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0. Introduction. Let M be a 2n-dimensional manifold and ω be a 2-form on M . The
pair (M,ω) is called a symplectic manifold if ω is closed (i.e. dω = 0) and nondegenerate,
[Wei]. A submanifold Ln of M is called Lagrangian if the restriction of the symplectic
form to the tangent space TyL vanishes for each y ∈ L and

TyL = (TyL)⊥ = {v ∈ TyM : ω(v, u) = 0 for every u ∈ TyL}.

A submanifold Ik of M is called isotropic if for every y ∈ Ik a skew-orthogonal com-
plement (with respect to ω) of the tangent space to I contains this tangent space, i.e.
(TyI)⊥ ⊇ TyI. A submanifold C2n−k is said to be coisotropic if for every y ∈ C holds
(TyC)⊥ ⊆ TyC. Note that the dimension of an isotropic submanifold is less than or equal
to n, and the dimension of a coisotropic one is greater than or equal to n. A Lagrangian
submanifold is an isotropic submanifold of maximal dimension or a coisotropic one of
minimal dimension. These submanifolds play a significant role in symplectic geometry
and they appear naturally in many branches of physics ([GS], [Ja1], [Ja2]).

A fundamental example of a symplectic manifold is the real cotangent bundle T ∗Rn
endowed with the canonical symplectic structure ω = dΘ, where 1-form Θ is the Liouville
form on T ∗Rn. It is defined by Θ(u) = 〈TπRn(u), τT∗Rn(u)〉, where u ∈ T (T ∗Rn), the
mapping TπRn is the tangent mapping of πRn : T ∗Rn −→ Rn and τT∗Rn : T (T ∗Rn) −→
T ∗Rn is the tangent bundle projection. If (p, x) are coordinates of the bundle T ∗Rn, i.e.
x1, . . . , xn are coordinates of the base and p1, . . . , pn are coordinates of the fibre, then
Θ and ω have the local Darboux form (see [Wei])

Θ = Σni=1pidxi, ω = Σni=1dpi ∧ dxi.
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This paper is devoted to the study of cohomological invariants in the theory of La-
grangian, isotropic and coisotropic submanifolds. The theory of the Maslov canonical
operator and the Maslov class for a Lagrangian submanifold was formulated by V. P.
Maslov in 1965 and V. I. Arnol′d in 1967, [Mas], [Ar]. The theory of Maslov and Arnol′d
was motivated by the important branches of mathematics and physics: asymptotic meth-
ods of the linear partial differential equations, quantum mechanics, representation theory,
etc. The Maslov class belongs to the first cohomology group of a Lagrangian submanifold.
Higher characteristic classes, described by D. B. Fuks [Fu], appear in higher dimensions
(4t + 1). All those classes have the same geometric property: They are obstruction for
transversality of two Lagrangian subbundles in a symplectic bundle. J. M. Morvan and
L. Niglio obtained secondary characteristic classes in the isotropic case, [MN]. Although
their approach is less geometric. Our goal is to find geometric cycles in the isotropic
Grassmannian which represent classes computed in [MN]. Using similar methods, as in
Fuks’ paper, we obtain the cycles in some of the expected dimensions. We show that they
are nontrivial. This proves that the cycle in the lowest dimension agrees with a generator
of the first nontrivial cohomology group in odd dimension.

The first section contains the main information about the Maslov class and the Maslov
index theory for Lagrangian submanifolds. In the second section we recall the definition
of higher characteristic classes for the Lagrangian Grassmannian. A similar, geometric
construction is applied to define higher characteristic classes for the isotropic Grassman-
nian. Let I2n

k be the isotropic Grassmannian of k-dimensional isotropic subspaces in
2n-dimensional symplectic vector space. We obtain the cycles of codimensions 2i+ 1 for
i = n−k+1, n−k+2, . . . , 2n−k−1. We show that for i even the cycles are coorientable.
They are nontrivial in cohomology of the isotropic Grassmannian for i ≤ 2n− 2k + 1.

Acknowledgements. I would like to thank Professor Stanis law Janeczko for intro-
ducing me to the subject and for helping me in the preparation of the paper.

1. Maslov class and Maslov index for a Lagrangian submanifold. Let Ln

be a Lagrangian submanifold of the real cotangent bundle T ∗Rn with the canonical
symplectic form ω. We denote by π : T ∗Rn −→ Rn the standard fibration of the cotangent
bundle, this fibration is Lagrangian, i.e. its fibres are Lagrangian subspaces and T ∗Rn is
symplectic manifold. Let Γ be the set of singular points of the projection π|L.

