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The present paper is a survey of the author’s recent results on recognizing C" right-left
equivalence of C* map-germs (0 < r < 00).

We say two C°° map-germs are C" right-left equivalent if they coincide under germs
of appropriate C" co-ordinate systems of the source space and the target space, where
a C° co-ordinate system means a co-ordinate system given by a homeomorphism. We
often encounter the situations where we would like to decide whether or not given two
map-germs are C" right-left equivalent. In the case that one of them is of full rank
(resp. linear), the implicit function theorem (resp. the rank theorem) answers our purpose
(possibly except for r = 0). However, how can we decide in general case? By using a
simple systematic method explained in Section 4, we can obtain many results to the
problem. In Section 1, we give a series of criteria for C” right-left equivalence of C'*°
map-germs (1 < r < 00). In Section 2, infinitesimal refinements of criteria for C*° right-
left equivalence of C* map-germs are given. Next, we consider C? right-left equivalence.
In Section 3, we give a series of criteria for C° right-left equivalence of K-equivalent
map-germs. All of the results are derived from one simple idea, which is the key of our
systematic method and explained exhaustively in Section 4. In Section 5 we give several
applications of our results, which show how useful our method is.

The results for » = oo are all valid both in the real analytic category and in the
complex analytic category as well.

1. Criteria for C" right-left equivalence (1 < r < o). For a given C* map-
germ f : (R",0) — (RF,0), any C” map-germ ® : (R" x R*,(0,0)) — (R?,0) such
that ®(z,0) = f(z) is called a C" deformation-germ of f. A C" deformation-germ
P : (R" x R* (0,0)) — (RP,0) of f: (R",0) — (RF,0) is said to be C"-trivial if
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206 T. NISHIMURA

there exist germs of C" diffeomorphisms & : (R" x R¥,(0,0)) — (R™ x R*,(0,0)) and
H: (R* xR", (0,0)) — (R? xR, (0,0)) such that the following diagram (*) commutes,
where 7 : (R" x R¥,(0,0)) — (R*,0), 7' : (R? x R*,(0,0)) — (R*,0), are canonical
projections:

(R™ x R¥,(0,0)) 2L (RP x R¥,(0,0)) —~> (RF,0) .

o ]

(R™ x R, (0,0)) ~"% (R x R¥,(0,0)) — (RF,0)

For given two C° map-germs f,g : (R",0) — (RP?,0), we consider the following
conditions (i), (ii,), (iii;) and (iv,).

(i) The map-germ f is C” right-left equivalent to g.

(iiy) There exist a germ of C” diffeomorphism s : (R™,0) — (R™,0) and a C"
map-germ M : (R",0) — (GL(p,R),M(0)) such that the following (a) and (b) are
satisfied:

(a) f(z) = M(z)g(s(z)),
(b) the C™ map-germ F : (R" x R?,(0,0)) — (R?,0) given by
F(z,A) = f(z) = M(z)A
is a C"-trivial deformation-germ of f.

(iii;) There exist a germ of C” diffeomorphism s : (R",0) — (R",0) and a C”
map-germ M : (R",0) — (GL(p,R), M(0)) such that (a), (b) of condition (ii;) and the
following (c) are satisfied:

(c) The C" map-germ G : (R™ x R?,(0,0)) — (RP,0) given by
G(z,A) = g(w) = M(s™'(2)) 7' A
is a C"-trivial deformation-germ of g.

(ivy) There exist a germ of C” diffeomorphism s : (R™,0) — (R",0) and a C"
map-germ M : (R",0) — (GL(p,R),M(0)) such that (a), (b) of condition (ii;) and the
following (d) are satisfied:

(d) The germ (H ({0} x RP?),0) is transverse to the germ ({0} x RP?,0), where
H is the germ of C” diffeomorphism of (R? x R?,0) given in the above commutative
diagram () with k, ® replaced by p, F.

First, we consider rank zero cases.

THEOREM 1.1 ([15]). Let f,g: (R™,0) — (R?,0) be C°° map-germs with rank zero.
Then condition (ii;) implies condition (iy) for 1 <r < co.

Next, we consider positive rank cases.
EXAMPLE 1.1. Let f,g: (R%,0) — (R2,0) be given by

flz,y) = (x.9° + 2y),
g9(z,y) = (z,9%)
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and M : (R?0) — (GL(2,R), E2) be given by

M =| 1T

where Fj is the unit 2 by 2 matrix. Then f(z,y) = M(z,y)g(z,y).

