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Abstract. One of the fundamental objectives of the theory of symplectic singularities is
to study the symplectic invariants appearing in various geometrical contexts. In the paper we
generalize the symplectic cohomological invariant to the class of generalized canonical mappings.
We analyze the global structure of Lagrangian Grassmannian in the product symplectic space
and describe the local properties of generic symplectic relations.

1. Introduction. Let Ω be a smooth compact convex region in R⋉. Let X be the

boundary of Ω and T ∗X the cotangent bundle of X (cf. [3, 11]). The symplectic billiard

map B : T ∗X → T ∗X is defined on the set U = {(x, ξ) ∈ T ∗X : |ξ| < 1} and as

a Lagrangian submanifold, the graph of B, graphB ⊂ (T ∗X × T ∗X, π∗
2θX − π∗

1θX), is

generated by the function

H̃ : X × X → R, H̃(x, x′) = |x′ − x|,

where θX is the Liouville one-form on T ∗X and πi are the canonical projections. By

the cotangent bundle projection πX×X : T ∗X × T ∗X → X × X and the smooth map

ρ : T ∗X → T ∗X × T ∗X , ρ(x, ξ) = (x,−ξ, x′, ξ′), where B(x, ξ) = (x′, ξ′), we get the

function H : T ∗X → R, H = ρ∗π∗
X×XH̃ (normalized on U) such that

B∗θX − θX = dH.

Consequently, if σ = {(x0, ξ0), (x1, ξ1), . . . , (xk−1, ξk−1)} is a periodic orbit of B then

L(σ) =

k−1∑

j=0

H(xj , ξj)(1)
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is a symplectic invariant. It is the length

|x1 − x0| + . . . + |x0 − xk−1|

of the closed geodesic of the billiard map, and defines, for all closed orbits, the length

spectrum of Ω (cf. [11]). If Ω is no longer convex, then the corresponding billiard map

is not univalued and should be replaced by an appropriate symplectic relation, i.e. La-

grangian submanifold in (T ∗X × T ∗X, π∗
2θX − π∗

1θX), which is not the graph of any

canonical mapping (see Figure 1 below). Symplectic relations (or symplectic correspon-

dences [4, 7, 2]) play an important role in symplectic techniques in physics, geometric

diffraction theory and singularity theory (cf. [4, 5, 9, 1]).

In this paper, we show that the symplectic invariant L(σ) may be generalized to

the symplectic relation and for the special classes of them it is represented by the crit-

ical values of the corresponding generating function. Now there is a natural question

concerning singularities of symplectic relations and their position with respect to the

product structure. Following the singularity theory methods (cf. [1, 10]) and using the

group of symplectomorphisms preserving the product structure as an equivalence group

the generic properties of symplectic relations are investigated. At first, in Section 3, we

study the canonical stratification of Lagrangian Grassmannian in the product symplectic

space. Then, in Section 4, using the Lagrangian “Gauss map” on symplectic relations we

describe the generic properties of them and obtain some prenormal forms in appropriate

k-vertical points.

Figure 1

2. A cohomological invariant of symplectic relations. Let (M1, ω1), (M2, ω2)

be two symplectic manifolds. We consider the product symplectic manifold

M = (M1 × M2, π
∗
2ω2 − π∗

1ω1),
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where πi : M1 × M2 → Mi are canonical projections. Any Lagrangian submanifold L

of M will be called a symplectic relation between M1 and M2 (cf. [17, 18]). We will

assume L is compact (with boundary and simply connected) and instead of (M1, ω1),

(M2, ω2) we have two copies of the same symplectic manifold (M, ω) (we assume M is a

simply connected manifold). For any choice of α such that ω = dα the form π⋆
2α− π⋆

1α
∣∣
L

is exact. Let H be a smooth function on L such that

π⋆
2α − π⋆

1α
∣∣
L

= dH.

H is unique up to an additive constant and we have to fix this constant in further

considerations. We fix it assuming∫

L

H
(
π1

∣∣
L

)⋆
ωn = 0.

If α1 is another one-form for which dα1 = ω, then there exists a smooth function G

such that α1 −α = dG (M has a boundary or is not compact). Now for a new underlying

one-form α1 the Lagrangian submanifold L has another generating function H1

π⋆
2α1 − π⋆

1α1

∣∣
L

= dH1.

