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Abstract. The aim of this paper is to show that the quasihomogeneity of a quasihomoge-
neous germ with an isolated singularity uniquely extends to the base of its analytic miniversal
deformation.

1. Notation. Let

f : (Cn, 0)→ (C, 0)

be a germ of an analytic function and α1, . . . , αn, d be positive integers. f is called quasi-
homogeneous (or weighted homogeneous) of type α = (α1, . . . , αn) of quasidegree d, if

∀t ∈ C f(tα1x1, . . . , t
αnxn) = tdf(x1, . . . , xn).

The above can be stated more geometrically. f is quasihomogeneous if it is equivariant
under the C∗ action on Cn

Ψ : C∗ × Cn → Cn,
Ψ(t, x) = (tα1x1, . . . , t

αnxn),

f(Ψ(t, x)) = tdf(x).

If furthermore f has an isolated singularity at the origin then its Milnor number µ is finite
and there is a basis of the local algebra On/If consisting of µ monomials e1, . . . , eµ, i.e.

On = If ⊕ LinC{e1, . . . eµ}.

We remark that If denotes the gradient ideal of f ,

If = On
( ∂f
∂x1

, . . . ,
∂f

∂xn

)
.
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Hence the germ at the origin of the following family is a miniversal deformation of f ,

F (x, λ) = f(x) +
µ∑
j=1

λjej .

Since f is a polynomial in x, the domain of F is Cn×Cµ. We shall call such deformation
quasihomogeneous. The reason is that we can extend quasihomogeneity for Cn ×Cµ and
make F quasihomogeneous in both x and λ.

We recall that

qdeg xa1
1 · . . . · xann =

n∑
i=1

αiai.

We introduce the weights for λ’s by

βj = d− qdeg ej .

Then

∀t ∈ C∗ F (tα1x1, . . . , t
αnxn, t

β1λ1, . . . , t
βµλµ) = tdF (x, λ).

Moreover the C∗ action on Cµ preserves the discriminant of F and its canonical stratifi-
cation.

We remark that some β’s may be negative or 0. Thus, in the contrary to the standard
quasihomogeneity, in the extended case the origin may not belong to the closures of all
other orbits.

We shall show how to define this action for any miniversal deformation. First we
establish notation. Let

Ψ̃ : C∗ × Cn × Cµ → Cn × Cµ,
be the above extended C∗ action;

Ψ̃(t, x, λ) = (Ψ(t, x), ψ(t, λ)) = (tα1x1, . . . , t
αnxn, t

β1λ1, . . . , t
βµλµ).

Obviously

F (Ψ̃(t, x, λ)) = tdF (x, λ).

Let G(y, γ) be another miniversal deformation of f (G(y, 0) = f(y)). Locally we have

G(y, γ) = F (H̃(y, γ))

where H̃ is a diffeomorphism

H̃(y, γ) = (Hγ(y), h(γ)),

H̃−1(x, λ) =
(
H−1
h−1(λ)(x), h−1(λ)

)
.

We remark that the diffeomorphism H0( · ) preserves f :

f(H0(y)) = f(y).

We define the C∗ action on the neighbourhood of the origin of the domain of G by

Φ̃(t, y, γ) = H̃−1
(
Ψ̃(t, H̃(y, γ))

)
= H̃−1

(
Ψ̃(t,Hγ(y), h(γ))

)
= H̃−1

(
Ψ(t,Hγ(y)), ψ(t, h(γ))

)
=
(
H−1
h−1(ψ(t,h(γ)))(Ψ(t,Hγ(y))), h−1(ψ(t, h(γ)))

)
= (Φ(t, y, γ), ϕ(t, γ)).
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Definition 1. We call ϕ defined by

ϕ(t, γ) = h−1
(
ψ(t, h(γ))

)
the induced C∗ action.

Now we can state our main result.

Theorem 1. Locally any two induced C∗ actions ϕ1 and ϕ2 on the base of the same
miniversal deformation G coincide on some neighbourhood of the origin, i.e.

∃δ1, δ2 > 0 ∃d1, d2 ∈ N ∀t, γ |t− 1| < δ1, ‖γ‖ < δ2 =⇒ ϕ1(td2 , γ) = ϕ2(td1 , γ).

R e m a r k. As d1 and d2 we may take the quasidegrees of f in both underlying quasi-
homogeneities divided by a common factor.

2. The Euler vector fields. Crucial for us is the notion of an Euler vector field.
For a given quasihomogeneous deformation F (x, λ) we have

ξ =
∑

(qdeg xi)xi
∂

∂xi
+
∑

(qdeg λj)λj
∂

∂λj
.

We recall its basic properties.

Lemma 1.
1. ξ is tangent to the orbits of the C∗ action;
2. ξ(F ) = dF where d = qdeg f .