It is well known that any C*° deformation-germ of the map-germ f is C'°°-trivial.
Thus, (iis) is satisfied. However, for any 1 < r < oo condition (i;) does not hold (in fact,
f and g are even not topologically right-left equivalent).

This example shows that condition (ii;) does not necessarily imply condition (i,) in
positive rank cases. Nevertheless, the following holds under no assumptions.

THEOREM 1.2 ([15]). Condition (iii,) implies condition (i;) for 1 <r < oo.

Although Theorem 1.2 is interesting in itself, we prefer the C” triviality of the linearly
parametrized deformation-germ of only one of f or g to those of both of f and g. Thus,
we are led to condition (ivy).

THEOREM 1.3 ([15]). Condition (ivy) implies condition (i) for 1 <r < oco.
In the case r = 0o, we have

THEOREM 1.4 ([15]). For any C* map germs f,g: (R",0) — (RP,0), the following
hold:

(1) (i) & (illoo) & (iVoo)-

(2) (i) & (i) © (lico) < (iveo) if the rank of f is zero.

Therefore, we may answer the C'°° recognition problem completely by using our con-
ditions in principle.

2. Infinitesimal refinements of criteria for C*° right-left equivalence. First,
we review infinitesimal notations briefly. For details on them, see [9], [14], [15], [21].

Let &, (resp. m,,) denote the set of C*° function-germs (R™,0) — R (resp. (R™,0) —
(R,0)). The set &, has a natural R-algebra structure and the set m, is the unique
maximal ideal in &,. For any positive integer ¢, m? means the (-times product of m,,.
For £ =0, mY is &,.

For a C* map-germ f : (R™,0) — (RP,0), let 8(f) denote the &,-module consist-
ing of germs of C'™ vector fields ¢ : (R™,0) — T(RP) such that m, o ( = f, where
mp © T(RP) — RP denotes the canonical projection. By using the standard identifi-
cation of T(RP) with RP x RP, 0(f) may be identified with the free &,-module with
p-generators. When the given f is the identity map-germ (R™,0) — (R"™,0), 6(f) may
be denoted by 6(n).

For a C* map-germ f : (R",0) — (R?,0), let Tf : (TR™, 7, '(0)) — (I'R”, 7, (0))
denote the tangent map-germ of f, where m, : TR" — R", m, : TR?” — RP are canonical
projections. We define

tf:0(n) —0(f),  wf:0(p)—0(f)
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by tf(§) =Tfo& wf(n) =no f. By using tf and wf, we define

A(f) = tf(mnb(n)) +wf(myb(p)) and
A(f) = tf(0(n)) +wf(0(p)).

THEOREM 2.1. Let f,g : (R™,0) — (RP,0) be C™ map-germs with rank zero. Sup-
pose that there exist a germ of C* diffeomorphism s : (R™,0) — (R™,0) and a C*
map-germ M : (R™,0) — (GL(p,R), M(0))such that f(z) = M(z)g(s(z)). Suppose fur-
thermore that there exists an integer k (k> 0) such that

(a)  each entry of M — M(0) belongs to mE*! and

(b)  mEO(f) C TAP).

Then f and g are C* right-left equivalent.

Although there are no proofs of Theorem 2.1 in a series of author’s papers [13]-[18],
by the proof of Theorem 2.2 below it is clear that conditions (a) and (b) of Theorem 2.1
imply the C'*°-triviality of f(z) — M (x)\. Thus, Theorem 2.1 follows from Theorem 1.1.

THEOREM 2.2 ([14]). Let f,g : (R™,0) — (RP,0) be C>™ map-germs. Suppose that
there exist a germ of C™ diffeomorphism s : (R™,0) — (R™,0) and a C* map-germ
M : (R",0) — (GL(p,R), M(0)) such that f(z) = M(z)g(s(x)). Suppose furthermore
that there exists an integer k (k> 0) such that

(a)  each entry of M — M(0) belongs to mF+1,

(b)  mpo(f) C T.A(f) and

(c)  my(g) C TeAlg).

Then f and g are C* right-left equivalent.