If a submanifold Ln is in a generic position in T ∗Rn, then the set Γ has the following
properties:

1) Γ is a hypersurface in L, i.e. dim(Γ) = n− 1.
2) In general, the hypersurface Γ is not smooth, because the rank of the projection

π can be less than n− 1.
3) The set of singular points of Γ has codimension at least three in L and codimension

at least two in Γ.
4) The smooth part of the hypersurface Γ has the canonical orientation of the normal

bundle.
For more details see [MSS], [Ar].
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The set Γ defines a canonical cohomology class for a generic Lagrangian submanifold,
called the Maslov class.

Definition 1.1. The Maslov class for a generic Ln ⊂ T ∗Rn is defined as the
element [V] of the first cohomology group H1(L,Z) such that its evaluation on a one-
dimensional cycle γ on L is the intersection number of γ and the hypersurface Γ. The
evaluation of [V] on γ is called the Maslov index of the curve γ on the Lagrangian sub-
manifold L, we denote it by v(L, γ).

We should explain some details.

1) If the submanifold Ln is oriented and compact, then the set Γ defines an integer
cycle (after a choice of an orientation). The class [V] is the Poincaré dual element to the
class [Γ] ∈ Hn−1(L,Z).

2) For a nongeneric case we can also define the Maslov class. It will be defined in
Remark 1.3, as the pull-back of the universal class of the Lagrangian Grassmannian.

The Maslov class [V] is related to the singularities of the projection π|L, it as-
signs to every Lagrangian submanifold Ln ⊂ T ∗Rn the set of Maslov indices: v(L, γ1),
v(L, γ2), . . ., v(L, γr) which are integers. The Maslov index is the homology invariant of
a closed path contained in L.

We can also define the Maslov class and the Maslov index with the aid of the Gauss
mapping.

In the cotangent bundle T ∗Rn. We have the following identification:

(x1, . . . , xn, p1, . . . , pn) ∈ T ∗Rn ←→ (x1 + i p1, . . . , xn + i pn) ∈ Cn.

We denote by Λn the Lagrangian Grassmannian, i.e. the set of all Lagrangian subspaces
in R2n. We can identify it with the quotient space U(n)/O(n), where U(n) is the unitary
group, O(n) the orthogonal group. We have dim(Λn) = n(n+1)

2 , [MSS].
Let G be the Gauss mapping

G : L −→ Λn; y 7→ TyL.

In our case this mapping is globally defined because the cotangent bundle T ∗Rn is trivial.
It is possible to define a characteristic class in the cohomology of the Grassmannian

Λn such that its pull-back to Ln is the Maslov class.
Let y ∈ T ∗Rn be an arbitrary point. We identify all Lagrange subspaces of Ty(T ∗Rn)

with elements of the Grassmannian Λn by parallel translation. Denote by Ψ ⊂ Ty(T ∗Rn)
the tangent space to the fibre of the projection π at the point y. Ψ is independent of
y ∈ T ∗Rn, because the projection π is a linear fibration. Let Γ′ be the set of all elements
of Λn which intersect Ψ in a nongeneric way. The set Γ′ forms a hypersurface in Λn, its
singular part has codimension three in Λn. The smooth part of Γ′ is coorientable, see
[MSS].

Definition 1.2. The universal Maslov class of the Lagrangian Grassmannian is de-
fined as the element [VΛn] of the first cohomology group H1(Λn,Z) ' Z such that its
evaluation on a one-dimensional cycle γ on Λn is the intersection number of γ and the
hypersurface Γ′.
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R e m a r k 1.3. The Maslov class [V] is the image of the universal class [VΛn], under
the induced map G∗ : H1(Λn,Z) −→ H1(L,Z).

R e m a r k 1.4. When n is odd, then the Lagrangian Grassmannian Λn is an ori-
entable manifold, [Fu], [Bor]. In this case the set Γ′ defines an integer cycle. The class
[VΛn] ∈ H1(Λn,Z) is the Poincaré dual element to the class [Γ′] ∈ Hp(Λn,Z), where
p = (n+1)n

2 − 1.

We give another equivalent definition of the Maslov class, see [MSS]. This definition is
the simplest, but not geometric. Let det2 : Λn −→ S1 be defined by det2([A]) = (detA)2,
where the element [A] ∈ U(n)/O(n) represents a Lagrangian subspace in R2n; the columns
of the matrix A ∈ U(n) form an orthogonal basis at a Lagrangian subspace [A]. Since
det2(X) = 1, for X ∈ O(n), the mapping det2 : Λn → S1 is well defined.

