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Abstract. This paper deals with the classification of hyperbolic Monge-Ampère equations on
a two-dimensional manifold. We solve the local equivalence problem with respect to the contact
transformation group assuming that the equation is of general position nondegenerate type. As
an application we formulate a new method of finding symmetries. This together with previous
author’s results allows to state the solution of the classical S. Lie equivalence problem for the
Monge-Ampère equations.

1. Introduction. Monge-Ampère equations with two variables are second order non-
linear equations of the form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

(∂2u

∂x2

∂2u

∂y2
−
( ∂2u

∂x∂y

)2)
= E,

where the coefficients depend on x, y, u = u(x, y) and ∂u
∂x ,

∂u
∂y .

First results in investigation of the equations of this and similar for more variables
type belong to Goursat and Lie ([G], [Lie]). The contemporary results and references from
analytical point of view can be found in [Au]. We will consider the geometrical approach
to Monge-Ampère equations ascending to Sophus Lie. It was proposed by V. Lychagin
in [Ly1]. We formulate it in Section 2. This geometric approach implies as well a pointwise
classification (the classification with respect to the linear contact group acting on the
tangent space to the phase space) of Monge-Ampère equations ([Ly1]). The differentiable
classification (i.e. with respect to the group of differentiable contact transformations of the
phase space) in the case of two variables was stated in the same year by Morimoto ([M]).
In his paper complex analyticity and homogeneity conditions were assumed. In this paper
we also consider classification problems but we demand no rigid conditions. We impose
on the equations only a condition of general position.
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In connection with Monge-Ampère equations, which naturally arise in geometry and
physics, three types of problems may be formulated:

1. Finding solutions of Monge-Ampère equations with prescribed behavior or ram-
ification along some fixed set, finding symmetries and conservations laws. The general
methods for these problems are described in [Ly2]. We illustrate the solution technique
in Section 2. We propose a new way to finding symmetries for the case of two variables.

2. Describing caustics of solutions of Monge-Ampère equations, i.e. singularities of
the solutions projection to the configuration space. As shown in [R] for the hyperbolic
quasilinear equations their list differs from the list of usual caustics as singularities of pro-
jections for general Lagrangian (Legendrian) submanifolds. The case of Monge-Ampère
equations of general type can be treated in a similar way basing on the classification
results from [LRC].

3. Equivalence problem for the Monge-Ampère equations. We allow transformations
which involve not only the coordinates but also the function and its derivatives. It means
that our group upon classification is the contact transformation group of 1-jets. Note that
the equations of Monge-Ampère type form a natural class among all nonlinear second or-
der PDEs since the local classification problem for the general case includes the following
transcendental subproblem: find moduli for submanifolds in the space of quadrics with
respect to the fractionally-linear transformations ([KLV]).

The equivalence problem was solved in some cases in [LRC], [Ly2]. For the mixed
elliptic/hyperbolic case in the neighborhood of the point Monge-Ampère equations with
two variables were classified in [Ku]. For general equations of elliptic type the classification
was achieved in [Kr1], [Kr2].

In this paper we treat hyperbolic case. The classification (Theorem 4) uses the
G-structures theory. Actually we reduce our problem to the well-known equivalence prob-
lem for {e}-structures, i.e. frame fields on a manifold ([S]). The invariants for the last clas-
sification are structural functions, i.e. the coefficients of the commutator decompositions
for the basis frame fields. Moreover our reduction of the equation to the {e}-structure is
canonical in terms of the structures defining the equation and this allows to write normal
forms (for example in homogeneous situation as in [Kr2] for the elliptic case).

2. Lychagin’s construction. Consider the 1-jets bundle over an n-dimensional ori-
entable manifold N : J1N → N . The manifold J1N equips itself with the canonical
contact structure which in local coordinate system (q ∈ N, u ∈ R1, p ∈ TqN) takes
the form α = p dq − du. Every function u ∈ C∞(N) provides us with a Legendrian sec-
tion Ln = j1u(Nn) of this bundle: x 7→ j1u(x) =

(
q = x, u = u(x), p = ∂u

∂q (x)
)
. Let

θ ∈ Ωn(J1N), where Ωn = C∞(Λn) is the module of n-forms. Then ∆θ(u) = (j1u)∗θ ∈
Ωn(Nn) ' C∞(N).

Definition 1. We call ∆θ(u) = 0 the Monge-Ampère equation. Its (generalized)
solution is a Legendrian submanifold Ln ⊂ J1Nn, α|L = 0, such that θ|L = 0.

Example 1. Let n = 2. Consider θ = dp1 ∧ dq2 − dp2 ∧ dq1. Substitute pi = ∂u
∂qi

to
the equation θ = 0. We obtain the Laplace equation

∆u =
∂2u

∂q2
1

+
∂2u

∂q2
2

= 0.



CLASSIFICATION OF MONGE-AMPÈRE EQUATIONS 181

Two Monge-Ampère operators ∆θ1 and ∆θ2 coincide iff θ2 = θ1 + ρ1 ∧ α + ρ2 ∧ dα
([Ly2]). Actually only α and dα vanish on every Legendrian submanifold. So as the first
step of the classification we need to pick up a representative in each class mod(α, dα).
With modulo α it is arranged in the following way. Assume a contact symmetry Xf with
the generating function f 6= 0 in the neighborhood considered, Xf (θ) = 0 ([Ly1]). Send
it by a contactomorphism to the Reeb vector field: Xf 7→ X1, α(X1) = 1, dα(X1, · ) = 0.
Thus X1(θ) = 0 and we may consider θ as a form on T ∗N = J1N/R1. Still we have
a class θ(mod dα). To kill this choice take θ in the class to be an effective form, which
makes the unique choice.

Definition 2. Consider a symplectic manifold (M2n, ω) and an effective n-form
θ ∈ Ωn(M) on it. Let us call a pair (ω, θeff) the generalized Monge-Ampère equation.
Its solution is a Lagrangian submanifold Ln ⊂M2n, ω|L = 0, such that θ|L = 0.