The relation between H1 and H is given by the formula

H1 = H + (π⋆
2G − π⋆

1G)
∣∣
L

(2)

since we normalized H1 and∫

L

π⋆
2G

(
π1

∣∣
L

)⋆
ωn =

∫

L

π⋆
1G

(
π1

∣∣
L

)⋆
ωn.

Let σ = {(x0, x1) ∈ L, (x1, x2) ∈ L, . . . , (xk−1, x0) ∈ L} be a periodic orbit of L. With σ

we will associate the number

N(σ) =

k−2∑

i=0

H(xi, xi+1) + H(xk−1, x0).(3)

Now we have

Proposition 2.1. The number N(σ) is an invariant with respect to the action of the

group of symplectomorphisms on (M, ω).

P r o o f. We have the following cyclic relation from formula (2):

H1(xi, xi+1) = H(xi, xi+1) + G(xi+1) − G(xi),

so we obtain the invariance property for the number N(σ),

k−2∑

i=0

H1(xi, xi+1) + H1(xk−1, x0)

=

k−2∑

i=0

(
H(xi, xi+1) + G(xi+1) − G(xi)

)
+ H(xk−1, x0) + G(x0) − G(xk−1)

=
k−2∑

i=0

H(xi, xi+1) + H(xk−1, x0).
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R e ma r k 2.1.

A. If L = graphB, where B : (M, ω) → (M, ω) is a symplectomorphism, then the

set of numbers {N(σ)} corresponding to the set of all periodic orbits of B is called the

spectrum of B. It is extensively studied in the case if B is a billiard mapping associated

with a convex region in R⋉ (cf. [3]). In the case of L = graphB formula (2) reduces to

H1 = H + B⋆G − G.

B. Now we assume that x0 is a fixed point of B, i.e. B(x0) = x0. If i : (S, s0) → (M, x0)

is an immersion germ of a smooth submanifold S such that B(n)
∣∣
S

= idS for some n ∈ N ,

then the function

S ∋ s 7→ H(s) + H
(
B(s)

)
+ . . . + H

(
B(n−1)(s)

)

is a symplectic invariant of the star {(s, s1, . . . , sn−1), x0}, Si = B(i)(S), i = 1, . . . , n − 1.

Other invariants of Lagrangian stars were studied in ([6, 15]). If S is a Lagrangian sub-

manifold, then for 3-Lagrangian stars {(S, S1, S2), x0} which are pairwise transversal at x0

the signature τ(S, S1, S2) of the quadratic form

ω(x1, x2) + ω(x2, x3) + ω(x3, x1)

defined on the tangent (at x0) Lagrangian star Tx0
S ⊕ Tx0

S1 ⊕ Tx0
S2 is the symplectic

invariant. This is the symplectic invariant for any Lagrangian 3-star, not only if

Tx0
S ∩ Tx0

S1 = Tx0
S1 ∩ Tx0

S2 = Tx0
S2 ∩ Tx0

S3 = {0}.

In general we write

τ(S, S1, S2) = n+dim(Tx0
S∩Tx0

S1)+dim(Tx0
S1∩Tx0

S2)+dim(Tx0
S2∩Tx0

S3) (mod 2).

In the transversal case all 3-stars are linearizable (cf. [6]).

An important class of Lagrangian submanifolds in M, if M1 = T ⋆Q and M2 = T ⋆Q,

is formed by the cotangent bundle lifting T ⋆Φ ⊂ M of the smooth mappings Φ : Q → Q.

In general we consider the symplectic relations L(Φ,F ) defined by the pair (Φ, F ), where

Φ : Q → Q, F : Q → R are smooth mappings (cf. [8]). L(Φ,F ) is defined as a constrained

Lagrangian submanifold in (T ⋆(Q × Q), π∗
2ωQ − π∗

1ωQ) over graphΦ ⊂ Q × Q with

generating function F extended into the whole Q×Q. Now we have the following result.

Proposition 2.2. If σ is a periodic orbit of L(Φ,F ) and of T ⋆Φ, then F has a critical

point at each point xi ∈ σ and N(σ) is the sum of the corresponding critical values:

N(σ) =
k−1∑

i=0

F (xi).