Definition 1.5. The Maslov form of L is defined as the image of the volume form
for the circle S1 under the mapping

Ω1(L) G∗←− Ω1(Λn)
(det2)∗←− Ω1(S1),

i.e.

V = (det2 ◦G)∗
( 1

2πi
dz

z

)
.

It is well known that

R e m a r k 1.6. The Maslov class [V] of L is the image of a generator of the group
H1(S1,Z) ' Z, under (det2 ◦G)∗ : H1(S1,Z) −→ H1(L,Z).

Example 1.7.We calculate the Maslov indices and the Maslov form and class for the
unit circle. We consider two-dimensional symplectic space T ∗R ' R2 with the canonical
symplectic form ω, and the canonical projection π : T ∗R −→ R, (p, x) 7→ x, where x
is the coordinate of the base and p of the fibre. Let L = {(x, p) ∈ R2 : x2 + p2 = 1} be
the circle with the counter-clockwise orientation. We see that the set Γ = {A = (−1, 0),
B = (1, 0)} is a zero-dimensional cycle. We orient it with the canonical orientation of the
normal bundle, then the points A and B have the sign plus. For every oriented closed
curve γ on L, the Maslov index v(L, γ) is an even number and it is related to the number
of rotations clockwise and counter-clockwise. We have the Gauss mapping G : L −→ Λ1.
It is easy to see that in our case the mapping det2 ◦ G has the form det2(G(z)) = −z2,
where z = (x, p) = x + ip. Grassmannian Λ1 can be identified with S1 and the volume
form for the circle is 1

2πi
dz
z . Then

[VΛ1] =
[

1
2πi

dz

z

]
∈ H1(Λ1,Z), [V] =

[
dz

πiz

]
∈ H1(L,Z).

Maslov class is defined not only for a Lagrangian submanifold, but for a pair and for a
triple of Lagrangian submanifolds. In physical aspects of the Maslov class the Lagrangian
submanifold must satisfy so called quantization conditions, these are homological condi-
tions which have to be fulfilled by the atlas of the submanifold ([MSS], [Ar]).
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2. Maslov classes for coisotropic and isotropic submanifolds. We denote by
I2n
k the isotropic Grassmannian, i.e. the set of all k-dimensional isotropic subspaces in
T ∗Rn. We have the following description: I2n

k is homeomorphic to the quotient space
U(n)/(O(k)⊕ U(n− k)), dim(I2n

k ) = 2(n−k)k+ k(k+1)
2 and H1(I2n

k ,Z) = 0, [Mik], [Vai].
For every isotropic subspace, its skew-orthogonal complement is a coisotropic subspace,
therefore the quotient space I2n

k is also the coisotropic Grassmannian.
We cannot define the Maslov class for isotropic and coisotropic submanifolds in a

classical manner. The Maslov class for a Lagrangian submanifold L is defined as the
image of a generator of the group H1(Λn,Z) ' Z under G∗ : H1(Λn,Z) −→ H1(L,Z),
where G is the Gauss mapping. The nature of the isotropic Grassmannian is different,
its first cohomology group with integer coefficients is trivial, therefore an analogue of the
Maslov class should be defined in a higher cohomology group.

D. B. Fuks gave a geometric description of generators of cohomology ring of La-
grangian Grassmannian Λn, [Fu]. He considered the subsets in Λn consisting of those
elements Y ∈ Λn which have intersections with a fixed m-dimensional subspace Pm ⊂
Cn ' T ∗Rn at least of dimension l:

Lm,ln = {Y ∈ Λn : dim(Pm ∩ Y ) ≥ l}.

Cohomology groups in odd dimensions with integer coefficients are generated by [VΛn],
b2, b4, . . . , bn−1, where [VΛn] is the universal Maslov class described in the first part of
this paper (Definition 1.2) and bi ∈ H2i+1(Λn,Z) for i = 2, 4, . . . , n − 1, are defined by
subsets Ln−i+1,2

n . Cohomology groups of Λn in even dimensions are trivial.
J. M. Morvan and L. Niglio found generators for the cohomology ring of isotropic

Grassmannian I2n
k using the theory of Lie algebras, [MN], [Bor]. The generators in even

dimensions come from Chern and Pontryagin classes. The odd part is generated by higher
Maslov classes, which are located in dimensions 4t + 1 for certain range of t. Precisely,
we have:

Theorem 2.1. The cohomology H∗(I2n
k ,R) in odd dimensions are generated by the

following elements (the index denotes the degree):

y(4[ n−k+1
2 ]+1), . . . , y(4t+1), . . . , y(2n−1), if k is even and n is odd ,

y(4[ n−k+1
2 ]+1), . . . , y(4t+1), . . . , y(2n−3), if k and n are even,

y(4[ n−k+1
2 ]+1), . . . , y(4t+1), . . . , y(2n−3), x(2n−1), if k is odd ,

where the symbol [ · ] denotes the integral part of a real number.