For the case n = 2 we have ω, θ ∈ Ω2(M4) and the effectiveness condition is equivalent
to the equality θ ∧ ω = 0. Two generalized Monge-Ampère equations given by forms θ1

and θ2 are equivalent if the forms are conformally symplectomorphic.

Example 2. Consider the nonlinear wave equation

∂2u

∂q2
1

=
∂

∂q2

(
f
( ∂u
∂q2

))
.

It corresponds to the form θ = dp1 ∧ dq2 + df(p2) ∧ dq1. Making a turn by the angle π
2

in the plane 〈p2, q2〉 (which is a symplectic transformation) we obtain the form θ̃ =
dp1 ∧ dp2 − df(q2) ∧ dq1. Now the equivalent equation ∆θ̃ takes the form

det Hessu(q1, q2) = −f ′(q2).

And we immediately get three first series of solutions:

1) u = c0 + c1q1 + c2q2 +
q2
1

2a
− a

∫
f(q2) dq2,

2) u = q1

∫ √
f ′(q2) dq2 + Φ(q2),

3) u =
1
4

[ c2 + 2q1

c0 + c1q2

]2
− 1

2

∫ [ ∫
(c0 + c1q2)f ′(q2) dq2

]
dq2 + (c3q1 + c4q2 + c5).

Performing now the back transformation, which is obtained by an implicit function the-
orem, we get series of solutions of the nonlinear wave equation.

Moreover if we make a turn in the plane 〈p1, q1〉, then we obtain an equivalent linear
equation

∂2u

∂q2
2

= f ′(q2)
∂2u

∂q2
1

.

3. Pointwise classification and integrability results. From now on we consider
only generalized Monge-Ampère equations with two variables (n = 2). Let us normal-
ize the form θ by the condition Pf(θ) = θ∧θ

ω∧ω = 0 or ± 1. Define an automorphism
j ∈ T ∗M ⊗ TM by the formula θ(X,Y ) = ω(jX, Y ). Then three cases are possible:



182 B. KRUGLIKOV

• Elliptic case, Pf(θ) = 1 ⇔ j2 = −1 (almost complex structure).
• Hyperbolic case, Pf(θ) = −1 ⇔ j2 = 1 (almost product structure).
• Parabolic case, Pf(θ) = 0 ⇔ j2 = 0 (nilpotent structure).

In the almost product case the spectrum is Sp(j) = {−1,−1, 1, 1} and we assume that
the structure is semisimple. In the nilpotent case we assume that Ker(j) = Im(j) form a
(2-dimensional) distribution.

Let us recall that the integrable geometric structure is one which is equivalent to
the standard (plane) geometric structure of the considered type ([S]). Equivalently in
some coordinate system the structure is given by the defining relations with constant
coefficients. In particular in our case this means that the components jst of the operator j
are constant.

Let us call an operator field j n-integrable if it is a direct sum j = f1j1 ⊕ . . . ⊕ fkjk
under some decomposition TM = V1 ⊕ . . . ⊕ Vk. Here fν are some functions and jν are
integrable on M structures acting in the integrable distributions Vν . Note that the notion
of n-integrability is equivalent to that of integrability for almost complex and almost
product structures. However it is wider in the case of nilpotent structure: the definition
j2 = 0 does not normalize the structure j.

Theorem 1. The structure j is n-integrable if and only if the Monge-Ampère equation
(ω, θ) is equivalent to one of the forms:
• Almost complex structure: ∆u = 0.

• Almost product structure:
∂2u

∂x2
=
∂2u

∂y2
.

• Nilpotent structure:
∂2u

∂x2
= 0.

P r o o f. Since the necessity condition is evident we consider only the sufficiency.
Consider at first the elliptic case. Since j is integrable there exists a complex coordinate
system z1 = x1 + iy1, z2 = x2 + iy2. Since j∂xk

= ∂yk
, k = 1, 2, we have

ω(∂xk
, ∂yk

) = 0, ω(∂x1 , ∂x2) = −ω(∂y1 , ∂y2) = f, ω(∂x1 , ∂y2) = ω(∂y1 , ∂x2) = g.

This means that ω = f(dx1 ∧ dx2 − dy1 ∧ dy2) + g(dx1 ∧ dy2 + dy1 ∧ dx2). The condition
dω = 0 implies that the function h(z) = f(x, y)− ig(x, y) is holomorphic. In coordinates
(z1, z̄1, z2, z̄2) we have

ω =
1
2
h(z)dz1 ∧ dz2 +

1
2
h̄(z)dz̄1 ∧ dz̄2 = Re

[
Ω(z)

]
,

where Ω(z) = h(z)dz1 ∧ dz2 is a complex volume form on O(0) ' R4 ' C2 in a neigh-
borhood of 0: f(0)2 + g(0)2 6= 0⇒ h(0) 6= 0. By a holomorphic change of coordinates we
transform our form to the Ω(z) = dz1 ∧ dz2, whence

ω = dp1 ∧ dq1 + dp2 ∧ dq2, θ = dp2 ∧ dq1 − dp1 ∧ dq2,

and we obtain the Laplace equation ∆u = 0.
We can similarly treat the hyperbolic case. But instead of C2 we should use D2, where

D is the algebra of dual numbers z = x + jy, j2 = 1 (x, y ∈ R). We consider the dual
Cauchy-Riemann equations ∂u

∂x = ∂v
∂y , ∂u∂y = ∂v

∂x and the dual volume form. Finally instead
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of the Laplace equation we get the wave equation. Another approach is to use a pair of
integrable distributions — the eigenspaces of j.

Consider now the nilpotent case. From n-integrability condition we deduce that there
exists a coordinate system (p, q) such that each of 2-planes 〈∂p1 , ∂p2〉, 〈∂q1 , ∂q2〉 is
j-invariant and we can multiply the structure by f−1

1 along the first 2-plane and by
f−1

2 along the other to obtain an integrable structure. This operation does not affect the
equation θ = 0. Let us denote this new integrable structure by the same letter j. Now in
the coordinates: j∂p1 = 0, j∂p2 = ∂p1 , j∂q1 = ∂q2 , j∂q2 = 0. This implies

ω(∂p1 , ∂q2) = ω(∂p1 , ∂p2) = ω(∂q1 , ∂q2) = 0, ω(∂pk
, ∂qk

) = f, ω(∂p2 , ∂q1) = g.