P r o o f. We see that for any periodic orbit σ of the simple lifting T ⋆Φ the symplectic

invariant N(σ) = 0. So if we demand the same orbit to be periodic for L(Φ,F ) (say affine

lifting of Φ), then the function F should have the critical points at every point of the

orbit. In fact we check it locally writing the generating family for L(Φ,F ), namely

G(x, y, λ) =
n∑

i=1

(
yi − φi(x)

)
λi + F (x).
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Example 2.1. We may take Q = R2 and the map Φ(x1, x2) = (−x1, x
2
2), so

T ⋆Φ =
{(

(x1, x2, p1, p2), (y1, y2, ξ1, ξ2)
)

: y1 = −x1, y2 = x2
2, p1 = −ξ1, p2 = 2ξ2x2

}
.

We consider all two-point orbits σ of the type
(
(x10, 0, p10, 0), (−x10, 0,−p10, 0)

)
.

Taking the generating function F (x1, x2) = cosx1 + cosx2 we find

N(σ) = (−1)k2

for

σ =
{(

(kπ, 0, p10, 0), (−kπ, 0,−p10, 0)
)}

.

If x0 ∈ M , then periodic orbits of L from the point x0 ∈ L(M)∩Lt(M) are determined

by the strata Li(x0), i ∈ N of the space

L(x0) = {x ∈ M : (x0, x) ∈ L}.

We define

L1(x0) = L(x0) ∩ {x0},

L2(x0) = L(x0) ∩ Lt(x0),

. . . . . . . . .

Lk(x0) = L(x0) ∩ (Lt)k−1(x0).

The set of those points of L(x0) which do not belong to any Lk(x0) for some finite k is

denoted by L∞(x0). The set of exactly k-point periodic orbits from x0 is written in the

following way:

L̃2(x0) = {x ∈ L(x0) : (x, x0) ∈ L}

and

L̃k(x0) =
{
x ∈ L(x0) −

k−1⋃

i=2

L̃i(x0) :

∃(x1, x2, . . . , xk−2) ∈ (L(x), L(x1), . . . , L(xk−3)) such that (xk−2, x0) ∈ L
}

for k > 2.

3. The Lagrangian Grassmannian. Now we consider the linear product symplec-

tic space

M = (M × M, π∗
2ω − π∗

1ω),

where (M, ω) is a 2n-dimensional symplectic vector space. By Λ2n we denote the La-

grangian Grassmannian of linear subspaces in M, and by M1 and M2 — the symplectic

spaces canonically placed in M, M1 = M × {0}, M2 = {0} × M . Equivalently we write

(M1 × M2, π
∗
2ω2 − π∗

1ω1)

for M, where

ω2 = π∗
2ω − π∗

1ω
∣∣
{0}×M

, −ω1 = π∗
2ω − π∗

1ω
∣∣
M×{0}

.

At first we have the natural decomposition.
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Proposition 3.1. If L ∈ Λ2n then we have the two excluding each other possibilities:

either L is transversal to M1 and also L is transversal to M2 or L is not transversal to M1

and also L is not transversal to M2.

P r o o f. If L is transversal to M2 then it may be parametrized by M1 so L is a graph

of a maximal rank symplectic mapping M1 → M2 and so has to be transversal to M1 (one

can replace M2 by M1 in this argument). If L is not transversal to M1, then assuming

that L is transversal to M2 on the basis of previous argument we get the transversality

of L to M1, which contradicts our assumption.

The critical subset of Λ2n is defined as the set CΛ2n of those Lagrangian subspaces

which are not transversal to both subspaces M1 and M2.

CΛ2n = {L ∈ Λ2n : L is not transversal to M1 and also L is not transversal to M2}.

Elements of CΛ2n cannot be obtained as the graphs of linear symplectic transformations

between M1 and M2.

The supercritical set of Λ2n is defined as the Cartesian product

SΛ2n = Λn × Λn ⊂ Λ2n.

These are Lagrangian subspaces L = (W1, W2) where W1 and W2 are Lagrangian sub-

spaces in (M1, ω1) and (M2, ω2) respectively.

We find

codimSΛ2n = n2.