Theorem 2.2 was stated (but not proved) first by A. A. du Plessis ([19], page 128).
Conditions (a) and (b) (resp. (a) and (c)) of Theorem 2.2 imply the C*°-triviality of
f(x)—M(x)X (resp. g(x) — M (s~ (x))~\). Thus, Theorem 2.2 follows from Theorem 1.2
(for details, see [14]).

THEOREM 2.3 ([14]). Let f,g : (R™,0) — (RP,0) be C*™ map-germs. Suppose that
there exist a germ of C'° dzﬁeomorphzsm s: (R*0) — (R™,0) and a C* map-germ

: (R",0) — (GL(p,R),M(0)) such that f(z) = M(x)g(s ( )). Suppose furthermore
that there exists a positive integer k such that

(a)  each entry of M — M(0) belongs to mE and

(b)  mpo(f) C TA(f).

Then f and g are C*° right-left equivalent.

Conditions (a) and (b) imply condition (ivs,). Thus Theorem 2.3 follows from Theo-
rem 1.3 (for details, see [14]). Although we can deduce infinitesimal results from Theo-
rem 1.3 in a different way, Theorem 2.3 is the most standard infinitesimal refinement of
Theorem 1.3 and quite useful as shown in the following examples and §5.3.
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EXAMPLE 2.1 (taken from [12]). This example is almost the same as Example 1.1
n [14]. Let f: (R?,0) — (R3,0) be given by
flay) = (z,2y +y°, 2y + ).
Thanks to D. Mond, the following have been known as information on f ([12], Theo-
rem 4.2.2:7).

(2.1.1) The map-germ f is 10-determined with respect to C'*° right-left equivalence.
(2.1.2) The map-germ f is not 9-determined with respect to C* right-left equivalence.
(2.1.3) m30(f) is contained in TA(f).

Let N(x,y) be a 3 by 3 matrix with entries belonging to m§. Then, by Theorem 2.3,
g = f+Nfis C™ right-left equivalent to f. In fact, f = (E3+N)"'gand M = (E3+N)~!
satisfies M (0) = F3 and each entry of M — M(0) belongs to m5.

EXAMPLE 2.2 (taken from [6]). Let f: (R?,0) — (R?,0) be given by
fla,y) = (z,9° + 2%y, 4" + 2y®).

Thanks to T. Gaffney and A. A. du Plessis, the following has been known as one of
information on f ([6], Example (3.6)):

(2.2.1) mi0(f) C TA(f).

Let N(z,y) be a 3 by 3 matrix with entries belonging to m3. Then, by Theorem 2.3,
g = f+ Nf is C* right-left equivalent to f. In fact, f = (E3 + N)"lg and M =
(Es + N)~1 satisfies M (0) = E5 and each entry of M — M(0) belongs to m3. Combining
this result with direct co-ordinate manipulations yields the same M-determinacy result
as in Example (3.6) of [6]. Note that the only information which we require is (2.2.1).

3. Criteria for C° right-left equivalence. A C>® deformation-germ & : (R” X
RF,(0,0)) — (R?,0) of f is said to be Thom trivial (vesp. transversely Thom trivial) if
there exist C-regular stratifications in the sense of Bekka ([2]), S of R x R¥, 7 of RP? x R*
and {R*} of R¥ such that the following (T1) and (T2) (resp. (T1), (T2) and (T3)) hold:

(T1) The map-germ

(@,7) : (R" x R¥,(0,0)) — (R” x R",(0,0))

is a Thom map-germ with respect to S and 7.

(T2) The map-germ

7 (R? x R*,(0,0)) — (R",0)

is a stratified map-germ (or equivalently in this case, a Thom map-germ) with respect to
T and {RF}.

(T3) The stratum Ty of 7, which contains the origin (0,0) of R? x RF, is transverse
to {0} x R*(C R? x RF).

Here 7 : (R™ x R*,(0,0)) — (R*,0), 7' : (R? x R*,(0,0)) — (R",0) are canonical
projections. For the definition of a C-regular stratification, see [2]. We remark that the
notion of a C-regular stratification is an extended one of a Whitney stratification and it
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is known that every C-regular stratification admits a controlled tube system ([2]). For
the definitions of a stratified map-germ and a Thom map-germ, see [2], [7], [11].