Thus ω = f(dp1 ∧ dq1 + dp2 ∧ dq2) + gdp2 ∧ dq1. From the condition dω = 0 we have
∂f
∂p2

= ∂g
∂p1

, ∂f
∂q1

= ∂g
∂q2

, ∂f
∂p1

= ∂f
∂q2

= 0, whence

g = p1
∂f(p2, q1)

∂p2
+ q2

∂f(p2, q1)
∂q1

+ g̃(p2, q1).

Therefore ω = dp̂1 ∧ dq̂1 + dp̂2 ∧ dq̂2, where p̂1 = p1f , p̂2 = p2, q̂1 = q1, q̂2 = q2f + G,
G(p2, q1) =

∫
g̃(p2, q1) dq1. In these new coordinates j∂p̂1 = 0, j∂p̂2 = f∂p̂1 , j∂q̂1 = f∂q̂2 ,

j∂q̂2 = 0. Thus θ = ijω = fdp̂2 ∧ dq̂1, from which the claim follows (note that the
conformal factor f 6= 0 does not affect the equation).

R e m a r k 1. The first two assertions of this theorem are similar to those of Theorem
1.5 from [LRC]. However the proofs are different.

4. Nijenhuis tensors and distributions. In Theorem 1 the integrability criteria
can be expressed by means of the Nijenhuis tensors

Nj(X,Y ) = [jX, jY ]− j[jX, Y ]− j[X, jY ] + j2[X,Y ].

Nj is actually a tensor: it is straightforward to check the right hand size depends only
on the values of the fields X, Y at the point considered. Moreover it is the so-called
Nijenhuis self-bracket of the structure j: Nj = |[j, j]| ([FN]). Note that for every structure
j ∈ T ∗M ⊗ TM satisfying j2 = const. ·1 the following identity holds: Nj(jX, Y ) =
Nj(X, jY ) = −jNj(X,Y ). Now if j is nondegenerate structure from Theorem 1, i.e.
almost complex or almost product structure, we have the following integrability criterion:

(?) The structure j is integrable if and only if Nj = 0.

For almost complex structure it is Newlander-Nirenberg theorem ([NN]). For almost
product it follows from Frobenius theorem and is a particular case of Haantjes theo-
rem ([Ha]). For the nilpotent structure the condition Nj = 0 does not imply integrability,
but it implies n-integrability as we will see in Appendix (Section 9). So we deduce from
Theorem 1

Corollary. The Monge-Ampère equation (ω, θ) can be written in one of the forms
of Theorem 1 iff for the corresponding structure j we have Nj = 0.

We will consider the classification of hyperbolic equations which is analogous to the
classification of elliptic equations given in [Kr1]. So we are interested in almost product
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structures j, j2 = 1. We assume that at every point we have two independent eigenvectors
of j with eigenvalues +1 and two independent eigenvectors with eigenvalues −1. Thus we
define two distributions

Π2
+ = {ξ ∈ TxM, jξ = ξ}, Π2

− = {ξ ∈ TxM, jξ = −ξ}.

Let us denote by P+, P− the projection operators corresponding to the decomposition
TM4 = Π2

+ ⊕Π2
−, P 2

± = P±, P+ + P− = 1. We have:

ξ, η ∈ Π2
+ ⇒ Nj(ξ, η) = 2([ξ, η]− j[ξ, η]) = 2(1− j)[ξ, η] = 4P−[ξ, η],

ξ, η ∈ Π2
− ⇒ Nj(ξ, η) = 2([ξ, η] + j[ξ, η]) = 2(1 + j)[ξ, η] = 4P+[ξ, η],

ξ ∈ Π2
+, η ∈ Π2

− ⇒ Nj(ξ, η) = 0.

Recall that fixing a distribution Π is equivalent to fixing a differential system D(Π) of
its sections, i.e. vector fields which are tangent to the distribution Π. From this submodule
of the C∞(M)-module of vector fields we can construct the extending sequence of derived
submodules: D1 = D(Π), Dk+1 = [D1,Dk]. If the module Dk is projective it is a module
of sections of some distribution Πk = ∂(k−1)Π. We can define the associated vector
bundles Π[k+1] = Πk+1/Πk. The Tanaka invariant ([T]) is a canonically defined graded
Lie multiplication on the bundle of graded vector space Π? =

⊕
Π[k] induced from the

commutator ξ, η 7→ [ξ, η] by the quotient procedure.
Now if the distribution Π is two-dimensional then the derived distribution ∂Π is

generically three-dimensional. Thus in the regular case we have two new distributions:

Π3
+ = ∂Π2

+, Π3
− = ∂Π2

−.

Therefore as a consequence of the formulas for the Nijenhuis tensor we deduce

Proposition 2. The Nijenhuis tensor of an almost product structure j is completely
determined by the Tanaka invariants of the distributions Π2

+ and Π2
−: T± : Π2

± ∧Π2
± →

Π[2]
± , dim(Π[2]

± ) = 1. Thus for dimM = 4 the image of the Nijenhuis tensor is correctly
defined , is two-dimensional distribution for regular distributions Π2

+, Π2
− and satisfies the

decomposition

Π2
j = ImNj = (Π3

+ ∩Π2
−)⊕ (Π3

− ∩Π2
+).

Now we define the general position property for Monge-Ampère equations. We carry
the classification under the fulfillment of this condition.