Proposition 3.2. If L ∈ CΛ2n then L has a decomposition

L = Rt
2 ◦ L̃ ◦ R1,

where L̃, R1, R2 are linear Lagrangian subspaces

L̃ ⊂ (M̃1×M̃2, π
∗
2 ω̃2−π∗

1 ω̃1), R1 ⊂ (M1×M̃1, π
∗
2 ω̃1−π∗

1ω), R2 ⊂ (M2×M̃2, π
∗
2 ω̃2−π∗

1ω),

R1, R2 are graphs of projections ρ1 and ρ2 onto M̃1 and M̃2, respectively,

ρ∗1ω̃1 = ω
∣∣
π1(L)

, ρ∗2ω̃2 = ω
∣∣
π2(L)

,

and L̃ ∈ Λ2n−2k − CΛ2n−2k for some k ∈ N .

P r o o f. If L ∈ CΛ2n then π1(L) ⊆ V1, π2(L) ⊆ V2, where V1, V2 are hypersurfaces

in M1 and M2 respectively. If there is an equality then V1 and V2 are coisotropic so

we have the natural projections ρi along the symplectic polars V
6
1 ⊂ V1, V

6
2 ⊂ V2

onto the symplectic reduced spaces M̃1 = (V1/V
6
1 , ω̃1), M̃2 = (V2/V

6
2 , ω̃2). So we rep-

resent L uniquely by two hyperspaces Vi and the Lagrangian subspace L̃ ∈ Λ2n−2 in

(M̃1 × M̃2, π
∗
2 ω̃2 − π∗

1 ω̃1). If L̃ ∈ CΛ2n−2 then we may proceed in an analogous way and

obtain the noncritical representation for L̃.

Example 3.1. If n = 2 we have only two strata of the singular set CΛ4: The first

maximal stratum C1Λ4 is determined by the pair of two coisotropic subspaces, V1 in M1

and V2 in M2 and the symplectic linear map between the corresponding reduced sym-

plectic spaces, dim C1Λ4 = 9. The second stratum is SΛ4, dimSΛ4 = 6.

In general we have the following result on the structure of the singular set CΛ2n.
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Proposition 3.3. We have the following partition into the smooth submanifolds

CΛ2n =

n⋃

k=1

CkΛ2n,

where the elements of CkΛ2n are determined by the pairs of two coisotropic subspaces

V1 in M1 and V2 in M2 of codimension k and the symplectic linear automorphism of the

(2n − 2k)-dimensional symplectic space. In this partition CnΛ2n = SΛ2n.

P r o o f. In fact it follows from the property that the projection of L ∈ Λ2n onto M1

and M2 is always coisotropic (or Lagrangian). Thus starting from the hypersurfaces we see

that the corresponding L̃ ∈ Λ2n−2 in the product of reduced symplectic spaces projects

onto them or onto hypersurfaces in the more degenerated case. Repeating this argument

for further representations of L we get the natural decomposition by coisotropic subspaces

of equal dimensions and linear symplectic maps in a symplectic space of respectively

smaller dimension.

Corollary 3.1.

codimCkΛ2n = k2, k = 1, . . . , n.

P r o o f. We calculate the dimension of the isotropic Grassmannian I2n
k of k-isotropic

planes in 2n-dimensional symplectic space V (cf. [12]).

dim I2n
k = 2nk −

1

2
k(3k − 1).

This is the dimension of the corresponding space of (2n − k)-dimensional coisotropic

subspaces in V . Since dimΛ2n = 2n2 + n, we get

codimCkΛ2n = dimΛ2n − 2 dim I2n
k − dim(Λ2n−2k)

= n(2n + 1) − 2
(
2nk −

1

2
k(3k − 1)

)
− (n − k)(2n − 2k + 1) = k2.

4. Local classification. Let (L, p) be a germ of a symplectic relation (Lagrangian

submanifold) in M. Now we introduce the natural equivalence group acting on the space

of such germs.

Definition 4.1. We say that two germs (L1, p1), (L2, p2) of symplectic relations

in M are equivalent if there exist two symplectomorphism germs B1 : (M1, π1(p1)) →

(M1, π1(p2)) and B2 : (M2, π2(p1)) → (M2, π2(p2)) such that the symplectomorphism

B1 × B2 of M sends L1 into L2 and p1 into p2.

For the symplectic relation L ⊂ M we define the corresponding symplectic “Gauss”

map

G : L ∋ p 7→ TpL ∈ Λ2n.

