
GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS ’98

BANACH CENTER PUBLICATIONS, VOLUME 50

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 1999

TOPOLOGY AND GEOMETRY OF CAUSTICS

IN RELATION WITH EXPERIMENTS

ALAIN JOETS

Laboratoire de Physique des Solides
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Abstract. Caustics of geometrical optics are understood as special types of Lagrangian
singularities. In the compact case, they have remarkable topological properties, expressed in
particular by the Chekanov relation. We show how this relation may be experimentally checked
on an example of biperiodic caustics produced by the deflection of the light by a nematic liquid
crystal layer. Moreover the physical laws may impose a geometrical constraint, when the system
is invariant by some group of symmetries. We show, on the example of polyhedral caustics, how
the two constraints force degenerate umbilics of integer index to appear and determine their
spatial organization.

1. Introduction. Caustics of geometrical optics have strongly stimulated the study

of singularities [34]. They are now understood as a special class of singularities, the so-

called Lagrangian singularities [1]. One of the main results of the theory of Lagrangian

singularities in the ordinary space R3 is their classification into five stable local types:

A2 (folds), A3 (cusps), A4 (swallowtails), D−

4 (elliptic umbilics) and D+
4 (hyperbolic

umbilics) [2]. Experiments in geometrical optics [35] and in wave optics [5, 7, 8] are in

total agreement with this classification.

However it was rapidly realized that the caustics of geometrical optics form themselves

a special class of Lagrangian singularities. Because of the eiconal equation [9], a system of

rays is always associated with a Hamiltonian of special type, that is to say, convex with

respect to the momenta. This property characterizes the (Lagrangian) optical singulari-

ties [11]. Every general Lagrangian singularity has locally an optical model [14] and the

list of stable optical singularities remains the same, given by the five generic Lagrangian

singularities. However it is not true that globally, a configuration of Lagrangian singu-

larities can be realized optically. For example, the “pancake” caustic [37] has no optical
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realization. More generally the topology of caustics of geometrical optics is constrained

by a relation linking the Euler characteristic χ
Σ

of the singular set Σ, assumed to be

compact, and the number #D4(−1/2) of umbilics of index −1/2 [11]. This relation, due

to Chekanov, has important consequences on the caustic metamorphoses [3, 36]. It is

incompatible with some Lagrangian metamorphoses, reducing their number from eleven

to seven [11].

These new theoretical results on the global properties of caustics assume generally

some compactness hypothesis. On the other hand the caustics produced by experiments

often present borders and/or asymptotic branches which prevent one from using them as

experimental tests. We present here the first experimental examples of compact caustics.

The first example (biperiodic caustics produced by the deflection of a light beam through

a nematic liquid crystal layer) is used to check the topological constraint expressed by

the Chekanov relation. Conversely, in the second example (the “poly-astroids” generated

by surfaces with polyhedral symmetry), we start from the topological constraint and we

show how, in the presence of a group of symmetry, it determines the spatial organization

of the umbilics.

2. Biperiodic caustics. The usual optical sources (lasers, etc.) form systems of

rays of limited aperture (few degrees) and do not allow the creation of compact wave

fronts. However, a simple way to bypass this difficulty is to produce (in a necessarily

limited domain of the space) a biperiodic wave front W . Indeed a biperiodic surface is

topologically equivalent to a torus, which is a compact surface.

Experimentally, we realize the biperiodic front W by sending a light beam of par-

allel rays (direction z) across a transparent layer (0 < z < d) deflecting biperiodically

the beam. Nematic liquid crystals are very appropriate materials for this experiment.

First, because of their high birefringence, they strongly interact with the light [13].

They are optically uniaxial and the optic axis is directed along the local orientation

of the rod-shaped molecules. This direction is denoted by a unit vector ~n, the “direc-

tor”. The energy index n for the extraordinary rays (the only rays considered here) is

a function of the angle β between the ray direction ~r and the director ~n through the

relation n =
√

n2
o cos2 β + n2

e sin2 β , where no and ne are respectively the ordinary and

the extraordinary refractive index [20]. The ray trajectories obey the Fermat principle,

expressed by minimizing of the optical path
∫

n ds [23]. Second, when submitted to the

action of external forces (electric field, thermal gradient, etc.), the nematic layer may

reach a stable stationary state characterized by some periodicity of the director align-

ment. For some values of the parameters, the structure is biperiodic in the plane {x, y}

of the layer (see [18] for the details of the experiment). It is named the varicose struc-

ture [28]. In the varicose structure the director field is well approximated by the form

~n = (cos φ, 0, sinφ), where φ = [φ1 sin(k1xx + k1yy) + φ2 sin(k2xx + k2yy)] sin zπ/d, with

φ1 6= φ2.