Definition 3. Let us call a Monge-Ampère equation (ω, j) nondegenerate in a (germ
of) neighborhood Ox of the point x ∈M4 if

◦ Almost product structure j is nonintegrable in Ox. This means that Π2
j = ImNj is

a two-dimensional distribution with no singularities.
◦ The distribution Π2

j is nonintegrable, i.e. it is not the tangent distribution to a
foliation anywhere. This means that the derived distribution ∂Π2

j is three-dimensional.
◦ The derived distribution ∂Π2

j at any point x′ ∈ Ox coincides neither with Π3
+ nor

with Π3
−.
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5. Invariants of the pair consisting of symplectic and almost product struc-
tures. We now need to classify locally either the pair (ω, θ) or the pair (ω, j) on a
4-dimensional manifold M . We can construct invariants in two ways.

First one can consider the pair (ω, j) and use local invariants of the almost pro-
duct structure j, such as Tanaka invariants. On the other hand one can treat another
representative for the generalized Monge-Ampère equation — the pair (ω, θ) — in the
following way. By the Lepage theorem ([Ly2]) the symplectic form ω divides the 3-form
dθ: dθ = ω ∧ σ. By 1-form σ one can construct forms θ ∧ σ, dσ and so on.

Let us connect these two approaches. Introduce the vector valued 2-form

Rσj (X,Y ) = Nj(X,Y ) + jY σ(X)− jXσ(Y ) + Y σ(jX)−Xσ(jY ).

Proposition 3. The following formula holds:

Rσj = −2jXσ ⊗ ω,

where Xσ is the vector field dual to the 1-form σ, ω(Xσ, Z) = σ(Z).

P r o o f. Up to some signs the proof of this proposition coincides with that of Proposi-
tion 5 [Kr1], corresponding to elliptic equations. However for the completeness we present
the whole argumentation. From [FN] we have

i[X,Y ] = [LX , iY ] = [iXd+ diX , iY ] = iXdiY + diX iY − iY iXd− iY diX ,

whence

iNj(X,Y )θ = i[jX,jY ]θ − ij[X,jY ]θ − ij[jX,Y ]θ + i[X,Y ]θ

= ijXdijY θ + dijX ijY θ − ijY ijXdθ − ijY dijXθ + iXdiY θ

+ diX iY θ − iY iXdθ − iY diXθ − i[X,jY ]ω − i[jX,Y ]ω

= ijXdiY ω − 2d[θ(X,Y )]− ijY ijXdθ − ijY diXω + iXdiY θ

− iY iXdθ − iY diXθ − iXdijY ω − diX ijY ω + ijY iXdω

+ ijY diXω − ijXdiY ω − dijX iY ω + iY ijXdω + iY dijXω

= ijXdiY ω − 2d[θ(X,Y )]− ijY ijXdθ − ijY diXω + iXdiY θ − iY iXdθ
− iY diXθ − iXdiY θ + 2d[θ(X,Y )] + ijY diXω − ijXdiY ω + iY diXθ

= −dθ(X,Y, · )− dθ(jX, jY, · ) = −j2dθ(X,Y, · )− dθ(jX, jY, · ).

Note that this identity can also be obtained from the expression of dθ coming from
the Cartan formula:

dθ(X,Y, Z) = ∂Xω(jY, Z)− ∂jXω(Y, Z)

+ ω([jX, Y ]− j[X,Y ], Z) + ω(Y, [jX,Z]− j[X,Z]).

Using the above expression of iNj(X,Y )θ and the formula dθ = ω ∧ σ, we have

dθ(X,Y, Z) = ω(X,Y )σ(Z) + ω(Z,X)σ(Y ) + ω(Y, Z)σ(X).

We can get a similar expression for dθ(jX, jY, Z). Hence it follows that

ω(jNj(X,Y ), Z) = θ(Nj(X,Y ), Z) = −2ω(X,Y )σ(Z)− ω(Z,X)σ(Y )

− ω(Y, Z)σ(X)− ω(Z, jX)σ(jY )− ω(jY, Z)σ(jX).
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From this equality we obtain

ω(jNj(X,Y ) + Y σ(X)−Xσ(Y ) + jY σ(jX)− jXσ(jY ), Z)

= ω(jRσj (X,Y ), Z) = −2ω(X,Y )σ(Z),

which was to be proved.

Corollary. The almost product structure j is integrable if and only if the form θ is
closed : dθ = 0.

P r o o f. The proof in one direction is contained in that of Theorem 1.5 from [LRC]
and follows from Proposition 3 and integrability criterion (?). Actually, if dθ = 0 then
σ = 0, Xσ = 0, Rσj = 0 and Nj = 0. Consider now the inverse statement. Let j be an
integrable almost product structure, i.e. Nj = 0. Suppose σ 6= 0. Then there exists a
basis (X, jX, Y, jY ) such that X, jX, Y ∈ Kerσ, σ(jY ) = 1 (in particular X,Y 6∈ Π2

±).
We have −X = Rσj (X,Y ) ∈ 〈jXσ〉 and −jX = Rσj (jX, Y ) ∈ 〈jXσ〉. This contradiction
shows that σ = 0 and dθ = 0.

6. Differentiable classification: the main theorem. In this section we consider
nondegenerate Monge-Ampère equations. We begin by proving that the decomposition
TM = Π2

+ ⊕Π2
− is symplectic.

Lemma 1. Two subspaces Π2
+ and Π2

− are symplectic and skew ω-orthogonal.

P r o o f. Actually for every X ∈ Π2
+ and Y ∈ Π2

− we have

ω(X,Y ) = ω(jX, Y ) = ω(X, jY ) = −ω(X,Y ) = 0.

Thus the claim follows from the nondegeneracy of ω.

Let us define 1-dimensional distributions Π1
± by the formulas

Π1
+ = Π2

+ ∩Π3
−, Π1

− = Π2
− ∩Π3

+.

Define also another 1-distribution Γ1
σ = 〈Xσ〉 = {λXσ | λ ∈ R}. We have the following

inclusions:

Lemma 2. Γ1
σ ⊂ Π2

j ⊂ Kerσ = (Γ1
σ)⊥ω.