We will give a geometric description of elements in odd dimensions. The construction
is motivated by Fuks’ paper. A connection with the theory of singularity will be explained.

We define the following subsets in isotropic Grassmannian I2n
k . We take the fixed

isotropic subspaces Pm ⊂ Cn, 1 ≤ m ≤ n. We choose Pm = {x1 = . . . = xn = 0,
p1 = . . . = pn−m = 0}, where x1, . . . , xn are coordinates of Rn and p1, . . . , pn are co-
ordinates of the imaginary part. Let Σ2n

k (l,m) be the set of those elements X of the
Grassmannian I2n

k which have intersections with the subspace Pm at least l-dimensional:

Σ2n
k (l,m) = {X ∈ I2n

k : dim(Pm ∩X) ≥ l}.
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The set Σ2n
k (l,m) is a singular manifold, with singularities contained in the set

Σ2n
k (l + 1,m). We consider the desingularization of Σ2n

k (l,m):

Σ̃2n
k (l,m) = {(X,M) ∈ I2n

k ×Gl(Pm) : M ⊂ (Pm ∩X)}.

where Gl(Pm) is the Grassmannian of all l-dimensional linear subspaces in Pm. The map
η : Σ̃2n

k (l,m) −→ Σ2n
k (l,m), (X,M) 7→ X is a homeomorphism away of singularities.

Lemma 2.2. The set Σ2n
k (l,m) is a cycle: codim(Σ2n

k (l,m)) = 2(n− k)l+ l(2k−l+1)
2 −

l(m− l) and dim(Σ2n
k (l,m))− dim(Σ2n

k (l + 1,m)) = 2n− k −m+ l + 1 ≥ 2.

P r o o f. We calculate the dimension of the set Σ2n
k (l,m) from the following fibration:

(1)
Σ̃2n
k (l,m) ←↩ I2n−2l

k−l (X,M)
↓ ↓

Gl(Pm) M

We have l ≥ 1 and 1 ≤ m ≤ n, thus dim(Σ2n
k (l,m))−dim(Σ2n

k (l+ 1,m)) = 2n− k−m+
l + 1 ≥ n− k + 2 ≥ 2.

The singular part of Σ2n
k (l,m) has codimension at least 2, then this set defines an

element in the cohomology group of I2n
k with coefficients in Z2.

Let us discuss the question of orientability. The isotropic Grassmannian is fibred in
the following way:

I2n
k ←↩ Λk Y = spanR{v1, . . . , vn}
↓ ↓

Gk(Cn) Y ⊕ iY = spanC{v1, . . . , vn},
where the fibre is the Lagrangian Grassmannian Λk and the base is the classical complex
Grassmannian Gk(Cn). The Grassmannian Gk(Cn) is orientable and simply connected,
then I2n

k is orientable if and only if Λk is orientable. The Grassmannian Λk is orientable
for k odd (Remark 1.4). For simplicity, we assume that k is odd, then the cycle Σ2n

k (l,m)
defines an element in cohomology with integer coefficients if and only if it is orientable.

Lemma 2.3. For k odd , l and m even the cycle Σ2n
k (l,m) is orientable.

P r o o f. Using the fibration (1) we see that necessary condition of orientability of
Σ2n
k (l,m) is orientability of I2n−2l

k−l , then l has to be even. As in Fuks’ paper, the fibration
is orientable and the base Gl(Pm) is orientable if and only if m is even.

We conclude that the cycles Σ2n
k (l,m) for k odd, l and m even, define elements in

cohomology with integer coefficients. We concentrate on the case l = 2. Then [Σ2n
k (2,m)]

belongs to Hp(I2n
k ,Z), where

p = 2(n−k)l+
l(2k − l + 1)

2
− l(m− l) = 4(n−k)+2k−1−2(m−2) = 4n−2k−2m+3.