The caustic C produced by the deflection of the light by the varicose structure is

found to consist of a real and of a virtual part. The real part, which is the envelope of

the emerging rays, is located above the layer (z > d). The virtual part, which is the
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envelope of the prolongation of the emerging rays is located below the layer (z < d).

The main part of the caustic surface is confined near the layer of width d ≃ 100µm

and a microscope is needed to observe it. It is important to understand here that the

image obtained by the microscope is the section of the caustic by the focal plane Π of the

instrument. The height (coordinate z) of Π may be easily varied and we are able in this

way to reconstruct, section by section, the whole caustic C. In Fig. 1 a section of the real

part and a section of the virtual part of C are represented. Each image consists of the

same motif (unit cell) repeated by translation. The biperiodicity of the image corresponds

with that of the director field of the varicose structure. Although the caustic appears as

composed of two distinct parts, i.e. the real and the virtual parts, it must be understood

as a connected surface, since the real and virtual parts connect at infinity along a “line”

which corresponds to the stationary rays of the congruence.

a) b)
Figure 1: Two sections of the same biperiodic caustic produced by the deflection of a
beam of parallel rays through a layer of nematic liquid crystal in convection (varicose
structure). The focal plane of the microscope is located a) in the virtual part containing
the hyperbolic umbilics, b) in the real part containing the elliptic umbilics.

The Chekanov formula states that the Euler characteristic χ
Σ

of the singular Σ

is related to the number #D4(−1/2) of umbilics of index −1/2 by the relation

χ + 2#D4(−1/2) = 0 [11]. These umbilics correspond to the case II in the Darboux clas-

sification of umbilics [12]. They are named “Stars” in [6] and denoted by D3 in [30]. They

may be of elliptic type D−

4 or of hyperbolic type D+t
4 . In our case there exists an alter-

native form for the Chekanov relation. Since the rays are parametrized by the surface

W and bear two caustic points, coinciding at the umbilics, the Euler characteristic χ
Σ

is

related to the Euler characteristic χ
W

of W by the relation: χ
Σ

= 2χ
W

− #D4, where

#D4 is the number of umbilics. Using this relation and the Chekanov relation, we recover

the known fact that the total index I of the umbilics is equal to χ
W

.

The initial wave front being equivalent to a torus, the expected value of the total index

of the umbilics is 0, the Euler characteristic of the torus. Per unit cell, four (real) elliptic

umbilics D−

4 and four (virtual) hyperbolic umbilics D+
4 are observed (see Fig. 1). The

index of the four D−

4 is −1/2 and they give a contribution to I equal to 4(−1/2) = −2.

The index of the D+
4 may be a priori equal to +1/2 (umbilics D+d

4 ) or to −1/2 (um-

bilics D+t
4 ). It depends on the relative position of the singular set, of the kernel of the
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Lagrangian projection, of the cusp-line passing through the umbilic and of the charac-

teristic at the umbilic [11]. These elements lie in the phase space and they cannot be

directly observed. They have to be found, for instance, by a numerical simulation. In

our example the congruence of the rays is first calculated by numerical integration of the

Euler-Lagrange equations associated with the minimization of the optical path and using

the above expressions for the index n and for the director field ~n. Then the Lagrangian

projection is constructed and the different types of singularities are determined using

their characterization by the rank [33, 19]. The result shows that the four hyperbolic um-

bilics are of type D+d
4 [21]. However there exists now a more practical way to determine

directly the index in the real space [22]. First, let us distinguish two types of cusp points.

A cusp point is said to be of type A+
3 if the ray passing through the point is directed

inward the cusp. It is said to be of type A−

3 in the opposite case. The type of the cusp

lines changes at the umbilics. The index of a hyperbolic umbilic is equal to +1/2 if the ray

passing through the umbilic, which is tangent to the cusp line at this point, is directed

towards the A−

3 cusp line. It is equal to −1/2 if it is directed towards the A+
3 cusp line.

In our case the ray is directed towards the A−

3 cusp line and we recover immediately

the result given by the simulation. The contribution of the D+
4 (per unit cell) is then

equal to 4(+1/2) = 2, and the total index is 0, as expected. The Chekanov formula is

experimentally checked. In this experiment, the Euler characteristic of the singular set Σ

is found to be equal to −8 (χ
W

= 0, #D4 = 8). This value would disagree with that

(zero) given in the reference [4, p. 97] for any compact Σ.