P r o o f. First note that since σ(Xσ) = 0 we have σ(Nj(X,Y )) = σ(jNj(jY,X)) =
σ(jRσj (jY,X)) = 0. Thus σ|ImNj

= 0 and Π2
j ⊂ Kerσ. Next note that Π2

j is a Lagrangian
plane because Π2

j = Π1
+⊕Π1

− and the 1-distributions Π1
+ and Π1

− are ω-orthogonal. From
the definition of Xσ we deduce Γ1

σ = Ker
(
ω|Kerσ

)
. Now the claim follows from the fact

that in a three-dimensional space equipped with a nonzero 2-form ω the kernel of ω lies
in every isotropic 2-space.

Lemma 3. Π1
+ = Ker

(
ω|Π3

−

)
and Π1

− = Ker
(
ω|Π3

+

)
.

P r o o f. Let X ∈ Π1
+ \ {0}. Since by Lemma 1 the 1-form ω(X, · ) vanishes on Π2

−
and since it trivially vanishes on Π1

+ the vector X is skew ω-orthogonal to the whole Π3
−

and thus lies in the kernel of the restriction of ω. For Π1
− the arguments are similar.
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Note that by definition of the plane Π2
j = ImNj for every nonzero vectors X+ ∈ Π1

+,
Y− ∈ Π1

− there exist vectors Z1, Z2 such that

Nj(X+, Z1) = Y−, Nj(Y−, Z2) = X+.

Moreover since Π2
+ and Π2

− are Nj-orthogonal we can choose Z1 ∈ Π2
+ \ Π1

+ and
Z2 ∈ Π2

− \Π1
−. Also imposing the conditions

ω(X+, Z1) = 1, ω(Y−, Z2) = 1

we uniquely determine X+, Y− and we determine Z1(mod Π1
+), Z2(mod Π1

−). Now since
we assumed our Monge-Ampère equation nondegenerate we have for the vector fields X+

and Y− defined in Ox: [X+, Y−] 6∈ Π2
j . Moreover due to the third condition of nondegen-

eracy of the Monge-Ampère equation [X+, Y−] 6∈ Π3
±. Thus P±[X+, Y−] 6∈ Π1

± and we
can uniquely determine the vectors Z1, Z2 by the conditions

Z+ ≡ Z1(mod Π1
+), Z+ ∈ R · P+([X+, Y−]),

Z− ≡ Z2(mod Π1
−), Z− ∈ R · P−([X+, Y−]).

Lemma 4. σ(Z+) = − 1
2 , σ(Z−) = 1

2 .

P r o o f. From Proposition 3 and the properties of (X+, Y−, Z+, Z−) we have

Rσj (X+, Z+) = Y− + jZ+σ(X+)− jX+σ(Z+) + Z+σ(jX+)−X+σ(jZ+)

= Y− − 2σ(Z+)X+ = −2jXσ,

Rσj (Y−, Z−) = X+ + jZ−σ(Y−)− jY−σ(Z−) + Z−σ(jY−)− Y−σ(jZ−)

= X+ + 2σ(Z−)Y− = −2jXσ.

Thus

Xσ = σ(Z+)X+ +
1
2
Y− = −1

2
X+ + σ(Z−)Y−.

Since X+ and Y− are linearly independent we have Xσ = − 1
2X+ + 1

2Y−, σ(Z+) = − 1
2 ,

σ(Z−) = 1
2 .

Let us define the {e}-structure, i.e. basis frame on Ox, by the formulas

P1 = X+, P2 = Y−, Q1 = Z+, Q2 = Z−.

Theorem 4. A nondegenerate generalized hyperbolic Monge-Ampère equation (ω, j)
canonically determines an {e}-structure, i.e. the field of basis frames (P,Q). This struc-
ture is a complete invariant , i.e. two nondegenerate hyperbolic Monge-Ampère equations
are isomorphic iff the corresponding {e}-structures are. The classifying {e}-structure sat-
isfies the following relations:

ω(↑,←) P1 P2 Q1 Q2

P1 0 0 1 0
P2 0 0 0 1
Q1 −1 0 0 0
Q2 0 −1 0 0

Nj(↑,←) P1 P2 Q1 Q2

P1 0 0 P2 0
P2 0 0 0 P1

Q1 −P2 0 0 0
Q2 0 −P1 0 0
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θ(↑,←) P1 P2 Q1 Q2

P1 0 0 1 0
P2 0 0 0 −1
Q1 −1 0 0 0
Q2 0 1 0 0

X P1 P2 Q1 Q2

jX P1 −P2 Q1 −Q2

X P1 P2 Q1 Q2

σ(X) 0 0 −1/2 1/2

P r o o f. The tables for ω, j, Nj and σ follow from the construction of the {e}-structure
and Lemmata 1-4. They imply the table for θ. Conversely given an {e}-structure satisfying
the tables of the theorem we define the Monge-Ampère equation by ω and θ. However
note that this {e}-structure is not arbitrary, it must satisfy two conditions. First, the
2-form ω defined by the table must be closed. Second, the Nijenhuis tensor given by
the table must coincide with the tensor calculated from the almost complex structure j
given by the table. Equivalently we can replace one of these conditions by the coincidence
condition of the 3-form ω ∧ σ determined by the tables and 3-form dθ with θ determined
by the {e}-structure and the table. These two conditions stand for holonomy conditions
and under their fulfillments given {e}-structure (P1, P2, Q1, Q2) uniquely determines the
Monge-Ampère equation.

Recall that by standard procedure the complete set of invariants for an {e}-structure
{ei}4i=1 is given by the set of structure coefficients cijk from the decomposition [ej , ek] =∑
i c
i
jkei.

The classification theorem gives also a method to computing symmetries — vector
fields, the phase flow of which moves the equation to itself:

Corollary. Every symmetry of a nondegenerate Monge-Ampère equation (ω, j) is
the symmetry of its canonical {e}-structure (P1, P2, Q1, Q2) and vice versa. This solves
the problem of finding the Lie algebra of symmetries of a nondegenerate hyperbolic (or
elliptic) Monge-Ampère equation.