By Thom’s second isotopy lemma ([2], [7], [11]), we see that for any Thom trivial
deformation-germ & : (R" x R, (0,0)) — (R?, 0) of f, there exist germs of homeo-
morphisms h : (R" x R¥,(0,0)) — (R" x R¥,(0,0)) and H : (R? x R*,(0,0)) —
(R? x R* (0,0)) such that the diagram (*) in Sectlon 1 commutes, where 7 : (R™ X
RF,(0,0)) — (R*,0), 7’ : (R? x R¥,(0,0)) — (R*,0) are canonical projections.

For given two C°° map-germs f, g : (R™,0) — (R?,0), we consider the following four
conditions.

(i) The map-germ f is topologically equivalent to g.

(ii) There exist a germ of C*° diffeomorphism s : (R”,0) — (R™,0) and a C*
map-germ M : (R",0) — (GL(p,R),M(0)) such that the following (a) and (b) are
satisfied:

(a) fz) = M(z)g(s(x)),
(b) the C* map-germ F : (R™ x R?,(0,0)) — (R?,0) given by
F(z,\) = f(z) — M(z)A
is a Thom trivial deformation-germ of f.

(iii) There exist a germ of C*° diffeomorphism s : (R™,0) — (R"™,0) and a C*
map-germ M : (R™,0) — (GL(p,R), M(0)) such that (a), (b) of condition (ii) and the
following (c) are satisfied:

(c) The C*° map-germ G : (R" x R?,(0,0)) — (R?,0) given by
G(xz,\) = g(x) = M(s™'(x)) 7'\
is a Thom trivial deformation-germ of g.

(iv) There exist a germ of C*° diffeomorphism s : (R",0) — (R"™,0) and a C* map-
germ M : (R™,0) — (GL(p,R), M(0)) such that (a) of condition (ii) and the following (d)
are satisfied:

(d) The C*° map-germ F : (R" x R?,(0,0)) — (RP,0) given by
F(z,A\) = f(z) — M(z)\

is a transversely Thom trivial deformation-germ of f.

THEOREM 3.1 ([16]). Let f,g: (R™,0) — (R?,0) be C*° map-germs with rank zero.
Then condition (ii) implies condition (i).
THEOREM 3.2 ([16]). Condition (iii) implies condition (i).
THEOREM 3.3 ([18]). Condition (iv) implies condition (i).
Note that Example 1.1
fl@.y) = (2,9° +xy)
g(z,y) = (z,%)

again shows that condition (ii) does not necessarily imply condition (i) in positive rank
case.
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4. The simple systematic method. Let f : (R™,0) — (RP,0) be a C* map-germ
and @ : (R" x R¥,(0,0)) — (R?,0) be a C" deformation-germ of f, where 0 < r < co.
Suppose that there exists a C" A-morphism from ® to f. By the definition of a C”
A-morphism, there exist C" map-germs h : (R" x RF, (0,0)) — (R" x RF, (0,0))7 H:
(R? x R¥,(0,0)) — (R? x R¥,(0,0)) and ¢ : (R*,0) — (R*,0) such that the following
(4.1) and (4.2) hold (for the definition of C" A-morphism, see [17]).

(4.1) For any representatives hof h and H of H , there exist neighborhoods U of the
origin in R™ , V of the origin in R* and W of the origin in RP such that the
restrictions ?L|U><{>\} and P~I|WX{>\} are C" diffeomorphisms for any A € V.

(4.2) The following diagram commutes, where 7 : (R™ x R* (0,0)) — (R*,0), «’ :
(R? x R¥,(0,0)) — (R*,0), are canonical projections:

(R™ x R¥, (0,0)) 2L (R” x R¥, (0,0)) ——> (RF,0)

hJ/ HJ{ gal
(R" x R¥,(0,0)) <= (R” x R, (0.0)) —" (R¥,0).

By (4.2), we may write
Let ¢/, : (R*,0) — (RP,0) be the C" map-germ given by
(4.3) ¢ (A) = Hi(0,N).

The map-germ (4.3) is the key idea in our study.
We put also h' : (R" x RF, (0,0)) — (R” x RP, (0,0)) as
W (x, ) = (ha(z,A), (V)
and H': (R" x R* x R?,(0,0,0)) — (R™ x R? x RP,(0,0,0)) as
H/(:L'7 A\y) = (h/(x7 A), Hi(y, A) — L:03‘[()‘))
Then we can show that {h', H', ¢y} is a C” K-morphism from ® to F, where F is the
graph deformation-germ of f given by F(x,y) = f(z) — y. (For details, see [17]. In [17]
the argument is pursued only for C'*°*° deformation-germs. However, C" deformation-germs
can be treated by the exactly parallel argument.)