We call L to be in general position (or generic) if G is transversal to CΛ2n =
⋃n

k=1 CkΛ2n.

Definition 4.2. We say that L has a k-vertical position at p ∈ L if G(p) ∈ CkΛ2n.

We call k a rank of k-vertical position. A 0-vertical position corresponds to the case of

the graph of local symplectomorphism for L at p, i.e. G(p) ∈ Λ2n − CΛ2n.
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Now we have the following restriction for vertical points.

Proposition 4.1. For generic L the isolated points of vertical position appear only if

n = 2s2, s ∈ N . In this case they are points in 2s-vertical position. In their neighbourhood

there are k-vertical positioned points with k ≤ 2s.

The standard representation of Lagrangian germs yields the following preparatory

lemma.

Lemma 4.1. For any germ (L, p) ⊂ M there are local cotangent bundle structures

around π1(p), say T ∗X1, and around π2(p), say T ∗X2, such that (L, p) is generated in

M ∼= (T ∗X1 × T ∗X2, π
∗
2ωX2

− π∗
1ωX1

)

by the germ of a generating function F : (X1 × X2, πX1×X2
(p)) → R, such that, in local

coordinates on (X1 × X2, πX1×X2
(p)), we have

F (x, y) =

n∑

i,j=1

xiyjφij(x, y).(4)

P r o o f. If ((p, q), (p̃, q̃)) are Darboux coordinates on M, then we find the partition

I ∪ J = {1, . . . , n}, I ∩ J = ∅, Ĩ ∪ J̃ = {1, . . . , n}, Ĩ ∩ J̃ = ∅, such that there exists a

smooth function S(pI , qJ , p̃Ĩ , q̃J̃ ), which generates (L, p). By the symplectomorphism

Φ(p, q; p̃, q̃) = (−qI , pJ , pI , qJ ;−q̃Ĩ , p̃J̃ , p̃Ĩ , q̃J̃) = (ξ, x; η, y),

which preserves the product structure of M we find the generating function F (x, y)

for (L, p) in canonical special symplectic structure T ∗X1 × T ∗X2 on M. Then using

the symplectomorphisms of M1 and M2 preserving the corresponding cotangent bundle

structures we obtain the reduced form (4) of function F .

Proposition 4.2. Let p ∈ L, then we have:

1. The rank of the vertical position of L at p is equal to the corank of the matrix(
φij = ∂2F

∂xi∂yj

)
at πX1×X2

(p), it is the symplectic invariant of (L, p) ⊂ M.

2. At each p ∈ L, for a generic L the family of mappings

Φ : X1 × X2 → R⋉, �(x, y) =
( ⋉∑

1=ג

yגφ1ג, . . . ,
⋉∑

1=ג

yגφ⋉ג

)

has a generic singularity at πX1×X2
(p).

P r o o f.

1. Any linear relation L is equivalent to one generated by the quadratic form∑n

i,j=1 xiyjaij , so the dimension of its kernel is exactly equal to the rank of vertical-

ity of L. This is a local symplectic invariant of (L, p), which does not depend on the

choice of the corresponding cotangent bundle structures.

2. Any relation L is locally represented by a smooth family of mappings Φ(x, y) =

(φ̂1(x, y), . . . , φ̂n(x, y)), such that Φ(x, 0) ≡ 0. We see that the Gauss map G : L →

TpL corresponds exactly to the one-jet extension j1Φ(x, y) of the mapping Φ, so the

transversality of G is equivalent to the corresponding transversality of Φ to the canonical

stratification of smooth mappings of R⋉ × R⋉ into R⋉.
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Corollary 4.1. At any point p ∈ L of the 0-vertical position of L, the symplectic

relation L is parallelizable, i.e. it is locally symplectically equivalent to its tangent space

TpL with the generating function

F (x, y) =

n∑

i=1

xiyi.

R e ma r k 4.1. If n = 2 then the supercritical points appear in generic L as the

isolated points, in fact codimC2Λ4 = 4, and G is transversal to SΛ4 = C2Λ4. If p ∈ L

is a supercritical transversal point then on the basis of Lemma 4.1, on a neighbourhood

of p, L is generated locally by the generating function

F (x, y) =

2∑

i,j=1

xiyjφij(x, y),

where φij(0, 0) = 0, i, j = 1, 2, p = 0, and the transversality condition is equivalent to

rankDΦ(0) = 4,

where Φ(x, y) = (φij(x, y)) ∈ M2×2.