Actually the symmetry problem is reduced to finding symmetries of the structure
functions to the canonical {e}-structure. Since such symmetry vector fields must be tan-
gent to the level lines of the functions the problem of finding symmetries (if there are
any) becomes trivial.

7. Examples and extension of the classification. We have considered nondegen-
erate equations, but many interesting cases become “degenerate” in the sense of Defini-
tion 3. The simplest example of such an equation is a violation of the first condition from
this definition. If ImNj = 0, i.e. the structure j is integrable, then due to Theorem 1 the
Monge-Ampère equation can be transformed to the unique normal form. Consider now
some examples when the first condition holds but two others are not necessarily satisfied.

Example 3. Consider the equation

sinϕ ·
(∂2u

∂x2
− ∂2u

∂y2

)
= cosϕ · ∂

2u

∂x∂y
,
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where ϕ is a function of x, y, ∂u/∂x, ∂u/∂y. The equation corresponds to the pair
ω = dp1∧dq1 +dp2∧dq2, θ = cosϕ · (dp1∧dq1−dp2∧dq2)+sinϕ · (dp1∧dq2 +dp2∧dq1).
This pair satisfies Pf(θ) = −1, θ ∧ ω = 0. Moreover the 1-form σ = dθ/ω 6= 0. Thus the
corresponding almost product structure is nonintegrable. It has the following form:

j∂p1 = cosϕ · ∂p1 + sinϕ · ∂p2 , j∂q1 = cosϕ · ∂q1 + sinϕ · ∂q2 ,
j∂p2 = sinϕ · ∂p1 − cosϕ · ∂p2 , j∂q2 = sinϕ · ∂q1 − cosϕ · ∂q2 .

Distributions of 2-planes which correspond to the j-invariant decomposition of T 4 have
the form Π2

+ = 〈ap+, a
q
+〉, Π2

− = 〈ap−, a
q
−〉, where

ap+ = cos
ϕ

2
· ∂p1 + sin

ϕ

2
· ∂p2 , aq+ = cos

ϕ

2
· ∂q1 + sin

ϕ

2
· ∂q2 ,

ap− = sin
ϕ

2
· ∂p1 − cos

ϕ

2
· ∂p2 , aq− = sin

ϕ

2
· ∂q1 − cos

ϕ

2
· ∂q2 .

Now Π3
+ = 〈ap+, a

q
+, a

pq
+ 〉, Π3

− = 〈ap−, a
q
−, a

pq
− 〉, with

apq+ = [ap+, a
q
+] = −1

2

(
cos

ϕ

2
· ∂ϕ
∂p1

+ sin
ϕ

2
· ∂ϕ
∂p2

)
aq− +

1
2

(
cos

ϕ

2
· ∂ϕ
∂q1

+ sin
ϕ

2
· ∂ϕ
∂q2

)
ap−,

apq− = [ap−, a
q
−] =

1
2

(
sin

ϕ

2
· ∂ϕ
∂p1
− cos

ϕ

2
· ∂ϕ
∂p2

)
aq+ −

1
2

(
sin

ϕ

2
· ∂ϕ
∂q1
− cos

ϕ

2
· ∂ϕ
∂q2

)
ap+.

Thus Π1
+ = Π2

+ ∩Π3
− = 〈apq− 〉, Π1

− = Π2
− ∩Π3

+ = 〈apq+ 〉 and Π2
j = 〈apq+ , a

pq
− 〉.

Note that for some choices of the function ϕ, for example for the linear case ϕ = ϕ(q),
the 2-distribution Π2

j is integrable and our Monge-Ampère equation becomes degenerate
in the sense of Definition 3, but in general it is nondegenerate and we have all invariants
from Theorem 4.

Example 4. Let ω = dp1 ∧ dq1 + dp2 ∧ dq2, θ = dp1 ∧ dq1 − dp2 ∧ dq2 + Sdp1 ∧ dq2 +
Tdp1 ∧ dp2. This case is also hyperbolic: Pf θ = −1, θ ∧ ω = 0, σ = dθ/ω 6= 0. The
computation with the Nijenhuis tensor gives

Π2
+ =

〈
∂q1 , ∂p1 +

S

2
∂p2 −

T

2
∂q2

〉
, Π2

− =
〈
∂q2 −

S

2
∂q1 , ∂p2 −

T

2
∂q1

〉
;

Π3
+ =

〈
∂q1 , ∂p1 +

S

2
∂p2 −

T

2
∂q2 ,

∂S

∂q1
∂p2 −

∂T

∂q1
∂q2

〉
, Π3

− = 〈∂q1 , ∂q2 , ∂p2〉 .

Thus

Π1
+ = 〈∂q1〉 , Π1

− =
〈(S

2
∂T

∂q1
− T

2
∂S

∂q1

)
∂q1 +

∂S

∂q1
∂p2 −

∂T

∂q1
∂q2

〉
;

Π2
j =

〈
∂q1 ,

∂S

∂q1
∂p2 −

∂T

∂q1
∂q2

〉
.

It’s easy to see that in this case ∂Π2
j = Π3

− and thus our case is nonintegrable but is
degenerate in sense of Definition 3.

Now we extend our classification to the case when Π2
j is still nonintegrable distribution

and its first derivative distribution is either Π3
+ or Π3

−. The construction of X+, Y− is
invariable, we have only to pick Z+, Z−. Let for example ∂Π2

j = Π3
+. Then [X+, Y−] ∈ Π3

+.
Let us fix the unique representative Z+ for Z1 in this direction. Now consider the 3-plane
Π3
− = 〈X+, Y−, Z2〉. It is nonintegrable due to the commutation relation [X+, Y−] ∈ 〈Z+〉.
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Thus the Tanaka mapping (graduate Lie multiplication) T : ∧2Π3
− → TM4/Π3

− has a one-
dimensional kernel Ker(T ) ⊂ Π3

−. Since [X+, Y−] 6∈ Π3
− we have Ker(T ) 6⊂ Π2

j = 〈X+, Y−〉.
Thus P−

(
Ker(T )

)
⊂ Π2

− \Π1
− and we choose the unique representative Z− for Z2 in this

direction. Now by the same arguments as in Section 6 we get

Proposition 5. The statement of Theorem 4 holds for the general case when the
distribution Π2

j is nonintegrable.