For k even, we apply the following construction. We embed the Grassmannian I2n
k

in I2n+2
k+1 :

ik : I2n
k ↪→ I2n+2

k+1 , Y 7→ Y ⊕ R⊕ i{0},

then

(2) i−1
k

(
Σ2n+2
k+1 (2,m+ 1)

)
∩ I2n

k = Σ2n
k (2,m).
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The Grassmannian I2n+2
k+1 is orientable. For m + 1 even, the cycle Σ2n+2

k+1 (2,m + 1) is
orientable and coorientable. Then the cycle Σ2n

k (2,m) is coorientable and it also defines
an element in cohomology with integer coefficients: [Σ2n

k (2,m)] ∈ Hp(I2n
k ,Z), where

p = 4n− 2k − 2m+ 3.

Corollary 2.4.

m even m odd I2n
k

k even Σ2n
k (2,m) not coorientable Σ2n

k (2,m) coorientable unorientable

k odd Σ2n
k (2,m) coorientable Σ2n

k (2,m) not coorientable orientable

Using formula (2), we will show that the elements

[Σ2n
k (2,m)] ∈ Hp(I2n

k ,Z)

are nontrivial for k ≤ m ≤ n and k + m ≡ 1 (mod 2), where p = 4n − 2m − 2k + 3. We
consider the sequence of embeddings of isotropic Grassmannians:

I2(n−k+2)
2 ↪→ . . . ↪→ I2n−2

k−1 ↪→ I2n
k .

Every embedding is defined as before:

ik : I2n−2
k−1 ↪→ I2n

k , X 7→ X ⊕ R⊕ i{0}.

Using formula (2), after suitable choice of orientation, we obtain:

i∗k([Σ2n
k (2,m)]) = [Σ2n−2

k−1 (2,m− 1)] ∈ Hp(I2n−2
k−1 ,Z),

where 4n− 2k − 2m+ 3. From here, for m ≥ k, we have the sequence of classes:

[Σ2n
k (2,m)] 7→ [Σ2n−2

k−1 (2,m− 1)] 7→ . . . 7→ [Σ2(n−k+2)
2 (2,m− k + 2)],

where Σ2n′

k′ (2,m′) ⊂ I2n′

k′ . At the end we have the class generated by the set

Σ2(n−k+2)
2 (2,m− k + 2) ⊂ I2(n−k+2)

2 .

Let n′ = n− k+ 2 and m′ = m− k+ 2. The codimension of Σ2n′

2 (2,m′) is 4n′− 2m′− 1.
We find a complementary cycle Θ2n′

2 (2,m′) ⊂ I2n′

2 of dimension 4n′ − 2m′ − 1 such that
the intersection of the cycle Θ2n′

2 (2,m′) with Σ2n′

2 (2,m′) is a point. Let

V = {pn′−m′+3 = . . . = pn′ = 0}, dim(V ) = 2n′ −m′ + 2,

be a coisotropic subspace. We recall that Pm
′
={x1 = . . . =xn′=0, p1 = . . . =pn′−m′=0}

and Σ2n′

2 (2,m′) = {X ∈ I2n′

2 : X ⊂ Pm
′}. The complementary cycle is defined to be

Θ2n′

2 (2,m′) = {X ∈ I2n′

2 : X ⊂ V }.

Lemma 2.5. The set Θ2n′

2 (2,m′) ⊂ I2n′

2 is an orientable cycle of dimension 4n′ −
2m′ + 1.

P r o o f. 1) First we calculate the dimension. Let us apply the symplectic reduction
V → V/V ⊥ ' Cn′−m′+2, where V ⊥ = spanR

{
∂

∂xn′−m′+3
, . . . , ∂

∂xn′

}
is the skew-orthogonal

complement to V in Cn′ . The generic isotropic plane in V projects to an isotropic plane
in Cn′−m′+2. Thus we have a fibration U → I2(n′−m′+2)

2 , where U ⊂ Θ2n′

2 (2,m′) is the
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set of planes which intersect V ⊥ trivially. The set U is smooth. The fibre is isomorphic
with Hom(R2, V ⊥). We calculate that

dim(Θ2n′

2 (2,m′)) = dim(I2(n′−m′+2)
2 ) + dim(Hom(R2, V ⊥))

= 4(n′ −m′) + 3 + 2(m′ − 2) = 4n′ − 2m′ − 1.