P r o o f. We have

∂Ψ̃
∂t

(t, x, λ)|t=1 = (α1x1, . . . , αnxn, β1λ1, . . . , βµλµ)

=
(
(qdeg x1)x1, . . . , (qdeg xn)xn, (qdeg λ1)λ1, . . . , (qdeg λµ)λµ

)
,

which proves the first point. The second one follows from the fact that F is a sum of
monomials of the same quasidegree d and for any monomial we have

ξ(xa1
1 · . . . · λbµµ ) =

∑
ai(qdeg xi)xaλb +

∑
bj(qdeg λj)xaλb = (qdeg xaλb)xaλb.

3. The case of quasihomogeneous deformations. Before proving Theorem 1 we
investigate the case of quasihomogeneous miniversal deformations.

Theorem 2. If G(y, γ) is a quasihomogeneous miniversal deformation then locally
on the base any induced C∗ action coincides with the canonical one.

P r o o f. Let d1 be the quasidegree of G and d the quasidegree of the deformation F

from which we induce the C∗ action Φ̃. (For F we keep the notation from Section 1.)
Step 1. G is Φ̃ invariant.

G
(
Φ̃(t, Y, γ)

)
= F

(
H̃(Φ̃(t, Y, γ))

)
= F

(
Ψ̃(t,H(y, γ))

)
= tdF

(
H(y, γ)

)
= tdG(y, γ).

Step 2. The “base part” of the Euler vector field ξ is tangent to the orbits of the
induced action ϕ.
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Let η be a vector field tangent to the orbits of Φ̃.

η =
(∂Φ
∂t

)
|t=1
· ∂
∂y

+
(∂ϕ
∂t

)
|t=1
· ∂
∂γ

The derivative of G along η is a multiple of G itself. Indeed:

η(G) =
(∂G ◦ Φ̃

∂t

)
|t=1

=
(∂tdG

∂t

)
|t=1

= dG.

Therefore

0 = (dξ − d1η)(G)

=
∑(

d(qdeg yi)yi − d1

(∂Φi
∂t

)
|t=1

)
· ∂G
∂yi

+
∑(

d(qdeg γj)γj − d1

(∂ϕj
∂t

)
|t=1

)
· ∂G
∂γj

.

Since G is miniversal, for any fixed γ close to 0 the derivatives ∂G/∂γj are linearly
independent modulo the gradient ideal IG (see [1], Section 5.10). Therefore

d1

(∂ϕ
∂t

)
|t=1

=
(
d(qdeg γ1)γ1, . . . , d(qdeg γµ)γµ

)
.

Thus ϕ coincide with the canonical C∗ action.

4. Proof of Theorem 1. We show in this section how Theorem 1 follows from
Theorem 2.

Let F1 and F2 be two quasihomogeneous miniversal deformations of f , and Ψ̃1, Ψ̃2

the corresponding C∗ actions. Since G is induced from both of them, we have

G = F1 ◦ H̃1 = F2 ◦ H̃2.

Thus
F1 = F2 ◦ H̃2 ◦ H̃−1

1 .

From Theorem 2 we know that

H̃2 ◦ H̃−1
1 ◦ ψ̃2 ◦ H̃1 ◦ H̃−1

2

coincide with ψ̃1. Hence the both induced actions on the base of G coincide:

H̃−1
1 ◦ ψ̃2 ◦ H̃1 ≈ H̃−1

2 ◦ ψ̃1 ◦ H̃2.

5. Appendix. The real case. In the real analytic category one obtains the same
results as in the complex. Indeed, the complexification of the miniversal deformation is
a miniversal deformation of a complexification of a germ. Furthermore the C∗ action is a
complexification of the R+ action. Therefore the uniqueness in the real analytic case is a
consequence of the uniqueness in the complex case.

But in the C∞ category the uniqueness theorem is not valid. The reason is due to
the fact that the deformation may have complex conjugated critical points which in
C∞ category are “out of the picture”. We illustrate this by the simplest example of the
singularity A2.

Example. Let f(x) = x3, then its quasihomogeneous miniversal deformation has the
form

F (x, a, b) = x3 + ax+ b.
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Let r be a C∞ function flat at the origin,

r(a) > 0 if a > 0 and r(a) = 0 if a ≤ 0.

We consider the slight C∞ deformation of the Euler vector field:

ξ1 = x
(

1− r(a)
3x2 + a

) ∂
∂x

+
(
2a+ r(a)

) ∂
∂a

+ 3b
∂

∂b
.

We observe that its “base part” does not depend on x and

ξ1(F (x, a, b)) = 3F (x, a, b).

But, since the base parts of ξ1 and of the Euler vector field are not parallel they define
different R+ actions on the base.
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