Example 4′ (continuation of 4). Now some more computations give (we omit the
long expression for Z+):

X+ = Φ · ∂q1 , Y− = 2
∂T

∂q1
∂q2 − 2

∂S

∂q1
∂p2 +

(
T
∂S

∂q1
− S ∂T

∂q1

)
∂q1 ,

Z− =
1

4ΦΨ

[
2Φ
(∂2T

∂q2
1

∂q2 −
∂2S

∂q2
1

∂p2

)
−
(

Φ
(
S
∂2T

∂q2
1

− T ∂
2S

∂q2
1

)
+ (Y− · Φ)

)
∂q1

]
,

where

Φ = 2
∂T

∂q2
− 2

∂S

∂p2
+ T

∂S

∂q1
− S ∂T

∂q1
, Ψ =

∂2S

∂q2
1

∂T

∂q1
− ∂2T

∂q2
1

∂S

∂q1
.

8. Semi-integrable equations and other degenerate cases

Definition 4. We call a Monge-Ampère equation (ω, j) semi-integrable if for this
pair all distributions Π2

j , Π3
+ and Π3

− are integrable.

Theorem 6. If a generalized hyperbolic Monge-Ampère equation is semi-integrable
then it has the form

∂2u

∂x∂y
=

1
2
A
(
u,
∂u

∂x
,
∂u

∂y

)
· ∂

2u

∂x2
.

P r o o f. Note that if every distribution indicated in the definition is integrable then
they all can be rectified simultaneously (Section 9). Thus we may assume that in some
local coordinates (p1, p2, q1, q2) we have

Π2
j = 〈∂q1 , ∂p2〉, Π3

+ = 〈∂q1 , ∂p2 , ∂p1〉, Π3
− = 〈∂q1 , ∂p2 , ∂q2〉.

Note also that together with rectifying the three distributions we straighten the canon-
ical 1-dimensional distributions: Π1

+ = 〈∂q1〉, Π1
− = 〈∂p2〉. Therefore the invariant

2-distributions have the form

Π2
+ =

〈
∂q1 , ∂p1 +

A

2
∂p2

〉
, Π2

− =
〈
∂p2 , ∂q2 +

B

2
∂q1

〉
.

Thus we know the almost product structure

j∂q1 = ∂q1 , j∂p1 = ∂p1 +A∂p2 ,

j∂p2 = −∂p2 , j∂q2 = −∂q2 −B∂q1 .
Now due to Lemma 3 we have ω|Π3

+
= R1dp1 ∧ dq1, ω|Π3

−
= R2dp2 ∧ dq2. Hence

ω = R1dp1 ∧ dq1 +R2dp2 ∧ dq2 + Sdp1 ∧ dq2.

From the condition dω = 0 we deduce that
∂R1

∂q2
=
∂S

∂q1
,

∂R2

∂p1
=

∂S

∂p2
,

∂R1

∂p2
= 0,

∂R2

∂q1
= 0.
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This implies ∂2S
∂q1∂p2

= 0, whence S = S1 + S2, S1 = S1(q1, p1, q2), S2 = S2(p2, p1, q2).
Thus

ω = dp1 ∧ (R1dq1 + S1dq2) + (R2dp2 + S2dp1) ∧ dq2.

Now since the form ω is closed, by two consecutive changes of coordinates

q1 7→ Q1(q1, p1, q2), p2 7→ P2(p2, p1, q2)

we obtain the Darboux normal form of the symplectic structure in new coordinates, which
we still denote by (p, q): ω = dp1 ∧ dq1 + dp2 ∧ dq2. This change of coordinates induces
the change of coordinate basis frame:

∂q1 7→ σ1∂q1 , ∂p1 7→ ∂p1 + α∂p2 + β∂q1 , ∂q2 7→ ∂q2 + γ∂p2 + δ∂q1 , ∂p2 7→ σ2∂p2 .

Henceforth the formula for the complex multiplication in the new basis frame is similar
to that of the old basis frame. Now let us use the condition ω(j∂p1 , ∂q2) = ω(∂p1 , j∂q2).
It implies easily that A+B = 0, whence

θ = ijω = dp1 ∧ dq1 − dp2 ∧ dq2 +Adp1 ∧ dq2,

which proves the theorem.

Now consider some other cases which also do not satisfy Definition 3. In this article we
consider only regular points of Monge-Ampère equations, i.e. such that all differential sys-
tems Π evolved are of locally constant rank; in other words they define distributions. Our
consideration of Monge-Ampère equations relies on the behavior of the distribution Πj .
If we have no such distribution (it is 0-dimensional), we are in integrable situation con-
sidered in Theorem 1. Note that the next and only possible case is dim(Πj)x = 2. We
explain this in details in the next section. Thus there are only two cases to be considered:

1. Π2
j is integrable but Π3

+, Π3
− are not.

2. Π2
j is integrable as well as exactly one of the distributions Π3

+, Π3
−.

Now using the argumentation similar to that of Sections 6–7 one can obtain partial
invariants similar to ones from Theorem 4, which allow to find symmetries. Also note
that Weinstein-Givental theorem ([AG]) implies that symplectic form is standard in the
neighborhood of leaves of Lagrangian foliation defined by the integrable distribution Π2

j .

R e m a r k 2. Consider 3-distribution Kerσ. For nondegenerate Monge-Ampère equa-
tions this distribution coincides neither with Π3

+ nor with Π3
−. This follows from the for-

mula Xσ = − 1
2X+ + 1

2Y− obtained in the proof of Lemma 4 and Lemmata 2 and 3. In
degenerate cases σ can be zero on Π3

+ or Π3
−. It is also interesting to consider the case of

integrable distribution Kerσ. This case is equivalently defined by the condition dσ = 0
and in this situation we talk of divergence-free Monge-Ampère equations [Ly2].

