (is), (a) and (a′) is already
shown in [14]. We show the remaining implications.

(s) ⇒ (tr): Take a representative f : U → T ∗Y of f such that f ∈ C∞I (X,M)1. By
Theorem 4.1, f is approximated by f ′ ∈ C∞I (X,M)1 such that jrf ′ : U → Jr

I (X,M)
is transverse to the Lagrange orbit [jrf(x0)]. Since f is Lagrange stable, there exists
x′0 ∈ U such that (f ′x′0 , π) and (fx0 , π) are Lagrange equivalent. Then jrf ′ is transverse
to [jrf(x0)] at x′0, and therefore jrf is transverse to [jrf(x0)] at x0.

(tr) ⇒ (a′′r ): As we see in Section 4, condition (tr) is equivalent to

V If = tf(VX) + wf(V LM ) + V Ir
f .

Taking generating functions of both sides, we have

Rf = (π ◦ f)∗EY +
n∑

i=1

(π ◦ f)∗EY pi ◦ f +Rf ∩mr+2
X .

Remarking Rf = f∗ET∗Y , we have (a′′r ).
(a′′r ) ⇒ (a′) Since Rf ∩mr+2

X ⊂ mn+3
M Rf , (a′′r ) implies that Rf/(mY Rf + mn+3

M Rf )
is generated by 1, p1 ◦ f, . . . , pn ◦ f over R. Then we have mn+1

M Rf ⊂ mY Rf +mn+3
M Rf ,

therefore, by Nakayama’s lemma, mn+1
M Rf ⊂ mY Rf . Then mY Rf +mn+3

M Rf = mY Rf , so
we see that Rf/mY Rf is generated by 1, p1 ◦ f, . . . , pn ◦ f over R, namely, condition (a′).

Thus we see the implication (tr) ⇒ (is).
(tr) & (is)⇒ (s): If jrf is transverse to [jrf(x0)] at x0, then there exists a neighbour-

hood W ⊂ C∞I (X,M)1 of an isotropic representative f : U → T ∗Y such that, for any
f ′ ∈W , jrf ′ is transverse to [jrf(x0)] at a point x′0 ∈ U . Since jrf ′(x′0) ∈ [jrf(x0)], there
exists an isotropic map-germ f ′′ : (X,x0) → T ∗Y which is Lagrange equivalent to f ′x′0
with respect to π and jrf ′′(x0) = jrf(x0). On the other hand, since f is infinitesimally
Lagrange stable, by Theorem 1.3, f is strictly Lagrange r-determined. Therefore (f ′′, π)
and (f, π) are Lagrange equivalent. Thus (f ′x′0 , π) and (f, π) are Lagrange equivalent, and
f is Lagrange stable.

6. Supplementary remarks
On the point (C): Let f, f ′ : (Rn, 0) → (T ∗Rn, 0) be Lagrange stable open Whitney

umbrellas. Then we naturally ask whether the isomorphism (Qf , e) ∼= (Qf ′ , e
′) implies

that f and f ′ are Lagrange equivalent or not. Here Qf = f∗ET∗Rn/(π◦f)∗mRnf∗ET∗Rn

and e is the generating function of f with e(0) = 0. In the case of complex analytic
Lagrange immersions, the implication is true by Yau’s theorem [25]. See also [19]. In real
case, there exists a counterexample [8]. See also [21]. So the problem is how to change
the formulation in the real case.
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Also in Legendre case, similar question can be posed, analogously to Mather-Yau
type theorem. For Legendre immersions, it is solved affirmatively by Mather’s theorem
on K-versal unfoldings of functions and Arnol′d’s theorem on Legendre singularities, even
in real case. The author has been informed about this fact by S. Izumiya.

On the point (E): Lagrange immersions Xn → T ∗Y , dimX = dimY = n, with
Lagrange stable jets are dense in the space of Lagrange immersions, if n ≤ 5 [4]. This is
based on Arnol′d’s classification of simple Lagrange singularities [1]. So we can say that
the nice range for Lagrange immersions is {n ∈ N | n ≤ 5}.

The generic Lagrange classification is known, consisting of finite lists, of open Whitney
umbrellas for n ≤ 3, and in this case all germs are of L-corank ≤ 1. See [12].

Then it is natural to ask whether n = 4, 5 belong to the nice range for Lagrange
projections of open Whitney umbrellas. Ilia A. Bogaevski has posed to the author the
necessity of the theory of simple singularities of open Whitney umbrellas.

Besides, in the case n = 4, there appear generic isotropic map-germs of corank one
and of L-corank two. See [13]. The generic classification is unknown for n ≥ 4.

Then, as the first step of the classification, it is natural to ask about the existence of
Lagrange stable projections of open Whitney umbrellas with L-corank ≥ 2. This question
was posed by V. M. Zakalyukin on the occasion of the author’s talk of the workshop
“Caustics” in Warszawa.

The following example, found on 23 June 1998, answers Zakalyukin’s question. The
example is based on Shcherbak’s parametrisation of the variety of irregular orbits of the
reflection group H4 [22].

Example 6.1. Let x, y, z, w, λ be the coordinates of R5 and let

f : (R5, 0)→ (T ∗R5, 0)

be a map-germ defined by

p1 ◦ f = x, p2 ◦ f =
1
2
y2, p3 ◦ f = −1

2
xy2, p4 ◦ f = −1

3
y3, p5 ◦ f = −xy3,

q1 ◦ f =
1
2
x2 +

1
2
y2z + λy3, q2 ◦ f = xz + yw + y2 + 3λxy,

q3 ◦ f = z, q4 ◦ f = w, q5 ◦ f = λ.

Then f is an open Whitney umbrella of type 1, Lagrange stable with respect to the
standard projection π : T ∗R5 → R5 defined by π(p, q) = q, corank(f) = 1, and
L- corank(f) = 2. The generating function of f is given by

e =
1
3
x3 +

1
4
y4 +

1
2
xy2z +

1
6
y3w +

3
2
xy3λ,

and the set of singular points of π ◦ f by

xw + 2xy + 3x2λ− yz2 − 6y2zλ− 9y3λ2 = 0,

in the source (R5, 0).

P r o o f. (1) Set X = (R5, 0), Y = (R5, 0). Then

Rf = {h ∈ EX | dh ∈ EXd(f∗ET∗Y )} = {h ∈ EX |
∂h

∂y
∈ 〈y, w + 3λx〉EX

},
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and Rf is generated by

x, z, w, λ, y2, y3, y(w + 3λx), y2(w + 3λx)

as differentiable algebra. Therefore we see Rf = f∗ET∗Y . Moreover codim Σ(fC) = 2.
Then, by [14], Proposition 5.1, page 230, and by considering the multiplicity of f , we
conclude that f is an open Whitney umbrella of type 1.

(2) By a straightforward calculation, we see that

Qf = f∗ET∗Y /mY f
∗ET∗Y = Rf/〈x2, yw + y2 + 3λxy, z, w, λ〉Rf

,

and Qf is generated by 1, p1 ◦ f, . . . , p5 ◦ f . Therefore by Theorem 1.1, f is Lagrange
stable.

Added on 3 December 1998: Recently, Ilia Bogaevski has given an example of Lagrange
stable isotropic map-germ f : (R4, 0) → (T ∗R4, 0) of corank one and of L-corank two.
Moreover he has given the classification of simple stable Lagrange projections of the open
Whitney umbrella of type 1.
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