2) We calculate the dimension of complement of U in Θ2n′

2 (2,m′). The generic plane
from Θ2n′

2 (2,m′)\U projects onto a line in Cn′−m′+2 and onto a plane in V ⊥. Its position
is determined by a line in Cn′−m′+2, a plane in V ⊥ and a map from the plane to the line.
We calculate that

dim(Θ2n′

2 (2,m′) \ U) = dim(RP2(n′−m′+2)−1) + dim(G2R(m′−2))

+ dim(Hom(R2,R)) = 2n′ − 3.

We check that codim(Θ2n′

2 (2,m′) \ U) ≥ 2. Clearly (4n′ − 2m′ − 1) − (2n′ − 3) = 2n′ −
2m′ + 2 ≥ 2.

3) We show the orientability of the cycle Θ2n′

2 (2,m′). We considered the vector bundle

Hom(R2, V ⊥) ↪→ U → I2(n′−m′+2)
2 .

The base is unorientable and the bundle is unorientable too. We note that the first
homotopy group of I2(n′−m′+2)

2 equals Z2, [MSS]. Going around the only nontrivial loop,
we change the orientation of R2 in Hom(R2, V ⊥). Since dim(V ⊥) = m′−2 is odd (because
k = 2), it changes the orientation of Hom(R2, V ⊥).

We clearly see that the intersection of the cycles Θ2n′

2 (2,m′) and Σ2n′

2 (2,m′) is a
single point X = spanR

{
∂

∂pn′−m′+1
, ∂
∂pn′−m′+2

}
∈ I2n′

2 . Thus [Σ2n′

2 (2,m′)] ∈ H∗(I2n′

2 ,Z)

is nontrivial, its evaluation on [Θ2n′

2 (2,m′)] ∈ H∗(I2n′

2 ,Z) equals one.

Let us summarize our results in the following corollary.

Corollary 2.6. We defined the cycles Σ2n
k (l,m) ⊂ I2n

k of codimensions 2i + 1 for
i = n− k + 1, n− k + 2, . . . , 2n− k − 1. For i even the cycles are coorientable. They are
nontrivial in cohomology of the isotropic Grassmannian for i ≤ 2n− 2k + 1.

We explain the relations between the obtained classes and the properties of isotropic
projections. Let M2n be a symplectic manifold which is fibred over a smooth base B,
R : M → B. Let the fibres of the projection R be m-dimensional isotropic submanifolds
in M , then we call R a m-dimensional isotropic fibration.

Example 2.7. Let M = T ∗Rn. Denote by Rm the linear fibration:

Rm : T ∗Rn → R2n−m (x1, . . . , xn, p1, . . . , pn) 7→ (x1, . . . , xn, p1, . . . , pn−m),

where 0 ≤ m ≤ n. The fibres are m-dimensional isotropic affine subspaces.

Let Ik be a k-dimensional isotropic submanifold in M . We restrict R to the subman-
ifold I, R|I : I → B. We define a singular set σI(2,m) of points in I, where the tangent
mapping TR|I has the rank at most k − 2.

We consider M2n = T ∗Rn and the fibration Rm of M , Example 2.7. As in Lagrangian
case, we have the Gauss mapping:

F : Ik → I2n
k , y 7→ TyI,
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where the tangent spaces are identified with elements of the Grassmannian I2n
k by the

parallel translation. We clearly have:

Proposition 2.8. The singular set σI(2,m) ⊂ I is the inverse image of Σ2n
k (2,m)

under the Gauss mapping F .

The stratification of I2n
k is given by the dimension of intersection with the fixed

isotropic subspace Pm ⊂ I. An isotropic submanifold inM is generic if the Gauss mapping
F is transversal to the strata in I2n

k .

R e m a r k 2.9.
1) If the Gauss mapping F is transversal to the strata of the cycle Σ2n

k (2,m), (i.e.
the submanifold I ⊂ M is in the generic position), then the set σI(2,m) is a cycle in I,
moreover [σI(2,m)] = F ∗([Σ2n

k (2,m)]) ∈ H∗(I,Z).
2) The classes [σI(2,m)] are independent of the choice of the linear isotropic fibration

in T ∗Rn → R2n−m.

R e m a r k 2.10. If the projection T ∗Rn → Rn, (p, x) 7→ x, restricted to the isotropic
submanifold I is nondegenerate, then all these sets Σ2n

k (2,m) are empty. Thus the classes
[Σ2n
k (2,m)] ∈ H∗(I2n

k ,Z) can be treated, as the cohomological obstructions on nonde-
generacy of the Lagrangian projection.

We are going to treat the remaining geometric characteristic classes for the isotropic
Grassmannian in the forthcoming papers.
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