9. Appendix: some relevant integrability results. Here we prove some lemmata
which were used in the article.

First let us prove that if an almost product structure j is nonintegrable then the
distribution Πj is 2-dimensional. A priori we can assume the situation when Π2

+ is inte-
grable and Π2

− is not (or otherwise), implying Πj = Π1
+ being 1-dimensional, but it is

impossible.
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Lemma 5. The integrability of the distribution Π2
+ is equivalent to the integrability of

the distribution Π2
−.

P r o o f. Assuming integrability Π2
+ by the Weinstein-Givental theorem we deduce

there exist local coordinates (p, q) such that ω = dp1∧dq1 +dp2∧dq2 and Π2
+ = T∗{p2 =

const., q2 = const.}. Since Π2
− = (Π2

+)ω⊥ it has the form T∗{p1 = const., q1 = const.}
and thus is also integrable.

Next we prove the statement used in Section 8.

Lemma 6. If two transversal distributions Π3
+ and Π3

− in a 4-dimensional manifold
are integrable then their intersection is also integrable and they all can be rectified simul-
taneously.

P r o o f. This fact is almost evident: the distributions are tangent planes to some
local foliations F1 and F2 which are transversal and hence define the 2-dimensional
foliation-intersection.

Now consider the case of nilpotent structure j, j2 = 0. We prove that such a structure
with Nj = 0 is n-integrable.

Lemma 7. If the Nijenhuis tensor of nilpotent structure j with dim[Ker(j)= Im(j)]=2
vanishes, Nj = 0, then the structure has the following form in some coordinate frame:

j∂1 = 0, j∂2 = 0, j∂3 = a (x1, x3, x4) ∂1, j∂4 = b (x2, x3, x4) ∂2.

P r o o f. First let us deduce from the condition Nj = 0 that the distribution Ker(j) =
Im(j) is integrable. Actually let ξ ∈ Ker(j), ξ 6= 0 and η 6∈ j−1(ξ). Then ξ, jη form a
basis of Im(j). We have

0 = Nj(ξ, η) = [jξ, jη]− j[jξ, η]− j[ξ, jη] = −j[ξ, jη]

or equivalently [ξ, jη] ∈ Ker(j). Thus from Frobenius theorem the integrability follows.
Let this distribution integrate to the foliation {x3 = const1, x4 = const2}. Thus our

structure is given in the neighborhood of 0 ∈ R4 by the formulas

j∂1 = 0, j∂2 = 0, j(α∂3 + β∂4) = ∂1, j(γ∂3 + δ∂4) = ∂2,

where the matrix of functions

A =
(
α β

γ δ

)
is nondegenerate in some neighborhood of zero, det(A) 6= 0. These relations determine j
uniquely. Let us find two 1-distributions on the plane 〈∂1, ∂2〉 such that their preimages
by j be integrable 3-distributions. If 1-distribution is given by 〈f∂1 + g∂2〉 then

j−1(〈f∂1 + g∂2〉) = 〈∂1, ∂2, (αf + γg)∂3 + (βf + δg)∂4〉.

This distribution is integrable in the following two cases: (f, g) = (γ,−α) or (f, g) =
(δ,−β). Consider two foliations of the plane 〈∂1, ∂2〉 by the integral curves of the above
two distributions

Σ1
(1) = 〈γ∂1 − α∂2〉, Σ1

(2) = 〈δ∂1 − β∂2〉.
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These distributions are transversal. Let us rectify them, i.e. make a change of coordinates
such that ∂1 has direction along the first distribution and ∂2 along the second. It is possible
since the integral curves form a (coordinate) lattice. Now in new coordinate system the
structure j has the form

j∂1 = 0, j∂2 = 0, jξ = ∂1, jη = ∂2.

Here ξ = α̂∂3 + β̂∂4, η = γ̂∂3 + δ̂∂4 with some new matrix of functions

Â =

(
α̂ β̂

γ̂ δ̂

)
,

which is nondegenerate in some neighborhood of zero, det(Â) 6= 0. Now since by the con-
struction the distributions 〈∂1, ∂2, ξ〉, 〈∂1, ∂2, η〉 are integrable we obtain that after some
rescaling of rows the matrix Â depends only on (x3, x4). In other words ξ = λ1(x1, x2)ξ0,
η = λ2(x1, x2)η0, where ξ0, η0 are vector fields projectable to the plane R2(x3, x4). Now
we have two transversal 1-distributions 〈ξ0〉 and 〈η0〉 on the plane R2(x3, x4). Again as
above we can change ξ0 and η0 by some factors so that they preserve their direction but
begin commute: [ξ0, η0] = 0. Thus we can make a change of coordinates such that ξ0, η0

become ∂3, ∂4. In this new coordinate system the structure j is given by the formula

j∂1 = 0, j∂2 = 0, j∂3 = a ∂1, j∂4 = b ∂2.

Now the condition Nj(∂3, ∂4) = 0 gives

[j∂3, j∂4] =
∂b

∂x1
∂2 −

∂a

∂x2
∂1 = 0.

Thus a = a(x1, x3, x4), b = b(x2, x3, x4) and the lemma is proved.

R e m a r k 3. The formula of the lemma shows that there are nilpotent structures j
withNj = 0 but which are non-integrable (a 6= const or b 6= const). However one can check
that the condition (?), Nj = 0, implies the equivalence of the Monge-Ampère equation
θ = ijω = 0 to the third equation of Theorem 1. Actually in symplectic coordinates such
that Ker(j) = Im(j) = 〈∂p1 , ∂q2〉 we have

j∂p1 = 0, j∂p2 = a∂p1 + b∂q2 , j∂q1 = c∂p1 + d∂q2 , j∂q2 = 0.

The condition Nj = 0 implies also [a∂p1 +b∂q2 , c∂p1 +d∂q2 ] = 0 and the identity ω(jξ, η) =
ω(ξ, jη) yields a = d. We can suppose the last function is nonzero. Thus θ = adp2 ∧ dq1

and the Monge-Ampère equation can be written in the form
∂2u

∂q2
1

= 0.
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