If we need to iterate a symplectic relation L we have to use the symplectic equiva-

lence group preserving the canonical product structure of M = (M × M, π∗
2ω − π∗

1ω).

We say that two germs (L1, p1), (L2, p2) ⊂ M, where π1(pi) = π2(pi) = p̃i, i = 1, 2,

are D-equivalent (diagonal equivalence) if there exists a symplectomorphism germ

B : (M, p̃1) → (M, p̃2) such that (B × B)(L1) = L2. Using the notation of composi-

tion of symplectic relations we can write

L2 = B̂ ◦ L1 ◦ B̂t.

Now using the proof of Lemma 4.1 we obtain the following result.

Lemma 4.2. For any germ (L, p) ⊂ M there exists a local cotangent bundle structure

T ∗X (D-equivalence) around π1(p) such that (L, p) is generated in

M ∼= (T ∗X × T ∗X, π∗
2ωX − π∗

1ωX)

by a Morse Family germ F : (X × X × Rk, 0) → R (we assumed π1(p) = 0),

F (x, y, λ) =
n∑

i=1

xiφi(x, y, λ),

such that k ≤ dimX. If the integer k is minimal then it is an invariant of D-equivalence

symplectic group action.

We see that the linear symplectic relations in M are classified by the classes of linear

mappings

Φ = (φ1, . . . , φn) : R⋉ × R⋉ × Rk → R⋉

with the standard equivalence relation

Ξ : (x, y, λ) →
(
A(x), Y (y), Λ(x, y, λ)

)
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and the equivalent Φ′ is given by

Φ′(x, y, λ) = ATΦ
(
A(x), B(y), Λ(x, y, λ)

)
.

R e ma r k 4.2. Let us assume that L ⊂ M = (T ∗X × T ∗X, π∗
2ωX − π∗

1ωX) is gener-

ated by the smooth generating function F : (x, y) → F (x, y). Let σ be a periodic orbit

of L, πX×X(σ) = {(x0, x1), (x1, x2), . . . , (xk−1, x0)}. We see that (x0, x1, . . . , xk−1) is a

critical point of the function

G(x0, x1, . . . , xk−1) = F (x0, x1) + F (x1, x2) + . . . + F (xk−1, x0),

and the invariant N(σ) is its critical value.

As an example we can consider the billiard mapping generating function (see Intro-

duction)

H̃(x, y) = |y − x|.

Let {x0, x1, . . . , xk−1} be an element of X × . . . × X︸ ︷︷ ︸
k

−{∆}, where ∆ is a total diagonal

in X × . . . × X︸ ︷︷ ︸
k

and X = ∂Ω. Then the function

G(x0, x1, . . . , xk−1) = |x1 − x0| + |x2 − x1| + . . . + |x0 − xk−1|

has a critical point exactly in the periodic orbit of the symplectic billiard map. For

∂Ω = S1 these are regular polygons.

By {N(σ)}k we denote the set of symplectic invariants for k-point orbits σ. For

the general billiard system, L may not be the graph of any symplectomorphism. Let

φ : X → R⋉ be an imbedding of a closed orientable surface and we assume that it is

generic, i.e. the function

H̃φ(x, y) = |φ(x) − φ(y)|

defined on X × X outside of the diagonal ∆ has only nondegenerate critical points on

X × X − ∆. We easily see that the critical points of H̃φ are, in fact, the 2-point orbits

(double normals) of the possibly nonconvex billiard system. By the Morse inequalities

(cf. [13, 16]) we obtain the following estimation for the surface case.

Proposition 4.3. If φ is a generic imbedding of a surface of genus g, then we have

the following lower bound for the number of 2-point invariants

#{N(σ)}2 ≥ 2g2 + 3g + 3.

In the case of ellipsoid with three unequal axes #{N(σ)}2 = 3. If this is an imbedding

of the torus we have at least eight 2-point invariants of the torus-like two-dimensional

billiard system. In the three-dimensional billiard systems the lower bound for #{N(σ)}2

is expressed by the first Betti numbers of X . We leave further estimations of the length

spectrum of X and investigations of periodic orbits of the general symplectic relations to

the forthcoming paper.
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