An interesting problem is to know if there exist other caustics with the same biperi-

odicity, but with a different number of umbilics (per unit cell). In particular it would

be interesting to observe a caustic without any umbilic. This possibility seems to be

theoretically allowed [26], but it has not been experimentally checked up to now.

3. “Poly-astroids”. Other interesting compact caustics are obtained when the wave

front W is a nearly spherical surface. For instance, the Cayley astroid [10], which is the

focal set of a triaxial ellipsoid, seems to provide the most simple example of such caustics,

in the sense that the topological constraint I = χ
W

is satisfied with a minimal number

of generic umbilics.

From the experimental view point, as it was recalled in the previous section, it is

difficult to produce a complete convex wave front. However there exists a formal analogy

between this optical problem and other physical problems, for instance the problem of the

stability of a magnetic nanoparticle placed in a magnetic field ~H . There, the equilibrium

conditions, expressing that the energy E(~m; ~H) of the particle is minimal with respect

to the orientation of its magnetization ~m on the unit sphere, define convex level surfaces

Wmag = { ~H, E( ~H) = const.} [24, 31]. The magnetizations corresponding to the minima

are normal to the surface Wmag (see Fig. 2). They play the role of the directions of the

rays in the optical problem. The caustic of Wmag has a physical meaning. It represents

the fields ~H for which the magnetization orientation undergoes a jump (switching field).

It may be experimentally determined, but only one sheet of the caustic surface may be

observed [32].
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magW

A
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m

Figure 2: Sketch of the astroid A of the switching fields in the 2D case. For a given ~H ,
the extrema of the energy E correspond to magnetizations ~m tangent to A and normal
to Wmag. When ~H crosses A, a minimum ~m (represented on the Figure) collides with
another extremum (not represented) and one observes a jump in the direction of the
magnetization.

The switching fields generally form an astroid, topologically equivalent to the Cayley

astroid. However, for some values of the parameters of the problem, one finds a differ-

ent type of astroid with degenerate umbilics [32]. For these particular values, the energy

surface W and the associated caustic become symmetric, and the symmetry forces non-

generic singularities to appear. More generally, a physical system may become symmetric

for a continuous set of values of the parameters when the symmetry results from the phys-

ical laws, the boundary conditions or from some external fields. An example is provided

by the stable biperiodic caustics of the previous section. A natural and important ques-

tion is then to know what becomes a (compact) caustic in presence of a symmetry. Two

constraints are now present: the topological constraint imposing that the total index I is

equal to 2, the Euler characteristic of the sphere, and the geometrical constraint imposing

that the singularities must be compatible with the symmetry. This difficult problem is

here attacked on a particular example, in the case of a polyhedral symmetry. However we

shall show that the solutions found are essentially determined by these two constraints.

To model a symmetrical wave front (or the energy surface of a nanoparticle) W we

introduce n points Pi on the unit sphere and n masses mi. We define the function V by

V (P ) =

n
∑

i=1

mid(P, Pi)(1)

where d(P, Pi) denotes the distance from P to Pi, and we assume that mi = 1/n > 0 for

all i, so that V (0) = 1. The surface W is taken as a level surface W = {P, V (P ) = const.}.

We impose the polyhedral symmetry by taking the Pi at the vertices of a regular poly-

hedron. Moreover we take const. = 2. The shape of the corresponding caustics surfaces

is reproduced in Fig. 3 for the tetrahedron (Fig. 3a), the cube (Fig. 3b), the octahedron

(Fig. 3c), and the dodecahedron (Fig. 3d). Each caustic is composed of two sheets which

connect at the umbilic points. Each sheet is represented separately on Fig. 3 for a bet-

ter understanding. We call them polyhedral caustics or “poly-astroids”. The caustic of
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the icosahedron is not represented, because it is topologically equivalent to that of the

dodecahedron. However this result does not mean that the symmetry itself determines

the caustic, since two different poly-astroids are obtained in the cubic case (Fig. 3b and

Fig. 3c).

a) b) c) d)
Figure 3: The elementary poly-astroids. They are obtained starting from a) a tetrahe-
dron, b) a cube, c) an octahedron and d) a dodecahedron. Each caustic is composed
of two sheets represented separately.