Next, returning to the situations in Sections 1-3, we let f, g : (R™,0) — (RP,0) be C*
map-germs. We suppose that there exist a C” map-germ M : (R™,0) — (GL(p,R), M (0)
and a germ of C" diffeomorphism s : (R™,0) — (R™,0) such that f(x) = M(z)g(s(z)).
We concentrate on considering the following C” deformation-germ of f:

(4.4) fz) — M(x)A\

~—

This deformation-germ is linear with respect to parameter variables. Remark that the
parameter space of (4.4) is p-dimensional. Thus, if there exists a C" A-morphism {h, H, ¢}
from ® to f, then the map-germ (4.3) is a map-germ between the same dimensional spaces.
We suppose furthermore that the deformation-germ (4.4) is C"-trivial. Then, there exists
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a C" A-morphism {h, H, ¢} from ® to f. Thus, from the above argument we see that
there exists a C" K-morphism {h/, H', ¢’y } from (4.4) to the graph deformation-germ F
of f. In particular, we have the following equality (for details, see [15], [16]):

f(ha(@,9(s(@)))) = H1(0,9(s())).

Finally, we can show the following.

LEMMA 4.1 ([15], [16]). If the map-germ (4.3) is a germ of C" diffeomorphism, then
the endomorphism-germ of (R™,0) given by

= hi(z, g(s(2)))

is also a germ of C" diffeomorphism.

Thus, we see that for 0 < r < oo in order to obtain C” right-left equivalence of f
and g, it suffices to find that the map-germ (4.3) is a germ of C” diffeomorphism.

5. Several applications

5.1. C" right-left equivalence of C"-stable map-germs (1 < r < o)

DEFINITION 5.1. A C* map-germ f : (R",0) — (RP?,0) is said to be C"-stable if
every C* deformation-germ of f is C"-trivial (0 < r < 00).

There are several apparently different definitions of C"-stability. For the relation be-
tween them, see [20]. Our definition of C"-stability is called P-C"-stability in [20].

From the argument in Section 4, we have the following (for the definition of C”
K-versality, see [17]).

THEOREM 5.1 ([17]). For any C"-stable map-germ f, its graph deformation-germ is
C" K-versal for 0 <r < oo.

For 1 <r < o0, the uniqueness of C” K-versal deformation-germ of a given map-germ
may be proved easily by a slight modification of Martinet’s proof of the uniqueness of
C>™ K-versality (pp. 155-156 of [1], pp. 21-22 of [8]), because in order to prove the
uniqueness we need only one implication, the C" K-versality implies the infinitesimal
C"~! K-versality, which is clear. Thus, by using Martinet’s argument (p. 158 of [1], p. 28
of [8]), we see that Theorem 5.1 yields a C” generalization of Mather’s classification
theorem (1 < r < co0) without any difficulty. Note that Theorem 1.2 also yields the same
generalization of Mather’s classification theorem as a trivial corollary.

THEOREM 5.2 ([15], [17]). Let f,g : (R™,0) — (RP?,0) be C"-stable map-germs
(1 <r < o0). Suppose that there exist a germ of C*° diffeomorphism s : (R™,0) — (R™,0)
and a C*® map-germ M : (R™,0) — (GL(p,R), M(0)) such that f(x) = M(z)g(s(z)).
Then f and g are C” right-left equivalent.
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5.2. C° right-left equivalence of C°-stable map-germs

DEFINITION 5.2. A C* map germ f : (R",0) — (R?,0) is said to be MT-stable if
the jet extension of it is multi-transverse to the Thom-Mather canonical stratification of
the jet space.

Concerning C° right-left equivalence of MT-stable map-germs, there is a well-known
theorem due to M. Fukuda and T. Fukuda.

THEOREM 5.3 ([3]). Let f,g : (R™,0) — (RP,0) be MT-stable map-germs. Suppose
that there exist a germ of C* diffeomorphism s : (R™,0) — (R™,0) and a C*° map-germ
M : (R",0) — (GL(p,R),M(0)) such that f(x) = M(z)g(s(x)). Then, they are C°
right-left equivalent.