The caustic surfaces are very intricate, because of the presence of many self-intersec-

tion lines. We focus our attention on the singularities of smallest dimension, i.e. the point

singularities. The complete description of the poly-astroids will appear in a forthcoming

paper. The point singularities lie on the axes of symmetry of order 3, 4 and 5, and

eventually on some mirror planes. For each polyhedron, the symmetry axes of order 3

bear elliptic umbilics. The axes of order 4 bear degenerate umbilics of index +1 (case of

the octahedron) or −1 (case of the cube). The axes of order 5 bear degenerate umbilics

of index +1 (case of the dodecahedron and of the icosahedron). Moreover there are

12 hyperbolic umbilics of index +1/2 in some planes of symmetry in the case of the

tetrahedron, and 24 in the case of the cube (see Table 1 of [17] for more details). It

must also be noted that every D−

4 of each poly-astroid is surrounded by three symmetric

butterflies, which are defined in [15, 16, 29]. Of course, for each polyhedron, the total

index I of the umbilics is found to be equal to 2, i.e. the Euler characteristic of W .

To understand the generality of these results, let us apply the condition I = 2 si-

multaneously with the condition that the umbilics have an index i as small as possible

(|i| ≤ 1) and are compatible with the polyhedral symmetry. For instance, for the dodeca-

hedral symmetry, one have to put elliptic umbilics on the 20 axes of order 3 (contribution

20(−1/2) = −10 to I) and degenerate umbilics of index +1 on the 12 axes of order 5

(contribution +12 to I). This solution is obtained by starting from the dodecahedron
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(Fig. 3d) or from the icosahedron. For the tetrahedral symmetry, the contribution of the

8 elliptic umbilics on the axes of symmetry 3 (contribution −4) has to be completed

by the contribution of 12 additional hyperbolic umbilics of index +1/2 in 12 planes of

symmetry (contribution +6). This solution is realized by our poly-astroid represented in

Fig. 3a. It is also realized by the caustic of the “bumpy tetrahedron” of the reference [27].

The cubic case is surprising. There exists a simple solution with umbilics located only

on the symmetry axes: 8 elliptic umbilics on the axes of order 3 (contribution −4) and 6

degenerate umbilics of index +1 on the axes of order 4 (contribution +6). This solution is

obtained in our example by starting from the octahedron (Fig. 3c). However there exists

another solution with the opposite index for the umbilics on the axes of order 4: 8 elliptic

umbilics on the axes of order 3 (contribution −4), 6 degenerate umbilics of index −1 on

the axes of order 4 (contribution −6), and 24 hyperbolic umbilics of index +1/2 on planes

of symmetry (contribution +12). This solution is found in our example by starting from

the cube (Fig. 3b). Other different poly-astroids exist, but they have a greater number of

umbilics or higher indices (in absolute value). The four poly-astroids in Fig. 3 represent,

in this sense, the four elementary polyhedral caustics.

The cubic astroid found in [32] corresponds to our octahedral case. Our results show

that the index of its umbilics on the axes of symmetry of order 4 is equal to +1.

4. Conclusion. Caustics associated with biperiodically deflected rays and with sta-

bility diagrams of magnetic fine particle systems provide the first experimental exam-

ples of compact caustics. The topology of these compact caustics is constrained by the

Chekanov formula. This topological constraint may be experimentally checked by deter-

mining the indices of the umbilics by numerical calculation of some elements (singular set,

kernel of the Lagrangian projection, cusp lines and characteristics) in the phase space,

or by direct observation in the physical space of the relative position of the rays with

respect to the cusp lines passing through the umbilics. We find that biperiodic caustics,

due to the deflection of the rays through a nematic liquid crystal layer, is the projection

of a critical set having a non-zero Euler characteristic (−8).

Moreover, physical laws or boundary conditions may impose a global symmetry to the

physical system. An additional geometrical constraint is then introduced: the different

types of caustic points must be compatible with the symmetry. Interesting examples of

this situation are provided by the caustics generated by surfaces with polyhedral sym-

metry. In that case, four elementary types of global configurations exist. Except for the

tetrahedral symmetry, these caustics contain degenerate umbilics of integer index ±1.
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1969.

[25] J. F. Nye and J. H. Hannay, The orientations and distortions of caustics in geometrical
optics, Optica Acta 31 (1984), 115–130.

[26] D. Panov, private communication.



TOPOLOGY OF CAUSTICS 177

[27] I. R. Porteous, Geometric Differentiation for the Intelligence of Curves and Surfaces,
Cambridge Univ. Press, Cambridge, 1994.

[28] R. Ribotta and A. Joets, Pinching instability of convective rolls in an anisotropic fluid :
first step to chaos, J. Physique 47 (1986), 739–743.

[29] M. Roberts and V. M. Zakalyukin, Symmetric wavefronts, caustic and Coxeter groups,
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