DEFINITION 5.3. A C* map-germ f : (R",0) — (RP,0) is said to be Thom stable if
every C*° deformation-germ of f is Thom trivial.

As a consequence of the definition of MT-stability, every C'*° deformation-germ of an
MT-stable map-germ is Thom trivial (see [7], [11]]). Thus, every MT-stable map-germ is
Thom stable. By Thom’s second isotopy lemma ([2], [7], [11]), every Thom stable map-
germ is C%-stable in the sense of Definition 5.1. As a trivial corollary of Theorem 3.2, we
obtain a generalization of Theorem 5.3.

THEOREM 5.4 ([16]). Let f,g : (R",0) — (RP,0) be Thom stable map-germs. Sup-
pose that there exist a germ of C*° diffeomorphism s : (R™,0) — (R",0) and a C*
map-germ M : (R™,0) — (GL(p,R), M(0)) such that

f(x) = M(z)g(s(x)).
Then, they are C° right-left equivalent.

5.8. An estimate of the order of C°° determinacy. As an application of Theorem 2.3,
we show the following.

THEOREM 5.5. Let f : (R™,0) — (RP,0) be a C* map-germ. Suppose that there
exist positive integers k, £ such that

(a)  mrO(f) CcTA(f) and

(b)  myp0(f) C TK(f).

Then, f is (k+ ¢ — 1)-determined with respect to C™ right-left equivalence.

The set TK(f) is defined by

TK(f) = tf(mnb(n)) + f*myp0(f),
where f*(u) =wo f. This set is the tangent space of the orbit through f by the action of
the group K which was introduced by Mather in [9]. For details on the group K, TK(f)
and the definition of determinacy, see [9], [21]. Theorem 5.5 is a similar estimate to the
well-known estimate due to Gaffney ([4]). Theorem 5.5 has been stated already in [13]

without the proof. Several applications of Theorem 5.5 to divergent diagrams have been
obtained in [13].
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Proof. Let x—1/K be the set of all pairs of (s, M), where s is a germ of C* diffeo-
morphism (R",0) — (R",0) and M : (R",0) — (GL(p,R), E},) is a C* map-germ with
each entry of M — M (0) belonging to m*. Here, E, is the p by p unit matrix. The set
k—1K is a group by the operation (s1, My) * (s2, M) = ($1 0 s2, M1 Ms), where s1 0 s5 is
the composition of s; and s and MM, is the product of matrices of M; and Ms. The
group 1K is a subgroup of the group K and the tangent space of the orbit through f
by the action of the group ,_1K is

(5.3.1) Ty 1 K(f) = tf(mnf(n)) + f*mump0(f).
Condition (b) of Theorem 5.5 implies
(5:32) mEHO(F) C LA mEF0()) + T mymbo(f) C Te 1 KC(f).

By (5.3.2), we see that f is (k + £)-determined with respect to the group p_1K.

Let g : (R™,0) — (RP,0) be a C*™ map-germ with j*T*~1f(0) = j¥+¢~14(0). Then,
since k > 0, (5.3.2) implies
(5.3.3) my0(g) C tg(myT10(n)) + g mymi0(g) +myt16(g).
By Mather’s lemma (Lemma 3.1 of [10]), (5.3.3) implies that there exist a germ of C*
diffeomorphism s : (R",0) — (R",0) and a C*° map-germ M : (R",0) — (GL(p,R), E,)
such that
(5.3.4) f(xr) = M(z)g(s(x)) and
(5.3.5) each entry of M — M(0) belongs to mF.

By Theorem 2.3, (5.3.4), (5.3.5) and condition (a) of Theorem 5.5 imply that f and g¢
are C'*° right-left equivalent. m

Remark 5.1. Note that in the proof of Theorem 5.5 we use Mather’s lemma only
for orbits by r_1/K group action, whose tangent spaces are much simpler than T A(g).

Since TA(f) C TK(f), Theorem 5.5 yields the following well-known estimate due to
du Plessis and Wall as a trivial corollary.

THEOREM 5.6 ([19], [21]). Let f : (R™,0) — (RP?,0) be a C*° map-germ. Suppose
that there exists a positive integer k such that
mud(f) C TA(S).
Then, f is (2k — 1)-determined with respect to C* right-left equivalence.
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